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Problem 1 Solve the following exercises.

Consider a Markov Chain Xn with its finite state space {0, 1, 2} and let Xn evolves
as a Markov chain with transition matrix given as follows:

P =

 1/2 1/2 0
0 0 1
1 0 0


Assume the initial state is X0 = 0, please find P(Xn = 0|X0 = 0).

Problem 2 Theorem 3.1 in Page 40 in the Durret’s book

We say that T is a stopping time if the occurence(or nonoccurrence) of the event ”we
stop at time n”,{T = n} can be determined by looking at the values of the process
up to that time: X0, . . . , Xn. Show the following theorem:

Suppose T is a stopping time. Given that T = n and XT = y, any other information
about X0, . . . , XT is irrelevant for predicting the future, and XT+k, k ≥ 0 behaves like
the Markov chain with initial state y.

Problem 3 Amateur Night at Happy Harry’s

Friday night is amateur night at Happy Harry’s Restaurant where a seemingly infinite
stream of performers dreaming of stardom perform in lieu of the usual professional
floor show. The quality of the performers fall into five categories with ”1” being
the best and ’5’ being unspeakably atrocious, representing for Harry’s discriminating
clientele an excedance of the threshold of pain which may cause a riot. The probability
a class 5 performer will cause the crowd to riot is .3. After the riot is quelled,
performances resume-the show must go on. Since performers tend to bring along
friends of similar talent to perform, it is found that the succession of states on Friday
night at Happy Harry’s can be modelled as a six-state Markov chain where state 6
represents ’riot’ and state ’i’ represents a class ’i’ performer, 1 ≤ i ≤ 5. The transition
matrix for this chain is




.05 .15 .3 .3 .2 0
.05 .3 .3 .3 .05 0
.05 .2 .3 .35 .1 0
.05 .2 .3 .35 .1 0
.01 .1 .1 .1 .39 .3
.2 .2 .2 .2 .2 0


To play it safe Harry starts the evening off with a class 2 performer. What is the
probability that a star is discovered (a class 1 performer) before a riot is encountered?
What is the expected number of performers seen before the first riot?

Problem 4 Harry, the Semipro.

Our hero, Happy Harry, used to play semipro basketball where he was a defensive
specialist, His scoring productivity per game fluctuated between three states: 1(scored
0 or 1 points), 2 (scored between 2 and 5 points), 3 (scored more than 5 points).
Inevitably, if Harry scored a lot of points in one game, his jealous teammates refused
to pass him the ball in the next game, so his productivity in the next game was
nil. The team statistician, Mrs. Doc, upon observing the transitions between states,
concluded these transitions could be modeled by a Markov chain with transitions
could be modeled by a Markov chain with transition matrix

P =

 0 1/3 2/3
1/3 0 2/3
1 0 0


(1) What is the long run proportion of games that our hero had high scoring games?

(2) The salary structure in the semipro leagues includes incentives for scoring. Harry
was paid $40/game for a high scoring performance, $30/game when he scored
between 2 and 5 points and only $20/game when he scored nil. What was the
long run earning rate of our hero?

Problem 5 Markov Carlo Markov Chain.

Background: Suppose we wish to evaluate E[h(X)] where X has distribution func-
tion π (i.e.,P[X = i] = πi). TheMonte Carlo approach is to generateX1, X2, . . . , Xn ∼
π and estimate E[h(X)] ≈ 1

n

∑n
i=1 h(Xi). If it is hard to generate a iid sample from π,

we may look to generate a sequence from a Markov chain with limiting distribution
π. This idea, called Monte Carlo Markov Chain (MCMC), was introduced by
Metropolis and Hastings (1953). It has become a fundamental computational meth-
ods for the physical and biological sciences. It is also commonly used for Bayesian
statistical inference.
Metropolis-Hastings Algotithm:
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(i) Choose a transition matrix Q = [qij]

(ii) Set X0 = 0

(iii) For n = 1, 2, . . .

(a) Generate Yn with P[Yn = j|Xn−1 = i] = qij.

(b) If Xn−1 = i and Yn = j, set Xn =

{
j, with probabilitymin(1, πjqji/πiqij)

i, otherwise

Here Yn is called the proposal and we say the proposal is accepted with probability
min(1, πjqji/πiqij). If the proposal is not accepted, the chain stays in its previous
state.

Now show that the following proposition:

Set Pij =

{
qij min(1, πjqji/πiqij), j ̸= i

qii +
∑

k ̸=i qik{1−min(1, πkqki/πiqik)}, j = i
.

Then π is a stationary distribution of the Metropolis-Hastings chain {Xn}. If Pij

is irreducible and aperiodic, then π is also the limiting distribution.

Problem 6 Real example about MCMC.

Suppose that X1, X2, . . . , Xn is sampled from N(θ, 1), where we assume that (log θ−
µ)/σ has a t distribution on r degrees of freedom. Assume that µ, σ, r are known.

(1) Let π(θ | X1, X2, . . . , Xn) be the posterior distribution and it is given as follows:

π(θ | X1, X2, . . . , Xn) =
C

θ

[
1 +

1

r

(
log θ − µ

σ

)2
]−(r+1)/2

exp

{
−1

2

n∑
i=1

(Xi − θ)2
}
I(θ > 0)

where C is a constant. Describe a Metropolis-Hastings algorithm for sampling
from this posterior distribution π(θ | X1, X2, . . . , Xn) using a normal proposal
distribution centered at the current value of the Markov chain and with variance
τ 2.

(2) Take τ 2 = 1, µ = 0, σ = 5 and r = 4. For the data set X1, X2, . . . , Xn as attached,
implement your Metropolis-Hastings algorithm starting the chain at θ0 = 1 and
running for 30, 000 steps.

(3) Record the acceptance rate of your Metropolis-Hastings algorithm. Then create a
trace plot in which you plot the values of θi against i and also create a histogram
of the θi values.
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