Home Work 2: Markov Chains

Stochastic Processes

Deadline March 19, 2013

- 1. Prove that the three definitions of the Poisson Process discussed in the classroom are equivalent. (3 points)
- 2. For each n, let $X_{n,1}, \ldots, X_{n,n}$ be independent random variables with

$$P(X_{n,m} = 1) = p_{n,m}$$
 and $P(X_{n,m} = 0) = 1 - p_{n,m}$.

Let $S_n = X_{n,1} + \cdots + X_{n,n}$ and $\lambda_n = E[S_n]$. Assume

$$\lim_{n \to \infty} \max \{ p_{n,m} : 1 \le m \le n \} = 0 \quad \text{and} \quad 0 < \lim_{n \to \infty} \lambda_n = \lambda < \infty.$$

Prove, for any $k \geq 0$,

$$\lim_{n \to \infty} P(S_n = k) = P(Poisson(\lambda) = k)$$

The above result generalizes the Poisson approximation that you discussed with Professor Alonso. This is

$$Binomial(n, \lambda_n/n) \to Poisson(\lambda)$$
, in distribution.

Can you explain in which sense? (2 points)

- 3. Given a Poisson process of red arrivals with rate λ and an independent Poisson process of blue arrivals with rate μ , what is the probability that we will get m arrivals before a total of n blue ones?
- 4. Let N(t) be a nonhomogeneous Poisson process with arrival rate $\lambda(t)$, and let $\Lambda(t) = \int_0^t \lambda(s) ds$. (2 points) Verify

$$P(N(s) = k | N(t) = n) = \frac{n!}{k!(n-k)!} \left(\frac{\Lambda(s)}{\Lambda(t)}\right)^k \left(1 - \frac{\Lambda(s)}{\Lambda(t)}\right)^{n-k}$$

for any s < t and $k = 0, 1, \ldots, n$.

- 5. Consider the classical Collective Risk Model. Assume that the claims are distributed as a $\Gamma(2,1)$. Compute the probability of ruin. (2 points)
- 6. Define the current life process by $L(t) = t T_{N(t)}$. Make some typical paths to show the behavior of the process. Use the regenerative approach to compute the asymptotic distribution of L(t) when $t \to \infty$ and interpret the result. (2 points)
- 7. Choose and solve one problem, between 7.18 and 7.28, of the Durrett's book (first edition). (2 points)