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Exponential random variables
A random variable T has exponential distribution with rate λ > 0 if its
probability density function can been written as

f (t) = λe−λt1(0,+∞)(t)

We summarize the above by T ∼ exp(λ).

The cumulative distribution function of a exponential random variable is

F (t) = P(T ≤ t) = 1− e−λt1(0,+∞)(t)

And the tail, expectation and variance are

P(T > t) = e−λt , E [T ] = λ−1, and Var(T ) = E [T ] = λ−2

The exponential random variable has the lack of memory property

P(T > t + s|T > t) = P(T > s)



Exponencial races
In what follows, T1, . . . ,Tn are independent r.v., with Ti ∼ exp(λi ).

P1:
min(T1, . . . ,Tn) ∼ exp(λ1 + · · ·+ λn)

.
P2

P(T1 < T2) =
λ1

λ1 + λ2

P3:

P(Ti = min(T1, . . . ,Tn)) =
λi

λ1 + · · ·+ λn

P4: If λi = λ and Sn = T1 + · · ·+ Tn ∼ Γ(n, λ). That is, Sn has probability
density function

fSn (s) = λe−λs
(λs)n−1

(n − 1)!
1(0,+∞)(s)



The Poisson Process as a renewal process
Let T1,T2, . . . be a sequence of i.i.d. nonnegative r.v. (interarrival times).
Define the arrival times

Sn = T1 + · · ·+ Tn if n ≥ 1 and S0 = 0.

The process
N(t) = max{n : Sn ≤ t},

is called Renewal Process.

If the common distribution of the times is the exponential distribution with rate
λ then process is called Poisson Process of with rate λ.

Lemma.
N(t) ∼ Poisson(λt)

and

N(t + s)− N(s), t ≥ 0, is a Poisson process independent of N(s), t ≥ 0



The Poisson Process as a Lévy Process
A stochastic process {X (t), t ≥ 0} is a Lévy Process if it verifies the following
properties:

1. X (0) = 0

2. For all s, t ≥ 0, X (t + s)− X (s) ∼ X (t), and

3. X (t) has independent increments. This is, for any sequence
0 ≤ t0 < t1 < · · · < tm we have
X (t1)− X (t0),X (t2)− X (t1), . . . ,X (tn)− X (tn−1) are independent
random variables.

If {X (t)} is a Lévy Process then one may construct a version of such that is
almost surely right continuous with left limits.

Theorem. N(t) is Poisson Process with rate λ if and only if

1. N(0) = 0

2. N(t + s)− N(s) ∼ Poisson(λt), and

3. N(t) has independent increments.



The Poisson Process as a Birth Process
Many process in nature may change their values at any instant of time rather
than at certain epochs only. Depending of the underlying random mechanism,
thsee processes may or may not satisfy a Markov property. Before attempting
to study a general theory of continuous Markov Processes we explore a one
simple in detail.

Theorem. N(t) is Poisson Process with rate λ if and only if it is a process
taking values in {0, 1, 2, 3, . . . } such that

1. N(0) = 0 and, If s < t then N(s) ≤ N(t)

2.

P(N(t + h) = n + m|N(t) = n) =


λh + o(h) if m = 1

o(h) if m > 1
1− λh + o(h) if m = 0

3. If s < t then the number of births in the interval (s, t], namely
N(t)− N(s), is independent of the number of births during [0, s], this is
N(s).



Law of Rare Events and Poisson Process
The Poisson Process is important for applications partially by the Poisson
approximation to the sum of independent Bernoulli random variables.

Theorem. If npn → λ > 0, when n→ to +∞, then the binomial(n, pn)
distribution is approximately Poisson(λ). In particular, the binomial(n, λ/n)
distribution is approximately Poisson(λ). Moreover, Let ε1, ε1, . . . be
independent Bernoulli random variables, with P(εi = 1) = pi . Let
Sn = ε1 + · · ·+ εn and λ = p1 + · · ·+ pn. Then

|P(Sn = k)− P(Poisson(λ = k)| ≤
n∑

i=1

p2
i

The latter is consequence of the following important result: If X and Y are
integer valued random variables then, for any set A

|P(X ∈ A)− P(Y ∈ A)| ≤ 1

2

∑
k

|P(X = k)− P(Y = k)|

The right-hand side is called the total variation distance between X and Y .



Conditioning
Teorema. Let be the arrival times of a Poisson Process with rate λ. Let
V1, . . . ,Vn be the order statistics of n i.i.d. random variables, uniformly
distributed on (0, t). Then, the conditional distribution of (T1, . . . ,Tn) given
N(t) = n is the distribution of (V1, . . . ,Vn). This is, for any t1 < · · · < tn < t

P(S1 ≤ t1, . . . , Sn ≤ tn|N(t) = n) = P(V1 ≤ t1, . . . ,Vn ≤ tn)

Note: The joint probability density of (V1, . . . ,Vn) is

n!t−n1{0<t1<···<tn<t}.

The above remarkable fact implies another important result

Teorema. If 0 < s < t, and 0 ≤ m ≤,

P(N(s) = m|N(t) = n) =

(
n

k

)( s
t

)m (
1− s

t

)n−m

m = 0, 1, . . . , n

That is, the conditional distribution of N(s) given N(t) = n is Binomial(n, s/t).



Nonhomogeneous Poisson Process
Consider λ : R+ → R+. We say {N(t), t ≥ 0} is a Nonhomogeneous Poisson
Process with rate λ(r) if

1. N(0) = 0

2. N(t)− N(s) ∼ Poisson
(∫ t

s
λ(r)dr

)
, para cualquier 0 ≤ s < t

3. N(t) has independent increments.

Remarks:

1. For the Nonhomogeneous Poisson Process, the interarrival times are no
longer exponentially distributed or independent.

2. Let X (t) be a nonhomogeneous Poisson process of rate λ(t) and define

Λ(t) =

∫ t

0

λ(u)du.

Then, S1, S2, . . . are the arrival times corresponding to X (t) if and only if
Λ(S1),Λ(S2), . . . are the corresponding arrival times of a homogeneous
Poisson process of rate one. This result provides a method of generation
nonhomogeneous Poisson Processes.



Compound Poisson Process
Given a Poisson Process X (t) of rate λ, suppose that each arrival time has
associated with a random value or cost. Assume the successive values
Y1,Y2, . . . are i.i.d. and independent of the Poisson Process. The process S(t)
defined by

S(t) =

{
0 si N(t) = 0

Y1 + · · ·+ YN(t) si N(t) ≥ 1

is called Compound Poisson Porcess.

The distribution function for a compound Poisson process can be represented
explicitly. In particular, if E [Yi ] = µ, Var(Yi ) = σ2 and Y1 + · · ·+ Yn ∼ Sn

then
E [S(t)] = λµt

Var(S(t)) = λ(σ2 + µ2)t

and

P(S(t) ≤ s) =
∞∑
n=0

eλt
(λt)n

n!
P(Sn ≤ s)



Collective Risk Model
The classical model describes an insurance company who experiences two
opposing cash flows: incoming cash premiums and outgoing claims. Premiums
arrive a constant rate c > 0 from customers and claims arrive according to a
Poisson process with intensity λ and are independent and identically distributed
non-negative random variables with distribution F and mean µ. So for an
insurer who starts with initial surplus x

C(t) = x + ct − S(t)

S(t) being a compound Poisson process t.

The central object of the model is to investigate the probability that the
insurer’s surplus level eventually falls below zero (making the firm bankrupt).
This quantity, called the probability of ultimate ruin, is defined as

ψ(x) = P(τ <∞|C(0) = x)

τ being the time of ruin defined by

τ = inf
t
{t > 0 : C(t) < 0}



Thinning
As we did for the Compound Poisson Process, assume Y1,Y2, . . . are i.i.d. and
independent of a Poisson Process N(t) with rate λ. But now, Yi is the type of
value at the i th-arrival time. We are interested in the number of Yi = y up to
time t, that we will call Ny (t).

This procedure, taking one Poisson process and splitting in two or more by
using an i.i.d. sequence is called thinning.

Theorem. Ny (t) are independent Poisson Processes with rate λP(Yi = y)

There are two surprises here:

1. The resulting processes are Poisson

2. They are independent



Superposition
Superposition goes in the inverse direction than thinning. Since a Poisson
process can be split into independent Poisson processes, it should be intuitive
that when independent Poisson processes are put together, the sum
(superposition) is Poisson. Remember that if X1, . . . ,Xn are independent
Poisson random variables, with Xi ∼ Poisson(λi ), then

X1 + · · ·+ Xn ∼ Poisson(λ1 + · · ·+ λn)

So,

Theorem. Suppose N1(t), . . . ,Nk(t) are independent Poisson processes with
rates λ1, . . . , λk , then N1(t) + · · ·+ Nk(t) is a Poisson process with rate
λ1 + · · ·+ λk .

The ideas of compounding, thinning and superposition are very useful in
simulation of continuous Markov Chains.



Spatial Poisson Process
Let B ⊂ Rd be a bounded set and let U1, . . . ,Un be i.i.d. uniformly distributed
on B. The process Un = {U1, . . . ,Un} is called the binomial process on B and
it describes a totally random set of points on B.

How to extend this notion of total randomness to points in the entire Rd? The
is no uniform probability measure on Rd . The Poisson point process P gieves a
way to solve this problem. Desiderata:

1. The number of points in a set B, namely P(B), is a Poisson random
variable with expected value = λmd(B), md(B) being the Lebesgue
measure of B (area for d = 2, volume for d = 3, etc.)

2. if A and B are disjoints then P(A) and P(B) should be independent.

Properties

1. Conditioning to have n points in a given set B we obtain the binomial
process Un (exhibit a complete spatial random pattern).

2. The translated process and the rotated process have the same distribution
(invariant under translation and rotation).



Renewals
The major reason for studying renewal processes is that many complicated
processes have randomly occurring instants at which the system returns to a
state probabilistically equivalent to the starting state. These embedded renewal
epochs allow us to separate the long term behavior of the process (which can
be studied through renewal theory) from the behavior of the actual process
within a renewal period.

The basic elements involved in a Renewal Process are:

• The interarrivals times T1,T2, . . . . They are i.i.d. nonnegative r.v. with
common distribution F .

• The arrival times Sn = T1 + · · ·+ Tn if n ≥ 1 and S0 = 0.

• The counting process N(t) = max{n : Sn ≤ t}.

When the distribution of the interarrival times is not exponential (i.e. when the
process is not a Poisson Process) then

1. the process has not independent increments and,

2. in general, it has not stationary increments.



Distribution of N(t)
Note that

N(t) ≥ n if and only if Sn ≤ t.

It follows that
P(N(t) ≥ n) = P(Sn ≤ t) = Fn(t),

where F1(t) = F (x), and

Fn+1(t) =

∫ t

0

Fn(t − s)F (s)ds.

So, the renewal function m(t) = E [N(t)] can be written as

m(t) =
∑
n

Fn(t)

and it satisfies the renewal equation

m(t) = F (t) +

∫ t

0

m(t − x)dF (x)



Limit behavior
SLLN:

N(t)

t
→ 1

µ
a.s., with µ = E [Ti ].

The asymptotic result also holds for the expectation and is known as
elementary renewal theorem:

m(t)

t
→ 1

µ

Second order properties of m(t) are harder to find and require of an additional
definition: Call a random variable X and its distribution F arithmetic with
span λ > 0 if X take values in the set {mλ : m = 0,±1,±2, . . . } with
probability 1, and λ is maximal with this property.
Renewal Theorem: If the interarrival times are not arithmetic then

m(t + h)−m(t)→ h

µ
, for all h.

If Ti is arithmetic with span λ then the above asymptotic results holds
whenever h is a multiple of λ.



Renewal-Reward process
There are situations in which, along with a renewal process, one can make
some money between arrival times. In this context, the interarrival times are
called cycles.

The model: Suppose that a reward Rn is earned during the nth cycle. Assume:

1. Rn may depend on the length of the nth cycle.

2. R1,R2, . . . are i.i.d.

And consider the total reward earned up to time t, denoted R(t).

Renewal-Reward Theorem:

R(t)

t
→ E [Ri ]

µ
a.s.

Under bounding conditions, the limit holds also for the expectation.

E [R](t)

t
→ E [Ri ]

µ



Regenerative process
The asymptotic result discussed above holds in very general setups. A very
general framework can be described in terms of Regenerative Processes.

A stochastic process {X (t), t ≥ 0} is regenerative if there are random times
S1 < S2 < S3 < . . . (called regeneration epochs) such that

1. {X (Sk + t), t ≥ 0} is independent of {X (t), 0 ≤ t < Sk}
2. {X (Sk + t), t ≥ 0} has the same distribution as {X (t), t ≥ 0}

It is very common to be interested in the long-run behavior of

1

t

∫ t

0

X (t)dt

In such situations, it is useful the modeling

• Cn = Sn − Sn−1 are cycles,

• Rn =
∫ Sn
Sn−1

X (t)dt are rewards, and

• N(t) is the number of regeneration epochs up to time t



Application: asymptotics for the excess variable
Consider the waiting time (or excess or residual life) until the next event,
namely

γt = S(N(t) + 1)− t

A well known result in Renewal theory is

P(γt ≤ x)→ 1

µ

∫ x

0

P(Ti > y)dy and E [γt ]→
E [T 2]

2µ

The proof is advanced, outside scope of this course. But we can derivate more
easily the next result

1

t

∫ t

0

P(γs ≤ x)ds → 1

µ

∫ x

0

P(Ti > y)dy and
1

t

∫ t

0

E [γs ]ds →
E [T 2]

2µ

Hint: take, according each case,

Rn =

∫ Sn

Sn−1

1[0,x](γt)dt and Rn =

∫ Sn

Sn−1

γtdt

and apply the asymptotics discussed for regenerative process



Applications to queueing systems


