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One hundred years of Markov Chains
More than a century ago, Markov wrote his first seminal work and still remains
an extremely useful tool for stochastic modeling.

Markov Chains are important for several reasons:

1. Many examples of physics, biology, economics and social science can be
described with them.

2. They are simple models with a well developed theory.

3. They are useful in estimation of expected values associated to complex
systems, quantities realted to financial systems, parameters of Bayesian
models, among many other applications.



Definition
The stochastic process {Xn}n∈N, which takes values in a discrete state space S,
is a Markov Chain (MC) if for every n ∈ N and j , i , in−1, . . . , i0 ∈ S

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0). = P(Xn+1 = j |Xn = i)

The above formula is called Markov property and it establishes that given the
present any any other information from the past is irrelevant for future
forecasting.

Our study is restricted to temporary homogenous MCs, in which the
probability

P(Xn+1 = j |Xn = i) = p(i , j)

does not depend on n.

The matrix P with elements [P]ij = p(i , j) is called transition matrix of {Xn}.



Example 1: Gambler’s ruis
A and B are gamblers with initial fortune k and N − k respectively. They flip a
coin and B pays to A one euro if it is a head. Otherwise A pays oen euro to B.
The game stops when one of the gamblers reaches the ruin. The fortune of A
has after n turns is a MC with transition probability

p(i , i − 1) = p(i , i + 1) =
1

2
, si 0 < i < N,

p(0, 0) = p(N,N) = 1 y p(i , j) = 0 en caso contrario

Sometimes it is useful to represent the MC by a diagram. For the example
above, with N = 4, would be

0 1 2 3 4
1

1/2 1/2

1/2 1/2

1

1/2 1/2



Example 2: Ehrenfest’s urns
Consider the MC with state space {0, 1, . . . , a} and transition probabilities

P(Xn+1 = j |Xn = i) =


1− i

a
si j = i + 1

i
a

si j = i − 1
0 otherwise

The transition matrix for a = 5 is

0 1 2 3 4 5
0 0 1 0 0 0 0
1 1

5
0 4

5
0 0 0

2 0 2
5

0 3
5

0 0
3 0 0 3

5
0 2

5
0

4 0 0 0 4
5

0 1
5

5 0 0 0 0 1 0

The model:

• We have two urns, with a balls
spread within them, and at each
step a ball is chosen at random
to change its urn.

• The MC Xn represents the
number of balls in one of the
urns after n steps.



Multistep transition probabilities
Let

p(m)(i , j) = P(Xm = j | X0 = i)

be the probability of going from i to j in m steps. Denote by P(m) the
corresponding matrix

P(m) = {p(m)(i , j)}i,j∈S
called multisept transition matrix.

Theorem. P(m) = Pm That is, the probability of going form i to j in m is the

(i , j) element of Pm.

A consequence of the above theorem is the Chapman-Kolmogorov equation

p(m+n)(i , j) =
∑
k

p(m)(i , k)p(n)(k, j)



Probability distribution of a chain after n steps
Let {Xn}n∈N be a MC with state space S = {y1, y2, . . . }. Consider the array in
row of the probability mass function

νn = (νn(1), νn(2), . . . )

with
νn(i) = P(Xn = yi ) i = 1, 2, . . .

In the jargon, ν0 is called the distribution of the MC at time n and ν0 is
called the initial distribution of the chain.

Theorem. νn+1 = νnP

Corolary. νn = ν0P
n



Closed sets and irreducible sets
We say that:

• i communicates with j (i → j) if pn(i , j) > 0 for some n.

• i and j intercommunicate (i ↔ j) if i → j and j → i .

A set of states is:

• closed if all the states into the set are communicated only with other
states into the set. Thus, cannot scape from a close set.

• irreducible if i ↔ j for all i , j in the set. If the state space of a MC is
irreducible then the chain can visit any state.

As illustration, consider the MC related with the gambler’s ruin with N euros in
game. Then, {0,N} is closed but is not irreducible and {1, . . . ,N − 1} is
irreducible but is not closed.



Recurrent states and trasient
Let Ti = min{n ≥ 1 : Xn = i} be the time of the first visit to i (without
taking in account where the chain started). Then, the probability of a eventual
return to i is ρi = P(Ti <∞|X0 = i).

The Markov property implies that the probability of n returns to i is ρni .
Therefore

• If ρi < 1 the probability of returning n times goes to zero as n goes to
infinity. Thus, eventually {Xn} does not find its way back to i . In that
case the state i is called transient.

• If ρi = 1 the chain return to i infinitely many times. In this case i is
called recurrent.

A state i is called absorbing if p(i , i) = 1. Of course, if i is absorbing then it is
recurrent.

Following with the example of the gambler’s ruin, 0 and N are absorbing states
while 1, . . . ,N − 1 are transient



Classifying the states of a MC
Proposition 1 Let ρij = P(Tj <∞|X0 = i). If ρij > 0 but ρji < 1 then i is
transient.

Proposition 2. If C is a closed finite and irreducible set then all its states are
recurrent.

The proof of Proposition 2 require some useful characterizations of recurrent
states and trasient:

• If i is recurrent and i → j then j is recurrent.

• In a finite closed set there has to be at least one recurrent state.

Combining propositions 1 and 2 we can classify the states of any finite MC.
The proof of the following proposition provides an algorithm.

Proposition 3. If the state space of a MC is finite then it can be written as the
union of disjoint sets T ,C1, . . . ,Ck , whereT is the set of transient states and
C1, . . . ,Ck are closed and irreducible sets of recurrent states.



Periodic states and aperiodic
Another definition, unfortunately very technical but necessary to enunciate an
important asymptotic result is:
The period of the state i is defined by

d(i) = greatest common divisor of {n ≥ 1 : pn(i , i) > 0}

if d(i) = 1, we say that i is aperiodic.

Back to the gambler’s ruin, all the transient states of this MC have period
equal to 2 while the absorbing states are aperiodic. Fortunately, many of the
MC’s of interest are aperiodic can be reduced to an aperiodic MC.

To verify periodicity can be useful the following properties siguientes
propiedades:

• If p(i , i) > 0 then i is aperiodic

• If i ↔ j then d(i) = d(j)

When all the states of a MC a aperiodic we said that the MC is aperiodic



Stationary distribution
A stationary distribution is a distribution that is solution of

π = πP

or equivalently

π(j) =
∑
i

π(i)p(i , j) for any state j

Example: Consider the MC with two
states and transition matrix

1 2
1 1− a a
2 b 1− b

The stationary distribution has the
simple formula

π(1) =
b

a + b
, π(2) =

a

a + b

Theorem. If νn = π for some n them νm = π for any m ≥ n.

When the chain reaches the stationary distribution, in other words, when
Xn ∼ π for some n, we say that the chain is in equilibrium or it is in stationary
state.



Asymptotic behavior
Theorem 1*. Consider a MC with transition matrix P and state space
irreducible and aperiodic. If π is a stationary distribution then for any pair of
states i , j we have

lim
n→∞

pn(i , j) = π(j)

That is, no matter where the chain starts, asymptotically it reaches the
equilibrium. The results that follow are concerned with the uniqueness and
existence of π.

Theorem 2. If the state space is finite then there exists at least one stationary
distribution.

Theorem 3. If the state space is irreducible then at most one stationary
distribution can exist.



Stationary distribution and first return time
The expected first return time to i is defined as

µi = E [Ti |X0 = i ]

• We say i is positive recurrent if µi <∞.

• A recurrent state i that is not positive recurrent (i.e. ρi = 1 but µi =∞)
is called null recurrent .

Theorem 4. Any finite irreducible MC is positive recurrent (that means that
all its states are positive recurrent).

The connection between stationary distribution and expected first return time
comes from the following

Theorem 5. If the MC is irreducible, aperiodic and there is a stationary
distribution π then

π(i) =
1

E [Ti |X0 = i ]



Existence of π for infinite state spaces
The above classification (positive recurrent) provides an existence result for the
case of infinite state space (the case of finite state space is already solved)

Theorem 6. If a MC is irreducible the following are equivalent

1. At least one state is positive recurrent

2. All the states are positive recurrent

3. There exists a stationary distribution

The positive recurrence can be difficult to demonstrate in concrete examples.

An example, the reflecting branching processes with p(0, 1) = 1 (reflected) :

1. if µ < 1 then 0 is positive recurrent

2. if µ = 1 then 0 is null recurrent

3. if µ > 1 then 0 is transient

In practice many state spaces are finite, although the can be large. What can
do is to see what happens when we tray to solve

π − πP = 0 and
∑
i

π(i) = 1.



Laws of large numbers for MCs
An important interpretation of the stationary distributions is terms of the
occupation time. Namely, If

Nn(i) = the number of visits to i after n steps

then

lim
n→∞

Nn(i)

n
= π(i)

The next theorem is an extension of the above result very useful in many
applications

Theorem 7*. Let {Xn} be a irreducible MC with stationary distribution π. Let
G(i) be the fortune (really, any function) obtained when the chain reaches the
state i . Assume

∑
i |G(i)|π(i) <∞. Then, when n→∞

1

n

n∑
k=1

G(Xk)→
∑
i

G(i)π(i)



Doubly stochastic chains
Any transition matrix is a stochastic matrix, i.e

∑
j p(i , j) = 1. A transition

matrix is said to be doubly stochastic if∑
j

p(i , j) = 1 and
∑
i

p(i , j) = 1

Theorem The uniform distribution is a stationary distribution for any finite CM
with doubly stochastic transition matrix.

Examples:

1. RW on a ring.

2. In many games, like in Monopoly, the position of a player on the board
can be modeled by a doubly stochastic chain.



Detailed balance contition
We say that π satisfies a detailed condition for the transition matrix P if

π(i)p(i , j) = π(j)p(j , i) for all i , j ∈ S

Proposition. The above condition is stronger than πP = π

Many chains do not have stationary distributions that satisfy the detailed
balance condition. Example, the reflecting RM on {−1, 0, 1}. But, certainly,
many chains do have such stationary distributions.

Examples:

1. Birth and death chains.

2. Ehrenfest chains.

3. RW on graphs.



Reversibility
Consider a transition matrix P with stationary distribution π. Let Xn be a
realization of the MC starting from the sationary distribution. Fix N and and let

Yk = XN−k , for 0 ≤ k ≤ N.

Then, {Yk} is a MC with transition probability Q defined by

q(i , j) = p(j , i)
π(j)

π(i)

It is easy to proof that Q is a stochastic matrix. When π satisfies the detailed
balance conditions the transition probability of the reversed chain is

q(i , j) = p(j , i)
π(j)

π(i)
= p(i , j),

the same as the original chain. This result is very useful in the context of
MCMC



Exit distributions
Consider a MC {Xn} with finite state space S . Let a and b two states of S . Let

Vy = min{n ≥ n : Xn = y} time of the first visit to y .

But now time at 0 is taken into account! As in the gambler’s ruin problem,
we are usually interested in

P(Va < Vb|X0 = x).

Theorem. Assume S is finite and P(min(Va,Vb) <∞|X0 = x) > 0. Suppose
h(a) = 1, h(b) = 0, and for all x 6= a, b we have

h(x) =
∑
y∈S

p(x , y)h(y)

Then,
h(x) = P(Va < Vb|X0 = x).

If r(x , y) is the part of the matrix p(x , y) with x 6= a, b and y 6= a, b, and ν is
the column vector with entries p(x , a), with x 6= a, b, then

h = (I − R)−1ν



Exit times
As above, consider a MC {Xn} with finite state space S . Let A ⊂ S two states
of S and

VA = min{n ≥ n : Xn ∈ A}
We are usually interested in

E(VA|X0 = x).

Theorem. Assume S is finite and P(VA <∞|X0 = x) > 0 for all x ∈ S \ A.
Suppose g(a) = 0 for all a ∈ A and for all x ∈ S \ A we have

g(x) = 1 +
∑
y∈S

p(x , y)g(y)

Then,
g(x) = E(VA|X0 = x).

If r(x , y) is the part of the matrix p(x , y) with x , y /∈ A, and 1 is the column
vector with all entries equal to 1, then

g = (I − R)−11


