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Continuous time MC

Definition
To extend the Markov property to continuous-time we require defining the
conditional probability given we know the process in a continuous range [0, s].
That is, given events like {Xt , 0 ≤ t ≤ s}.

Def. We say the stochastic process {Xt , t ≥ 0} taking values in a state space
S is a Continuous time Markov Chain if for any sequence of times
0 ≤ s0 < s1 < . . . sn < s and any set of states i0, . . . , in, i , j ∈ S the following
property holds

P(Xt+s = j |Xs = i ,Xsn = in, . . . ,Xs0 = i0) = P(Xt+s = j |Xs = i)

Example. Let {N(t), t ≥ 0} be the Poisson process with constant rate λ and
Yn a discrete time Markov chain with transition matrix P. Then, the process
defined by Xt = YN(t) is a continuous time MC. Moreover, the transition
matrix of this chain is

P(Xt = j |X0 = i) =
∑
n≥0

e−λt
(λt)n

n!
pn(i , j)



Continuous time MC

Transition probabilities

As in the discrete case, we will assume the chain is homogenous, i.e.

P(Xs+t = j |Xs = i) = P(Xt = j |X0 = i)

Def. Let
pt(i , j) = P(Xt = j |X0 = i)

the the transition probability at time t. The matrix Pt = {pt(i , j)}i,j∈S is called
the transition matrix at time t

As in the discrete case, the transition probabilitites satify the
Chapman-Kolmogorov equations,

ps+t(i , j) =
∑
k

ps(i , k)pt(k, j) i , j ∈ S

or in matrix notation
Ps+t = PsPt
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Generator of a CT MC

Def. we define transition rate from i to j , i 6= j , that we will denote by q(i , j),
to

q(i , j) = lim
t→0+

pt(i , j)

t

This value is interpreted as the intensity with which the chain jumps from i to
j . In particular, the rate at which the chain leaves the state i will be denoted
by λi :

λi =
∑
j 6=i

q(i , j)

Def. We define the Generator of the continuous time Markov chain to the
matrix G = {g(i , j)}i,j∈S , with

g(i , j) =

{
q(i , j) if i 6= j
−λi if i = j



Continuous time MC

Construction of a continuous time MC

We will say that a state i is

1. absorbing if λi = 0,

2. stable if 0 < λi <∞ and

If λi =∞ then the chain will leave immediately from state i , so we will always
suppose that λi <∞.

If λi > 0 define the transition probabilities

r(i , j) = q(i , j)/λi

• If X (s) = i and i is absorbing, the the chain will remain in i for ever.

• Otherwise, if the state is stable then the chain will be in i a random time
exponentially distributed, with parameter λi , and then it will jump
according to the transition probability r(i , j). Iterating this procedure we
can simulate lthe continuous time MC.



Continuous time MC

Kolmogorov’s equations
We have discussed how, from the transition rates we can construct the
continuous time MC. Since the chain is determined by the transition
probabilities, then we must obtain these values also from the transition rates.

The formalization of the above comment is expressed trough the following
theorem:

Theorem 1. Assume λi <∞ for any i in the state space. Then the transition
probabilities are differentiable function in t and, for any pair i , j of states we
have

dpt
dt

(i , j) =
∑
k 6=i

q(i , k)pt(k, j)− λipt(i , j) Backward equation

dpt
dt

(i , j) =
∑
k 6=j

q(k, j)pt(i , k)− λjpt(i , j) Forward equation
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Stationary distribution and detailed balance condition
Similar than the definition for the discrete case, π is said to be a stationary
distribution if πpt = π. Or, equivalently,

Def. Let Xt be a continuous time MC with Generator G . Then π is a
stationary distribution if it satisfies the equation

πG = 0

Or, equivalently, for each j ∈ S the following equations hold∑
i 6=j

π(i)q(i , j) = λjπ(j)

Def. We say π satisfies a detailed balance condition for the continuos time
MC with generator G if for each i 6= j

π(i)g(i , j) = π(j)g(j , i)

Theorem If π satisfies a detailed balance condition then π is a stationary
distribution.
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Long-run behavior

Def. A continuous time MC Xt is irreducible if for each i , j ∈ S there exists a
finite sequence of states k1 = i , k2, . . . , kn−1, kn = j such that g(km, km+1) > 0
for 1 ≤ m < n.

Theorem. Assume Xt is irreducible and it has stationary distribution π. Then,

lim
t→∞

pt(i , j) = π(j)

If H : S → R is a function such that
∑

j |H(j)|π(j) <∞, then

lim
t→∞

1

t

∫ t

0

H(Xs)ds = Eπ(H)

with
Eπ(H) =

∑
j

H(j)π(j)
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Birth-death Markov chains

Def. A birth-death Markov chains is a continuous time MC with state space
S = {0, 1, . . .N}, N ≤ +∞, and generator

G =


−λ0 λ0 0 0 0 · · ·
µ1 −(µ1 + λ1) λ1 0 0 · · ·
0 µ2 −(µ2 + λ2) λ2 0 · · ·
...

... · · · · · · · · ·
. . .


λn ≥ 0 represents the rate of birth µn ≥ 0 the rate of death when there are n

individuals in the population.

The Poisson process is a particular case of birth-death Markov chain with

λn = λ n ≥ 0

µn = 0 n ≥ 1
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Stationary distribution of a birth-death Markov chain

π satisfies a detailed balance condition for a birth-death MC if

π(n − 1)λn−1 = π(n)µn, for n ≥ 1

Theorem. Assume λn > 0 for each n ≥ 0 and µn > 0 for each n ≥ 1. Then, if
π satisfies a detailed balance condition for the corresponding birth-death
Markov chain then

π(n) =
λn−1λn−2 · · ·λ0

µn µn−1 · · ·µ1
π(0), for n ≥ 1

If there exists a stationary distribution for the birth-death Markov chain then

π(0) =

(
1 +

N∑
n=1

λn−1λn−2 · · ·λ0

µn µn−1 · · ·µ1

)−1
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Some examples of queues

• M/M/1 corresponds to a birth-death Markov chain with λn = λ > 0 and
µn = µ > 0. Moreover, we will assume λ < µ. The stationary distribution
corresponds to a Geometric random variable λ

µ
, i.e.

π(n) =

(
1− λ

µ

)(
λ

µ

)n

for n ≥ 0

• M/M/∞ corresponds to a birth-death Markov chain with λn = λ > 0
and µn = nµ > 0. The stationary distribution is Poisson with parameter
λ
µ

, i.e.

π(n) =
1

n!
e−

λ
µ

(
λ

µ

)n

for n ≥ 0



Continuous time MC

Exist distribution and hitting times
The results on exit distribution and hitting times from discrete time MC can be
generalized to continuous time. The approach is focussed in the embedded
jump chain with transition probability r(i , j).

Example: the M/M/1 queue.

In this case, q(i , i + 1) = λ and q(i , i − 1) = µ. So, the embedded MC has
transition matrix, r(0, 1) = 1 and

r(i , i + 1) =
λ

λ+ µ
, r(i , i − 1) =

µ

λ+ µ
, for i ≥ 1

This above corresponds to a reflected Random walk with that is positive.
Therefore, we can characterize the queue, which is

• positive recurrent if λ < µ

• null recurrent if λ = µ

• transient if λ > µ


