Multivariate Statistics Chapter 3: Principal Component Analysis

Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es

Course 2017/2018

Master in Mathematical Engineering

Ormalized principal component analysis

Principal component analysis in practice

- Suppose that we have a data matrix X with dimension $n \times p$.
- A central problem in multivariate data analysis is the curse of dimensionality: if the ratio n/p is not large enough, some problems might be intractable.
- For example, assume that we have a sample of size *n* from a *p*-dimensional random variable following a $N(\mu_x, \Sigma_x)$ distribution.
- In this case, the number of parameters to estimate is p + p(p+1)/2.
- For instance, for p = 5 and p = 10, there are 20 and 65 parameters, respectively.
- Thus, the larger *p*, the larger number of observations we need to obtain reliable estimates of the parameters.

(日) (同) (三) (三)

- There are several dimension reduction techniques that try to answer the same question:
 - Is it possible to describe with accuracy the values of p variables with a smaller number r
- We are going to see in this chapter principal component analysis.
- Next chapter is devoted to factor analysis.

- As mentioned before, the main objective of principal component analysis (PCA) is to reduce the dimension of the problem.
- The simplest way of dimension reduction is to take just some variables of the observed multivariate random variable $x = (x_1, \dots, x_p)'$ and to discard all others.
- However, this is not a very reasonable approach since we loss all the information contained in the discarded variables.
- Principal component analysis is a flexible approach based on a few linear combinations of the original (centered) variables in x = (x₁,...,x_p)'.
- The *p* components of *x* are required to reproduce the total system variability.
- However much of the variability of x can be accounted for a small number of r < p of principal components.
- If so, there is almost as much information in the *r* principal components as there is in the original *p* variables contained in *x*.

< ロ > < 同 > < 回 > < 回 >

- The general objective of PCA is dimension reduction.
- However, PCA is a powerful method to interpret the relationship between the univariate variables that form $x = (x_1, \ldots, x_p)'$.
- Indeed, a PCA often reveals relationships that were not previously suspected and thereby allows interpretations that would not ordinarily results.
- It is important to note that a PCA is more of a means to an end rather than an end in themselves, because they frequently serve as intermediate steps in much larger investigations.
- As we shall see, principal components depend solely on the covariance (or correlation) matrix of x.
- Therefore, their development does not require a multivariate Gaussian assumption.

(日) (同) (三) (三)

• Given a multivariate random variable $x = (x_1, \ldots, x_p)'$ with mean μ_x and covariance matrix Σ_x , the principal components are contained in a new multivariate random variable of dimension $r \leq p$ given by:

$$z = A' \left(x - \mu_x
ight)$$

where A is a certain $p \times r$ matrix whose columns are $p \times 1$ vectors $a_j = (a_{j1}, \ldots, a_{jp})'$, for $j = 1, \ldots, r$.

• Therefore, $z = (z_1, ..., z_r)'$ is a linear transformation of x given by the r linear combinations a_j , for j = 1, ..., r.

・ロト ・周ト ・モト ・モト

• Consequently:

$$egin{aligned} & E\left(z_{j}
ight)=0 \ & Var\left(z_{j}
ight)=a_{j}'\Sigma_{x}a_{j} \ & Cov\left(z_{j},z_{k}
ight)=a_{j}'\Sigma_{x}a_{k} \end{aligned}$$

for j, k = 1, ..., r.

- In particular, among all the possible linear combinations of the variables in x = (x₁,..., x_p)', the principal components are those that simultaneously verifies the following two properties:
 - The variances $Var(z_j) = a'_j \Sigma_x a_j$ are as large as possible.
 - One covariances Cov (z_j, z_k) = a'_jΣ_xa_k are 0, implying that the principal components of x, i.e., the variables in z = (z₁,..., z_r)', are uncorrelated.
- Next, we formally derive the linear combinations a_j , for j = 1, ..., r that leads to the PC's.

・ロト ・周ト ・モト ・モト

- Assume that the covariance matrix Σ_x have a set of p eigenvalues λ₁,..., λ_p with associated eigenvectors v₁,..., v_p.
- Then, the first principal component corresponds to the linear combination with maximum variance.
- In other words, the first PC corresponds to the linear combination that maximizes Var (z₁) = σ²_{z₁} = a'₁Σ_xa₁.
- However, it is clear that $a'_1 \Sigma_x a_1$ can be increased by multiplying any a_1 with some constant.
- To eliminate this indeterminacy, it is convenient to restrict attention to coefficient vector of unit length, i.e., we assume that $a'_1 a_1 = 1$.
- The following linear combinations are obtained with a similar argument but adding the property that they are uncorrelated with the previous ones.

< ロ > < 同 > < 回 > < 回 >

- 3

• Therefore, we define:

First principal component= $\underset{s.t. a'_{1}a_{1}=1}{\arg \max} a'_{1} \sum_{x} a_{1}$ Second principal component= $\underset{s.t. a'_{2}a_{2}=1, a'_{1} \sum_{x}a_{2}=0}{\arg \max} a'_{2} \sum_{x} a_{2}$: r-th principal component= $\underset{s.t. a'_{r}a_{r}=1, a'_{r} \sum_{x}a_{k}=0, \text{ for } k < r}{\arg \max} a'_{r} \sum_{x} a_{r}$

イロト イポト イラト イラト

• The first problem can be solved with the Lagrange multiplier method as follows.

Let:

$$M = a_1' S_x a_1 - \beta_1 (a_1' a_1 - 1)$$

• Then,

$$\frac{\partial M}{\partial a_1} = 2\Sigma_x a_1 - 2\beta_1 a_1 = 0 \iff \Sigma_x a_1 = \beta_1 a_2$$

• Therefore, a_1 is an eigenvector of Σ_x and β_1 is its corresponding eigenvalue.

• Which ones? Multiplying by a'_1 in the last expression, we get:

$$\sigma_{z_1}^2 = a_1' \Sigma_x a_1 = \beta_1 a_1' a_1 = \beta_1$$

• As $\sigma_{z_1}^2$ should be maximal, β_1 corresponds to the largest eigenvalue of Σ_x ($\beta_1 = \lambda_1$) and a_1 is its associated eigenvector ($a_1 = v_1$).

(日) (同) (三) (三)

• The second principal component is given by:

$$\text{Second principal component}{=} \underset{s.t. \ a_2'a_2=1, \ a_1'\Sigma_xa_2=0}{ \arg\max} a_2'\Sigma_xa_2$$

where $a_1 = v_1$, the eigenvector associated with the largest eigenvalue of the covariance matrix Σ_x .

• Therefore,
$$\Sigma_x v_1 = \lambda_1 v_1$$
, so that:

$$a_1'\Sigma_x a_2 = \lambda_1 v_1' a_2 = 0$$

• Following the reasoning for the first principal component, we define:

$$M=a_{2}^{\prime}\Sigma_{x}a_{2}-eta_{2}\left(a_{2}^{\prime}a_{2}-1
ight)$$

• Then,

$$\frac{\partial M}{\partial a_2} = 2\Sigma_x a_2 - 2\beta_2 a_2 = 0 \iff \Sigma_x a_2 = \beta_2 a_2$$

13 / 45

・ロト ・周ト ・モト ・モト

- Therefore, a_2 is an eigenvector of Σ_x and β_2 is its corresponding eigenvalue.
- Which ones? Multiplying by a'_2 in the last expression,

$$\sigma_{\mathbf{z}_2}^2 = \mathbf{a}_2' \boldsymbol{\Sigma}_{\mathbf{x}} \mathbf{a}_2 = \beta_2 \mathbf{a}_2' \mathbf{a}_2 = \beta_2$$

- As $\sigma_{z_2}^2$ should be maximal, β_2 corresponds to the second largest eigenvalue of Σ_x ($\beta_2 = \lambda_2$) and a_2 is its associated eigenvector ($a_2 = v_2$).
- This argument can be extended for successive principal components.
- Therefore, the r principal components corresponds to the eigenvectors of the covariance matrix Σ_x associated with the r largest eigenvalues.

(日) (同) (三) (三)

• In summary, the principal components are given by:

$$\mathsf{z}=V_r'\left(\mathsf{x}-\mu_\mathsf{x}\right)$$

where V_r is a $p \times r$ orthogonal matrix (i.e., $V'_r V_r = I_r$ and $V_r V'_r = I_p$) whose columns are the first r eigenvectors of Σ_x .

- The covariance matrix of z, Σ_z, is the diagonal matrix with elements λ₁,..., λ_r, i.e., the first r eigenvalues of Σ_x.
- Therefore, the usefulness of the principal components is two-fold:
 - It allows for an optimal representation, in a space of reduced dimensions, of the original observations.
 - It allows the original correlated variables to be transformed into new uncorrelated variables, facilitating the interpretation of the data.

< ロ > < 同 > < 回 > < 回 >

- Note that we can compute the principal components even for r = p.
- Taking this into account, it is easy to check that the PC's verifies the following properties:

$$E(z_{j}) = 0$$

$$Var(z_{j}) = \lambda_{j}$$

$$Cov(z_{j}, z_{k}) = 0$$
/ar(z_{1}) $\geq Var(z_{2}) \geq \cdots \geq Var(z_{p}) \geq 0$

$$\sum_{j=1}^{p} Var(z_{j}) = Tr(\Sigma_{x}) = \sum_{j=1}^{p} Var(x_{j})$$

$$\prod_{j=1}^{p} Var(z_{j}) = |\Sigma_{x}|$$

for j, k = 1, ..., p.

16 / 45

- In particular, note that the fourth property ensures that the set of *p* principal components conserve the initial variability.
- Therefore, a measure of how well the *r*-th PC explains variation is given by the proportion of variability explained by *r*-th PC is given by:

$$PV_r = rac{\lambda_r}{\lambda_1 + \dots + \lambda_p}$$
 $r = 1, \dots, p$

• Additionally, a measure of how well the first *r* PCs explain variation is given by the accumulated proportion of variability explained by the first *r* PCs is given by:

$$APV_r = rac{\lambda_1 + \dots + \lambda_r}{\lambda_1 + \dots + \lambda_p}$$
 $r = 1, \dots, p$

• Therefore, if most (for instance, 80% or 90%) of the total variability can be attributed to the first one, two or three principal components, then these components can "replace" the original *p* variables without much loss of information.

(日) (同) (三) (三)

17 / 45

• The covariance between the principal components and the original variables can be written as follows:

$$Cov (z, x) = E [z (x - \mu_x)'] = E [V'_r (x - \mu_x) (x - \mu_x)'] = V'_r E [(x - \mu_x) (x - \mu_x)'] = V'_r \Sigma_x$$

- Now, the singular value decomposition of Σ_x is given by Σ_x = V_pΛ_pV'_p, where Λ_p is the diagonal matrix that contains the p eigenvalues of Σ_x in decreasing order and V_p is the matrix that contains the p associated eigenvectors of Σ_x.
- Therefore:

$$Cov(z,x) = V'_r V_p \Lambda_p V'_p = \Lambda_r V'_r$$

where Λ_r is the diagonal matrix that contains the *r* largest eigenvalues of Σ_x in decreasing order.

• In particular, note that $\Lambda_r = \Sigma_z$.

(日) (同) (三) (三)

• On the other hand, the correlation between between the principal components and the original variables can be written as follows:

$$Cor(z, x) = \sum_{z}^{-1/2} E\left[z(x - \mu_{x})'\right] D_{x}^{-1/2} = \sum_{z}^{-1/2} V_{r}' \sum_{x} D_{x}^{-1/2}$$

where D_x is a $p \times p$ diagonal matrix whose elements are the variances in the main diagonal of Σ_x .

• Now, replacing Σ_x with $V_p \Lambda_p V'_p$ and Σ_z with Λ_r :

$$Cor(z, x) = \Lambda_r^{-1/2} V_r' V_p \Lambda_p V_p' D_x^{-1/2} = \Lambda_r^{1/2} V_r' D_x^{-1/2}$$

because $\Lambda_r^{-1/2} V_r' V_p \Lambda_p V_p' = \Lambda_r^{1/2} V_r'.$

• The correlations of the principal components and the variables often help to interpret the components as they measure the contribution of each individual variable to each principal component.

19 / 45

< ロ > < 同 > < 回 > < 回 >

- One problem with principal components is that they are not scale-invariant because if we change the units of the variables, the covariance matrix of the transformed variables will also change.
- Additionally, if there are large differences between the variances of the original variables, then those whose variances are largest will tend to dominate the early components.
- In these circumstances, it is better first to standardize the variables.
- In other words, the principal components should only be extracted from the original variables when all of them have the same scale.

・ロト ・周ト ・モト ・モト

- Therefore, if the variables have different units of measurement, we define $y = D_x^{-1/2} (x \mu_x)$ as the univariate standardized original variables and obtain the PCs from y.
- For that, note that:

 $E(y)=0_r$

and

$$Cov(y) = E[yy'] = E\left[D_x^{-1/2}(x - \mu_x)(x - \mu_x)' D_x^{-1/2}\right] = D_x^{-1/2} \Sigma_x D_x^{-1/2} = \varrho_x$$

i.e., the covariance matrix of y is the correlation matrix of x.

・ロト ・周ト ・モト ・モト

- Consequently, the principal components of y should be obtained from the eigenvectors of the correlation matrix of x, denoted by $v_1^{\varrho}, \ldots, v_r^{\varrho}$, with associated eigenvalues $\lambda_1^{\varrho} \ge \cdots \ge \lambda_r^{\varrho} \ge 0$.
- In particular, these are given by:

$$z^{\varrho} = \left(V_r^{\varrho}\right)' y = \left(V_r^{\varrho}\right)' D_x^{-1/2} \left(x - \mu_x\right)$$

where $V_r^{\varrho} = [v_1^{\varrho}| \cdots |v_r^{\varrho}]$ is the $r \times r$ matrix that contains the eigenvectors of the correlation matrix ϱ_x .

• The PCs obtained in this way are called the normalized principal components.

(日) (同) (三) (三)

- All the previous results apply, with some simplifications as the variance of the univariate standardized variables is 1.
- Therefore, the normalized PC's verifies the following properties:

$$E\left(z_{j}^{\varrho}\right) = 0$$

$$Var\left(z_{j}^{\varrho}\right) = \lambda_{j}^{\varrho}$$

$$Cov\left(z_{j}^{\varrho}, z_{k}^{\varrho}\right) = 0$$

$$Var\left(z_{1}^{\varrho}\right) \ge Var\left(z_{2}^{\varrho}\right) \ge \dots \ge Var\left(z_{p}^{\varrho}\right) \ge 0$$

$$\sum_{j=1}^{p} Var\left(z_{j}^{\varrho}\right) = Tr\left(\Sigma_{y}\right) = Tr\left(\varrho_{x}\right) = r$$

$$\prod_{j=1}^{p} Var\left(z_{j}^{\varrho}\right) = |\varrho_{x}|$$

for j, k = 1, ..., p.

23 / 45

・ロト ・周ト ・モト ・モト

• For normalized PCs, the proportion of variability explained by *r*-th principal component is given by:

$$PV_r^{\varrho} = rac{\lambda_r^{\varrho}}{p}$$

• Similarly, for normalized PCs, the accumulated proportion of variability explained by the first *r* principal components based is given by:

$$PV_r^{\varrho} = \frac{\lambda_1^{\varrho} + \dots + \lambda_r^{\varrho}}{p}$$

 Additionally, it is possible to show that the covariance between the principal components based on the standardized variables and the original variables can be written as follows:

$${\it Cov}(z^arrho,x)=(V_r^arrho)'\,D_x^{-1/2}\Sigma_x$$

 Moreover, the correlation between the principal components based on the standardized variables and the original variables can be written as follows:

$$Cor(z^{\varrho}, y) = (\Lambda_r^{\varrho})^{1/2} (V_r^{\varrho})'$$

Here, Λ^ρ_r is the covariance matrix of z, denoted by Σ^ρ_z, that is a r × r diagonal matrix that contains the eigenvalues of ρ_x, λ^ρ₁,..., λ^ρ_r.

Principal component analysis in practice

- In practice, one replace the population quantities with their corresponding sample counterparts based on the data matrix X of dimension $n \times p$.
- The principal component scores are the values of the new variables.
- If we use the sample covariance matrix to obtain the principal components, the data matrix that contains the principal component scores is given by:

$$Z = \widetilde{X} V_r^{S_x}$$

where $V_r^{S_x}$ is the matrix that contains the eigenvectors of the sample covariance matrix S_x linked with the *r* largest eigenvalues.

4 D N 4 B N 4 B N 4 B N

Principal component analysis in practice

• On the other hand, if we use the sample correlation matrix to obtain the principal components, the data matrix that contains the principal component scores is given by:

$$Z = YV_r^{R_x} = \widetilde{X}D_{S_x}^{-1/2}V_r^{R_x}$$

where V_r^R is the matrix that contains the eigenvectors of the sample correlation matrix R_x linked with the *r* largest eigenvalues and D_{S_x} is the diagonal matrix that contains the sample variances of the components of *X*.

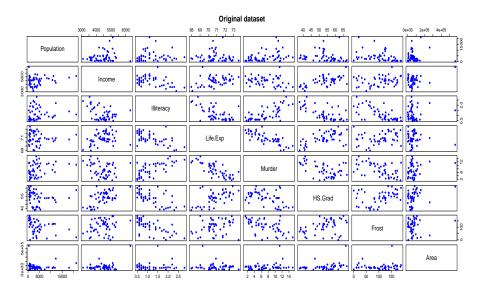
Principal component analysis in practice

- Different rules have been suggested for selecting the number of components *r* for data sets:
 - Plot a graph of $1, \ldots, p$ against $\lambda_1, \ldots, \lambda_p$ (the scree plot): The idea is to exclude of the analysis those components associated with small values and that approximately the same size.
 - Select components until a certain proportion of the variance has been covered, such as 80% or 90%: This rule should be applied with caution because sometimes a single component picks up most of the variability, whereas there might be other components with interesting interpretations.
 - Discard those components associated with eigenvalues of less than a certain value such as the mean of the eigenvalues of the sample covariance or correlation matrix: Again, this rule is arbitrary: a variable that is independent from the rest usually accounts for a principal component and can have a large eigenvalue.
 - Use asymptotic results on the estimated eigenvalues of the covariance or correlation matrices used to derive the PCs.

< ロ > < 同 > < 回 > < 回 >

- Consider the following eight univariate variables measured on the 50 states of the USA:
 - x_1 : population estimate as of July 1, 1975 (in thousands).
 - x₂: per capita income (1974) (in dollars).
 - x₃: illiteracy (1970, percent of population).
 - x_4 : life expectancy in years (1969 71).
 - > x_5 : murder and non-negligent manslaughter rate per 100000 population (1976).
 - ► *x*₆: percent high-school graduates (1970).
 - x₇: mean number of days with minimum temperature below freezing (1931-1960) in capital or large city.
 - ► x₈: land area in square miles.

(日) (同) (三) (三)



• The sample mean vector for the data is given by:

 $\overline{x} = (4246.42, 4435.80, 1.17, 70.87, 7.37, 53.10, 104.46, 70735.88)'$

• The sample covariance matrix is given by:

	(19.93×10^{6})	57.12×10^{3}	292.86	-407.84	5663.52	-3551.50	-77.08×10^{3}	8.58×10^{6}	\
$S_X =$	57.12×10^{3}	37×10^4	-163.70	280.66	-521.89	3076.76	7227.60	1.90×10^{7}	
	292.86	-163.70	0.37	-0.48	1.58	-3.23	-21.29	4.01×10^{3}	
	-407.84	280.66	-0.48	1.80	-3.86	6.31	18.28	-1.22×10^{4}	
	5663.52	-521.89	1.58	-3.86	13.62	-14.54	-103.40	7.19×10^{4}	
	-3551.50	3076.76	-3.23	6.31	-14.54	65.23	153.99	2.29×10^{5}	
	-77.08×10^{3}	7227.60	-21.29	1828	-103.40	153.99	2702.00	2.62×10^{5}	
	\ 85.87 × 10 ⁵	1.90×10^{7}	4.01×10^{3}	-1.22×10^{4}	7.19×10^{4}	2.29×10^{5}	2.62×10^{5}	7.28×10^9 ,	/

31 / 45

• The eigenvectors of S_x are the columns of the $V_8^{S_x}$ matrix given by:

	/ -0.00	0.99	0.02	-0.00	0.00	0.00	-0.00	0.00
	-0.00	0.02	-0.99	0.02	-0.00	-0.00	0.00	0.00
	-0.00	0.00	0.00	0.00	-0.04	-0.03	0.02	0.99
$V_8^{S_x} =$	0.00	-0.00	0.00	-0.00	0.11	0.28	0.95	-0.01
$v_8 =$	0.00	0.00	0.00	0.02	-0.23	-0.92	0.30	-0.04
	-0.00	-0.00	0.00	-0.02	0.96	-0.26	-0.04	0.03
	-0.00	-0.00	0.00	-0.98	-0.03	-0.01	0.00	0.00
	\ _0.99	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00 /

• Note that the first eigenvector is associated with the last variable which is the one with largest sample variance and so on with the other ones.

- The eigenvalues of S_x are $\lambda_1^{S_x} = 7.28 \times 10^9$, $\lambda_2^{S_x} = 1.99 \times 10^7$, $\lambda_3^{S_x} = 3.12 \times 10^5$, $\lambda_4^{S_x} = 2.15 \times 10^3$, $\lambda_5^{S_x} = 36.51$, $\lambda_6^{S_x} = 6.05$, $\lambda_7^{S_x} = 0.43$ and $\lambda_8^{S_x} = 0.08$.
- The proportion of variability explained by the components are 0.997, 2.73×10^{-3} , 4.28×10^{-5} , 2.94×10^{-7} , 5.00×10^{-9} , 8.29×10^{-10} , 5.93×10^{-11} and 1.15×10^{-11} , respectively.
- Consequently, the first proportion of accumulated variability is 0.997, while the others are larger than 0.99999.

- We standardize the data matrix.
- Therefore, we obtain eigenvalues and eigenvectors of the sample correlation matrix of the data set which is given by:

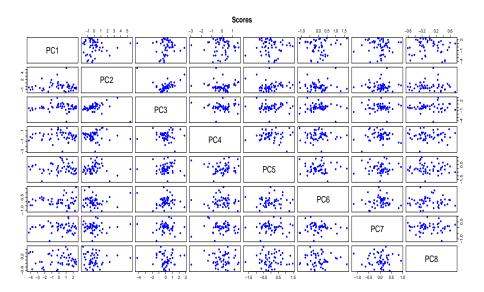
	/ 1	0.20	0.10	-0.06	0.34	-0.09	-0.33	0.02
	0.20	1	-0.43	0.34	-0.23	0.61	0.22	0.36
	0.10	-0.43	1	-0.58	0.70	-0.65	-0.67	0.07
D							0.26	
$R_x =$	0.34	-0.23	0.70	-0.78	1	-0.48	-0.53	0.22
	-0.09	0.61	-0.65	0.58	-0.48	1	0.36	0.33
	-0.33	0.22	-0.67	0.26	-0.53	0.36	1	0.05
	0.02	0.36	0.07	-0.10	0.22	0.33	0.05	1 /

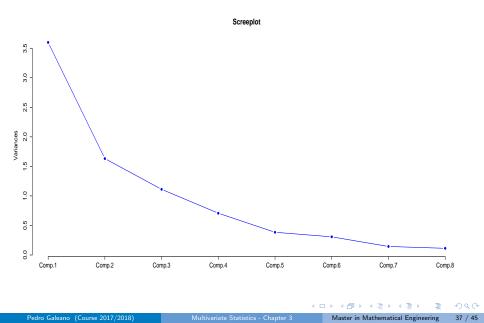
• The eigenvectors of R_x are the columns of the $V_8^{R_x}$ matrix given by:

	$\begin{pmatrix} -0.12\\ 0.29 \end{pmatrix}$	0.41	0.65	0.40	-0.40	-0.01	-0.06	0.21
	0.29	0.51	0.10	0.08	0.63	0.46	0.00	-0.06
	-0.46			-0.35		0.38	-0.61	0.33
$\sqrt{R_{x}}$	0.41 -0.44 0.42	-0.08	0.35	-0.44	-0.32	0.21	-0.25	-0.52
$v_{8} =$	-0.44	0.30	-0.10	0.16	0.12	-0.32	-0.29	-0.67
	0.42	0.29	-0.04	-0.23	0.09	-0.64	-0.39	0.30
	0.35	-0.15	-0.38	0.61	-0.21	0.21	-0.47	-0.02
	0.03	0.58	-0.51	-0.20	-0.49	0.14	0.28	-0.01 /

- The eigenvalues of R_x are $\lambda_1^{R_x} = 3.59$, $\lambda_2^{R_x} = 1.63$, $\lambda_3^{R_x} = 1.11$, $\lambda_4^{R_x} = 0.70$, $\lambda_5^{R_x} = 0.38$, $\lambda_6^{R_x} = 0.30$, $\lambda_7^{R_x} = 0.14$ and $\lambda_8^{R_x} = 0.11$.
- The proportion of variability explained by the components are 0.449, 0.203, 0.138, 0.088, 0.048, 0.038, 0.018 and 0.014.
- Consequently, the proportion of accumulated variability are 0.449, 0.653, 0.792, 0.881, 0.929, 0.967, 0.985 and 1, respectively.

(日) (同) (三) (三)





- In this case, we can select the first three principal components as they explain the 79% of the total variability and the mean of the eigenvalues of the sample covariance or correlation matrix is 1 ($\lambda_3^{R_x} = 1.11$ and $\lambda_4^{R_x} = 0.70$).
- The first component is given by:

 $z_1 = -0.12\widetilde{x}_1 + 0.29\widetilde{x}_2 - 0.46\widetilde{x}_3 + 0.41\widetilde{x}_4 - 0.44\widetilde{x}_5 + 0.42\widetilde{x}_6 + 0.35\widetilde{x}_7 + 0.03\widetilde{x}_8$

• The first principal component distinguishes between cold states with rich, longlived, and educated populations, from warm states with poor, short-lived, illeducated and violent states.

• The second component is given by:

 $z_2 = 0.41\widetilde{x}_1 + 0.51\widetilde{x}_2 + 0.05\widetilde{x}_3 - 0.08\widetilde{x}_4 + 0.30\widetilde{x}_5 + 0.29\widetilde{x}_6 - 0.15\widetilde{x}_7 + 0.58\widetilde{x}_8$

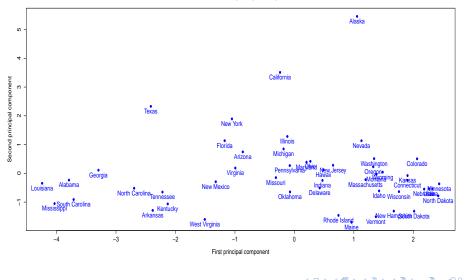
- The second principal component distinguishes big and populated states with rich and educated, although violent states, from small and low populated states with poor and ill-educated people.
- The third component is given by:

 $z_3 = 0.65\widetilde{x}_1 + 0.10\widetilde{x}_2 - 0.07\widetilde{x}_3 + 0.35\widetilde{x}_4 - 0.10\widetilde{x}_5 - 0.04\widetilde{x}_6 - 0.38\widetilde{x}_7 - 0.51\widetilde{x}_8$

• The third principal component distinguishes populated states with rich and longlived populations from warm and big states that tends to be ill-educated and violent.

< ロ > < 同 > < 回 > < 回 >

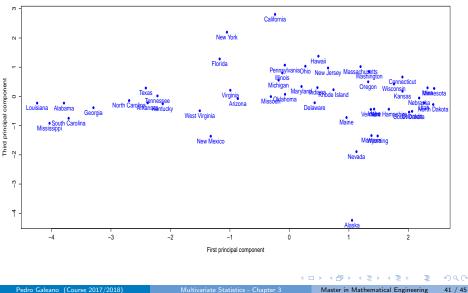
First and second principal component



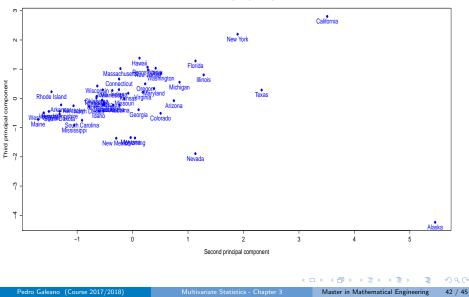
Pedro Galeano (Course 2017/2018)

Multivariate Statistics - Chapter 3

Master in Mathematical Engineering 40 / 45



First and third principal component



• Finally, the correlation between the principal components based on the standardized variables and the original ones are given by:

$$Cor(z,x) = \begin{pmatrix} -0.23 & 0.56 & -0.88 & 0.78 & -0.84 & 0.80 & 0.67 & 0.06 \\ 0.52 & 0.66 & 0.06 & -0.10 & 0.39 & 0.38 & -0.19 & 0.75 \\ 0.69 & 0.10 & -0.07 & 0.37 & -0.11 & -0.05 & -0.40 & -0.53 \end{pmatrix}$$

A B A A B A

43 / 45

Chapter outline

• We are ready now for:

Chapter 4: Factor Analysis

æ

Ormalized principal component analysis

Principal component analysis in practice

-