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Introduction

Suppose that we have a data matrix X with dimension n × p.

A central problem in multivariate data analysis is the curse of dimensionality: if
the ratio n/p is not large enough, some problems might be intractable.

For example, assume that we have a sample of size n from a p-dimensional
random variable following a N(µx ,Σx) distribution.

In this case, the number of parameters to estimate is p + p(p + 1)/2.

For instance, for p = 5 and p = 10, there are 20 and 65 parameters, respectively.

Thus, the larger p, the larger number of observations we need to obtain reliable
estimates of the parameters.
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Introduction

There are several dimension reduction techniques that try to answer the same
question:

I Is it possible to describe with accuracy the values of p variables with a smaller
number r < p of new variables?

We are going to see in this chapter principal component analysis.

Next chapter is devoted to factor analysis.
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Introduction

As mentioned before, the main objective of principal component analysis (PCA)
is to reduce the dimension of the problem.

The simplest way of dimension reduction is to take just some variables of the
observed multivariate random variable x = (x1, . . . , xp)′ and to discard all others.

However, this is not a very reasonable approach since we loss all the information
contained in the discarded variables.

Principal component analysis is a flexible approach based on a few linear com-
binations of the original (centered) variables in x = (x1, . . . , xp)′.

The p components of x are required to reproduce the total system variability.

However much of the variability of x can be accounted for a small number of
r < p of principal components.

If so, there is almost as much information in the r principal components as there
is in the original p variables contained in x .
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Introduction

The general objective of PCA is dimension reduction.

However, PCA is a powerful method to interpret the relationship between the
univariate variables that form x = (x1, . . . , xp)′.

Indeed, a PCA often reveals relationships that were not previously suspected
and thereby allows interpretations that would not ordinarily results.

It is important to note that a PCA is more of a means to an end rather than an
end in themselves, because they frequently serve as intermediate steps in much
larger investigations.

As we shall see, principal components depend solely on the covariance (or cor-
relation) matrix of x .

Therefore, their development does not require a multivariate Gaussian assump-
tion.
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Principal component analysis

Given a multivariate random variable x = (x1, . . . , xp)′ with mean µx and cova-
riance matrix Σx , the principal components are contained in a new multivariate
random variable of dimension r ≤ p given by:

z = A′ (x − µx)

where A is a certain p × r matrix whose columns are p × 1 vectors aj =
(aj1, . . . , ajp)′, for j = 1, . . . , r .

Therefore, z = (z1, . . . , zr )
′ is a linear transformation of x given by the r linear

combinations aj , for j = 1, . . . , r .

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 3 Master in Mathematical Engineering 7 / 45



Principal component analysis

Consequently:

E (zj) = 0

Var (zj) = a′jΣxaj

Cov (zj , zk) = a′jΣxak

for j , k = 1, . . . , r .

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 3 Master in Mathematical Engineering 8 / 45



Principal component analysis

In particular, among all the possible linear combinations of the variables in x =
(x1, . . . , xp)′, the principal components are those that simultaneously verifies
the following two properties:

1 The variances Var (zj) = a′jΣxaj are as large as possible.

2 The covariances Cov (zj , zk) = a′jΣxak are 0, implying that the principal compo-
nents of x , i.e., the variables in z = (z1, . . . , zr )

′, are uncorrelated.

Next, we formally derive the linear combinations aj , for j = 1, . . . , r that leads
to the PC’s.

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 3 Master in Mathematical Engineering 9 / 45



Principal component analysis

Assume that the covariance matrix Σx have a set of p eigenvalues λ1, . . . , λp
with associated eigenvectors v1, . . . , vp.

Then, the first principal component corresponds to the linear combination with
maximum variance.

In other words, the first PC corresponds to the linear combination that maximi-
zes Var (z1) = σ2

z1
= a′1Σxa1.

However, it is clear that a′1Σxa1 can be increased by multiplying any a1 with
some constant.

To eliminate this indeterminacy, it is convenient to restrict attention to coeffi-
cient vector of unit length, i.e., we assume that a′1a1 = 1.

The following linear combinations are obtained with a similar argument but
adding the property that they are uncorrelated with the previous ones.
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Principal component analysis

Therefore, we define:

First principal component= arg max
s.t. a′1a1=1

a′1Σxa1

Second principal component= arg max
s.t. a′2a2=1, a′1Σxa2=0

a′2Σxa2

...

r-th principal component= arg max
s.t. a′rar=1, a′rΣxak=0, for k<r

a′rΣxar
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Principal component analysis

The first problem can be solved with the Lagrange multiplier method as follows.

Let:
M = a′1Sxa1 − β1 (a′1a1 − 1)

Then,
∂M

∂a1
= 2Σxa1 − 2β1a1 = 0 ⇐⇒ Σxa1 = β1a1

Therefore, a1 is an eigenvector of Σx and β1 is its corresponding eigenvalue.

Which ones? Multiplying by a′1 in the last expression, we get:

σ2
z1

= a′1Σxa1 = β1a
′
1a1 = β1

As σ2
z1

should be maximal, β1 corresponds to the largest eigenvalue of Σx (β1 =
λ1) and a1 is its associated eigenvector (a1 = v1).
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Principal component analysis

The second principal component is given by:

Second principal component= arg max
s.t. a′2a2=1, a′1Σxa2=0

a′2Σxa2

where a1 = v1, the eigenvector associated with the largest eigenvalue of the
covariance matrix Σx .

Therefore, Σxv1 = λ1v1, so that:

a′1Σxa2 = λ1v
′
1a2 = 0

Following the reasoning for the first principal component, we define:

M = a′2Σxa2 − β2 (a′2a2 − 1)

Then,
∂M

∂a2
= 2Σxa2 − 2β2a2 = 0 ⇐⇒ Σxa2 = β2a2
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Principal component analysis

Therefore, a2 is an eigenvector of Σx and β2 is its corresponding eigenvalue.

Which ones? Multiplying by a′2 in the last expression,

σ2
z2

= a′2Σxa2 = β2a
′
2a2 = β2

As σ2
z2

should be maximal, β2 corresponds to the second largest eigenvalue of
Σx (β2 = λ2) and a2 is its associated eigenvector (a2 = v2).

This argument can be extended for successive principal components.

Therefore, the r principal components corresponds to the eigenvectors of the
covariance matrix Σx associated with the r largest eigenvalues.
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Principal component analysis

In summary, the principal components are given by:

z = V ′r (x − µx)

where Vr is a p × r orthogonal matrix (i.e., V ′rVr = Ir and VrV
′
r = Ip) whose

columns are the first r eigenvectors of Σx .

The covariance matrix of z , Σz , is the diagonal matrix with elements λ1, . . . , λr ,
i.e., the first r eigenvalues of Σx .

Therefore, the usefulness of the principal components is two-fold:

I It allows for an optimal representation, in a space of reduced dimensions, of the
original observations.

I It allows the original correlated variables to be transformed into new uncorrelated
variables, facilitating the interpretation of the data.
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Principal component analysis

Note that we can compute the principal components even for r = p.

Taking this into account, it is easy to check that the PC’s verifies the following
properties:

E (zj) = 0

Var (zj) = λj

Cov (zj , zk) = 0

Var (z1) ≥ Var (z2) ≥ · · · ≥ Var (zp) ≥ 0
p∑

j=1

Var (zj) = Tr (Σx) =

p∑
j=1

Var (xj)

p∏
j=1

Var (zj) = |Σx |

for j , k = 1, . . . , p.
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Principal component analysis

In particular, note that the fourth property ensures that the set of p principal
components conserve the initial variability.

Therefore, a measure of how well the r -th PC explains variation is given by the
proportion of variability explained by r -th PC is given by:

PVr =
λr

λ1 + · · ·+ λp
r = 1, . . . , p

Additionally, a measure of how well the first r PCs explain variation is given by
the accumulated proportion of variability explained by the first r PCs is given
by:

APVr =
λ1 + · · ·+ λr
λ1 + · · ·+ λp

r = 1, . . . , p

Therefore, if most (for instance, 80% or 90%) of the total variability can be
attributed to the first one, two or three principal components, then these com-
ponents can “replace” the original p variables without much loss of information.
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Principal component analysis

The covariance between the principal components and the original variables can
be written as follows:

Cov (z , x) = E
[
z (x − µx)′

]
= E

[
V ′r (x − µx) (x − µx)′

]
=

= V ′r E
[
(x − µx) (x − µx)′

]
= V ′r Σx

Now, the singular value decomposition of Σx is given by Σx = VpΛpV
′
p, where

Λp is the diagonal matrix that contains the p eigenvalues of Σx in decreasing
order and Vp is the matrix that contains the p associated eigenvectors of Σx .

Therefore:
Cov (z , x) = V ′rVpΛpV

′
p = ΛrV

′
r

where Λr is the diagonal matrix that contains the r largest eigenvalues of Σx in
decreasing order.

In particular, note that Λr = Σz .
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Principal component analysis

On the other hand, the correlation between between the principal components
and the original variables can be written as follows:

Cor (z , x) = Σ−1/2
z E

[
z (x − µx)′

]
D−1/2

x = Σ−1/2
z V ′r ΣxD

−1/2
x

where Dx is a p × p diagonal matrix whose elements are the variances in the
main diagonal of Σx .

Now, replacing Σx with VpΛpV
′
p and Σz with Λr :

Cor (z , x) = Λ−1/2
r V ′rVpΛpV

′
pD
−1/2
x = Λ1/2

r V ′rD
−1/2
x

because Λ
−1/2
r V ′rVpΛpV

′
p = Λ

1/2
r V ′r .

The correlations of the principal components and the variables often help to
interpret the components as they measure the contribution of each individual
variable to each principal component.
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Normalized principal component analysis

One problem with principal components is that they are not scale-invariant
because if we change the units of the variables, the covariance matrix of the
transformed variables will also change.

Additionally, if there are large differences between the variances of the original
variables, then those whose variances are largest will tend to dominate the early
components.

In these circumstances, it is better first to standardize the variables.

In other words, the principal components should only be extracted from the
original variables when all of them have the same scale.
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Normalized principal component analysis

Therefore, if the variables have different units of measurement, we define y =

D
−1/2
x (x − µx) as the univariate standardized original variables and obtain the

PCs from y .

For that, note that:
E (y) = 0r

and

Cov (y) = E [yy ′] = E
[
D−1/2

x (x − µx) (x − µx)′D−1/2
x

]
=

= D−1/2
x ΣxD

−1/2
x = %x

i.e., the covariance matrix of y is the correlation matrix of x .
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Normalized principal component analysis

Consequently, the principal components of y should be obtained from the eigen-
vectors of the correlation matrix of x , denoted by v%

1 , . . . , v
%
r , with associated

eigenvalues λ%1 ≥ · · · ≥ λ%r ≥ 0.

In particular, these are given by:

z% = (V %
r )′ y = (V %

r )′D−1/2
x (x − µx)

where V %
r = [v%

1 | · · · |v%
r ] is the r × r matrix that contains the eigenvectors of

the correlation matrix %x .

The PCs obtained in this way are called the normalized principal components.
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Normalized principal component analysis

All the previous results apply, with some simplifications as the variance of the
univariate standardized variables is 1.

Therefore, the normalized PC’s verifies the following properties:

E
(
z%j

)
= 0

Var
(
z%j

)
= λ%j

Cov
(
z%j , z

%
k

)
= 0

Var (z%1 ) ≥ Var (z%2 ) ≥ · · · ≥ Var
(
z%p
)
≥ 0

p∑
j=1

Var
(
z%j

)
= Tr (Σy ) = Tr (%x) = r

p∏
j=1

Var
(
z%j

)
= |%x |

for j , k = 1, . . . , p.
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Normalized principal component analysis

For normalized PCs, the proportion of variability explained by r -th principal
component is given by:

PV %
r =

λ%r
p

Similarly, for normalized PCs, the accumulated proportion of variability explained
by the first r principal components based is given by:

PV %
r =

λ%1 + · · ·+ λ%r
p
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Normalized principal component analysis

Additionally, it is possible to show that the covariance between the principal
components based on the standardized variables and the original variables can
be written as follows:

Cov(z%, x) = (V %
r )′D−1/2

x Σx

Moreover, the correlation between the principal components based on the stan-
dardized variables and the original variables can be written as follows:

Cor(z%, y) = (Λ%
r )1/2 (V %

r )′

Here, Λ%
r is the covariance matrix of z , denoted by Σ%

z , that is a r × r diagonal
matrix that contains the eigenvalues of %x , λ%1 , . . . , λ

%
r .
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Principal component analysis in practice

In practice, one replace the population quantities with their corresponding sam-
ple counterparts based on the data matrix X of dimension n × p.

The principal component scores are the values of the new variables.

If we use the sample covariance matrix to obtain the principal components, the
data matrix that contains the principal component scores is given by:

Z = X̃V Sx
r

where V Sx
r is the matrix that contains the eigenvectors of the sample covariance

matrix Sx linked with the r largest eigenvalues.
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Principal component analysis in practice

On the other hand, if we use the sample correlation matrix to obtain the principal
components, the data matrix that contains the principal component scores is
given by:

Z = YV Rx
r = X̃D

−1/2
Sx

V Rx
r

where V R
r is the matrix that contains the eigenvectors of the sample correlation

matrix Rx linked with the r largest eigenvalues and DSx is the diagonal matrix
that contains the sample variances of the components of X .

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 3 Master in Mathematical Engineering 27 / 45



Principal component analysis in practice

Different rules have been suggested for selecting the number of components r
for data sets:

1 Plot a graph of 1, . . . , p against λ1, . . . , λp (the scree plot): The idea is to
exclude of the analysis those components associated with small values and that
approximately the same size.

2 Select components until a certain proportion of the variance has been covered,
such as 80% or 90%: This rule should be applied with caution because sometimes
a single component picks up most of the variability, whereas there might be other
components with interesting interpretations.

3 Discard those components associated with eigenvalues of less than a certain
value such as the mean of the eigenvalues of the sample covariance or correlation
matrix: Again, this rule is arbitrary: a variable that is independent from the rest
usually accounts for a principal component and can have a large eigenvalue.

4 Use asymptotic results on the estimated eigenvalues of the covariance or corre-
lation matrices used to derive the PCs.
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Illustrative example I

Consider the following eight univariate variables measured on the 50 states of
the USA:

I x1: population estimate as of July 1, 1975 (in thousands).

I x2: per capita income (1974) (in dollars).

I x3: illiteracy (1970, percent of population).

I x4: life expectancy in years (1969 − 71).

I x5: murder and non-negligent manslaughter rate per 100000 population (1976).

I x6: percent high-school graduates (1970).

I x7: mean number of days with minimum temperature below freezing (1931-1960)
in capital or large city.

I x8: land area in square miles.
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Illustrative example I
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Illustrative example I

The sample mean vector for the data is given by:

x = (4246.42, 4435.80, 1.17, 70.87, 7.37, 53.10, 104.46, 70735.88)′

The sample covariance matrix is given by:

Sx =



19.93 × 106 57.12 × 103 292.86 −407.84 5663.52 −3551.50 −77.08 × 103 8.58 × 106

57.12 × 103 37 × 104 −163.70 280.66 −521.89 3076.76 7227.60 1.90 × 107

292.86 −163.70 0.37 −0.48 1.58 −3.23 −21.29 4.01 × 103

−407.84 280.66 −0.48 1.80 −3.86 6.31 18.28 −1.22 × 104

5663.52 −521.89 1.58 −3.86 13.62 −14.54 −103.40 7.19 × 104

−3551.50 3076.76 −3.23 6.31 −14.54 65.23 153.99 2.29 × 105

−77.08 × 103 7227.60 −21.29 1828 −103.40 153.99 2702.00 2.62 × 105

85.87 × 105 1.90 × 107 4.01 × 103 −1.22 × 104 7.19 × 104 2.29 × 105 2.62 × 105 7.28 × 109


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Illustrative example I

The eigenvectors of Sx are the columns of the V Sx
8 matrix given by:

V Sx
8 =



−0.00 0.99 0.02 −0.00 0.00 0.00 −0.00 0.00
−0.00 0.02 −0.99 0.02 −0.00 −0.00 0.00 0.00
−0.00 0.00 0.00 0.00 −0.04 −0.03 0.02 0.99
0.00 −0.00 0.00 −0.00 0.11 0.28 0.95 −0.01
−0.00 0.00 0.00 0.02 −0.23 −0.92 0.30 −0.04
−0.00 −0.00 0.00 −0.02 0.96 −0.26 −0.04 0.03
−0.00 −0.00 0.00 −0.98 −0.03 −0.01 0.00 0.00
−0.99 −0.00 0.00 −0.00 −0.00 0.00 −0.00 −0.00



Note that the first eigenvector is associated with the last variable which is the
one with largest sample variance and so on with the other ones.

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 3 Master in Mathematical Engineering 32 / 45



Illustrative example I

The eigenvalues of Sx are λSx
1 = 7.28×109, λSx

2 = 1.99×107, λSx
3 = 3.12×105,

λSx
4 = 2.15× 103, λSx

5 = 36.51, λSx
6 = 6.05, λSx

7 = 0.43 and λSx
8 = 0.08.

The proportion of variability explained by the components are 0.997, 2.73 ×
10−3, 4.28× 10−5, 2.94× 10−7, 5.00× 10−9, 8.29× 10−10, 5.93× 10−11 and
1.15× 10−11, respectively.

Consequently, the first proportion of accumulated variability is 0.997, while the
others are larger than 0.99999.
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Illustrative example I

We standardize the data matrix.

Therefore, we obtain eigenvalues and eigenvectors of the sample correlation
matrix of the data set which is given by:

Rx =



1 0.20 0.10 −0.06 0.34 −0.09 −0.33 0.02
0.20 1 −0.43 0.34 −0.23 0.61 0.22 0.36
0.10 −0.43 1 −0.58 0.70 −0.65 −0.67 0.07
−0.06 0.34 −0.58 1 −0.78 0.58 0.26 −0.10
0.34 −0.23 0.70 −0.78 1 −0.48 −0.53 0.22
−0.09 0.61 −0.65 0.58 −0.48 1 0.36 0.33
−0.33 0.22 −0.67 0.26 −0.53 0.36 1 0.05
0.02 0.36 0.07 −0.10 0.22 0.33 0.05 1


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Illustrative example I

The eigenvectors of Rx are the columns of the V Rx
8 matrix given by:

V Rx
8 =



−0.12 0.41 0.65 0.40 −0.40 −0.01 −0.06 0.21
0.29 0.51 0.10 0.08 0.63 0.46 0.00 −0.06
−0.46 0.05 −0.07 −0.35 −0.00 0.38 −0.61 0.33
0.41 −0.08 0.35 −0.44 −0.32 0.21 −0.25 −0.52
−0.44 0.30 −0.10 0.16 0.12 −0.32 −0.29 −0.67
0.42 0.29 −0.04 −0.23 0.09 −0.64 −0.39 0.30
0.35 −0.15 −0.38 0.61 −0.21 0.21 −0.47 −0.02
0.03 0.58 −0.51 −0.20 −0.49 0.14 0.28 −0.01



The eigenvalues of Rx are λRx
1 = 3.59, λRx

2 = 1.63, λRx
3 = 1.11, λRx

4 = 0.70,

λRx
5 = 0.38, λRx

6 = 0.30, λRx
7 = 0.14 and λRx

8 = 0.11.

The proportion of variability explained by the components are 0.449, 0.203,
0.138, 0.088, 0.048, 0.038, 0.018 and 0.014.

Consequently, the proportion of accumulated variability are 0.449, 0.653, 0.792,
0.881, 0.929, 0.967, 0.985 and 1, respectively.
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Illustrative example I
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Illustrative example I
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Illustrative example I

In this case, we can select the first three principal components as they explain
the 79% of the total variability and the mean of the eigenvalues of the sample
covariance or correlation matrix is 1 (λRx

3 = 1.11 and λRx
4 = 0.70).

The first component is given by:

z1 = −0.12x̃1 + 0.29x̃2 − 0.46x̃3 + 0.41x̃4 − 0.44x̃5 + 0.42x̃6 + 0.35x̃7 + 0.03x̃8

The first principal component distinguishes between cold states with rich, long-
lived, and educated populations, from warm states with poor, short-lived, ill-
educated and violent states.
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Illustrative example I

The second component is given by:

z2 = 0.41x̃1 + 0.51x̃2 + 0.05x̃3 − 0.08x̃4 + 0.30x̃5 + 0.29x̃6 − 0.15x̃7 + 0.58x̃8

The second principal component distinguishes big and populated states with
rich and educated, although violent states, from small and low populated states
with poor and ill-educated people.

The third component is given by:

z3 = 0.65x̃1 + 0.10x̃2 − 0.07x̃3 + 0.35x̃4 − 0.10x̃5 − 0.04x̃6 − 0.38x̃7 − 0.51x̃8

The third principal component distinguishes populated states with rich and long-
lived populations from warm and big states that tends to be ill-educated and
violent.
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Illustrative example I
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Illustrative example I
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Illustrative example I

Finally, the correlation between the principal components based on the standar-
dized variables and the original ones are given by:

Cor (z , x) =

 −0.23 0.56 −0.88 0.78 −0.84 0.80 0.67 0.06
0.52 0.66 0.06 −0.10 0.39 0.38 −0.19 0.75
0.69 0.10 −0.07 0.37 −0.11 −0.05 −0.40 −0.53


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Chapter outline

We are ready now for:

Chapter 4: Factor Analysis
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