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Introduction

Multivariate data is a collection of data taken from several variables.

Multivariate data analysis consists of a set of techniques for the simultaneous
analysis of multivariate data.

The main goals of the multivariate data analysis are:

1 understand the structure in the data and summarise it in simpler ways;

2 understand the relationship of one part of the data to another part; and

3 make decisions and inferences based on the data.

The early methods developed by statisticians were linear which are simple, ele-
gant, and surprisingly powerful.

For instance, Principal Component Analysis deals with the first topic in the
preceding list, Canonical Correlation Analysis with the second, and Discriminant
Analysis with the third.
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Introduction

As time moved on, more complex methods were developed.

Nevertheless, linear methods have not lost their appeal.

Indeed, as we have become more able to collect and handle very large and
high-dimensional data, renewed requirements for linear methods have arisen.

In high-dimensional data sets, the essential structure can often be obscured by
noise, and it becomes vital to reduce the original data set in such a way that
the interesting structure in the data is preserved while irrelevant features are
removed.

Principal Component Analysis and Factor Analysis have become indispensable
dimension reduction tools and are often used as a first step in a more compre-
hensive analysis.
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Introduction

Traditionally, it is assumed that the number of variables (the dimension) is small
compared with the number of elements in the sample (the sample size).

Similarly, for the asymptotic theory, the sample size increases while the dimen-
sion remains constant.

Many recent data sets do not fit into this framework; we encounter

I data whose dimension is comparable to the sample size, and both are large;

I high-dimension low sample size data whose dimension vastly exceeds the sample
size; and

I functional data whose observations are functions.
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Introduction

The Gaussian assumption will often not be useful for high-dimensional data.

However, a deviation from normality does not affect the applicability of Principal
Component Analysis or Canonical Correlation Analysis, for instance.

Therefore, we need to take care when making inferences based on Gaussian
assumptions or when we want to exploit the normal asymptotic theory.
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Introduction

In the rest of this chapter:

I we present the general structure of a multivariate data set;

I we review graphical techniques for visualizing a multivariate data set;

I we introduce several multivariate descriptive measures; and

I we briefly introduce linear transformations.
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Multivariate data sets

Suppose that we have observed a set of variables in a sample of elements from
a certain population (in a wide sense).

Traditionally, the variables are classified as:

I quantitative, when their value is expressed numerically, such as the age of a
person, their height or their income; or

I qualitative, when their value can be attributed to a category such as gender, eye
color or city of birth.
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Multivariate data sets

Quantitative variables can then be classified as:

I continuous, when the real value can be read as an interval, such as height; or

I discrete, when the values belonging to it are distinct and separate, such as the
number of siblings.

Qualitative variables can be classified as:

I binaries, when there are only two possible values, such as gender (male, female);
or

I non-binaries, when many values are possible such as city of residence.
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Multivariate data sets

Usually, binary variables are coded numerically.

For example, the gender variable converts to numerical by assigning 0 to a male
and 1 to a female, or viceversa.

It is important to note that even if a binary variable is coded, it is still a
qualitative variable.
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Multivariate data sets

Non-binary variables can also be assigned a numerical value by converting them
into binary variables.

For example, consider the variable eye color (EC) and assume that the categories
are blue (B), green (G), brown (Br) and black (Bl).

Then, we can define 3 binary variables as:

1 x1 = 1, if EC=B, and x1 = 0, otherwise.

2 x2 = 1, if EC=G, and x2 = 0, otherwise.

3 x3 = 1, if EC=Br, and x3 = 0, otherwise.
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Multivariate data sets

If the number of values of a qualitative variable is large, this procedure will lead
to a great number of variables.

Then, it is useful to group the categories in order to avoid having variables
that will almost always have the same value (for instance, 0, if the category is
infrequent, or 1, if it appears often).

The variable EC could also be coded as follows, x1 = 1, if EC=B, x1 = 2, if
EC=G, x1 = 3, if EC=Br, and x1 = 4, if EC=Bl.

However, this system has the inconvenience of suggesting a gradation of values
that may not exist.
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Multivariate data sets

We assume from here on that we have observed the values of p univariate
random variables in a set of n elements of a population.

We denote by x1, . . . , xp the p univariate random variables.

The set of p variables forms a multivariate variable that is denoted by x =
(x1, . . . , xp)′.

The values of the p univariate variables in each of the n elements of the popu-
lation can be represented in a matrix, X , of dimensions n×p, which we will call
data matrix, given by:

X =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp


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Multivariate data sets

Therefore, we will denote as xij the generic element of this matrix, which repre-
sents the value of the univariate random variable xj over the individual i .

Note that the values taken by the univariate random variable j over the n
individuals are given by x1j , . . . , xnj , for j = 1, . . . , p, and can be summarized in
the vector x·j = (x1j , . . . , xnj)

′.

On the other hand, the values taken by the individual i for the j univariate
variables are given by xi1, . . . , xip, for i = 1, . . . , n, and can be summarized in
the vector xi· = (xi1, . . . , xip)′.
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Illustrative example (I)

Eight univariate variables measured on the 50 states of the USA:

I x1: population estimate as of July 1, 1975 (in thousands).
I x2: per capita income (1974) (in dollars).
I x3: illiteracy (1970, percent of population).
I x4: life expectancy in years (1969− 71).
I x5: murder and non-negligent manslaughter rate per 100000 population (1976).
I x6: percent high-school graduates (1970).
I x7: mean number of days with minimum temperature below freezing (1931 −

1960) in capital or large city.
I x8: land area in square miles.

The data set is summarized in the following table:

x1 x2 x3 x4 x5 x6 x7 x8
Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432
Arizona 2212 4530 1.8 70.55 7.8 58.1 15 113417

...
...

...
...

...
...

...
...

...
Wyoming 376 4566 0.6 70.29 6.9 62.9 173 97203
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Illustrative example (II)

Five univariate variables measured on 150 flowers (50 flowers of each specie):

I x1: Length of the sepal (in mm.).

I x2: Width of the sepal (in mm.).

I x3: Length of the petal (in mm.).

I x4: Width of the petal (in mm.).

I x5: Specie (setosa, versicolor or virginica).

The dataset is summarized in the following table:

x1 x2 x3 x4 x5
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
...

...
...

...
...

150 5.9 3.0 5.1 1.8 virginica
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Visualizing multivariate data sets

Before analyzing a multivariate data set, it is important to try to visualize it.

Often we get useful features including:

I skewness;

I multimodality;

I outliers; or

I distint groupins.
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Visualizing multivariate data sets

Graphical displays are exploratory data-analysis tools which can help to under-
stand the data.

Note that the insight obtained from graphical displays is more subjective than
quantitative.

However, visual cues are easier to understand and interpret than numbers alone.

Indeed, the knowledge gained from graphical displays can complement more
quantitative answers.
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Visualizing multivariate data sets

One difficulty of descriptive methods for high dimensional data is the human
perceptional system.

Point clouds in two dimensions are easy to understand and to interpret.

We also have the possibility to see real time 3D rotations and thus to perceive
also three-dimensional data.

A qualitative jump in presentation difficulties occurs for dimensions greater than
or equal to 4.

Next, we investigate the basic descriptive and graphical techniques allowing
simple exploratory data analysis.

Note that we are going to focus in quantitative variables, while qualitative
(binary) variables will be treated as additional information when making the
plots.
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Visualizing multivariate data sets

We begin the exploration of a multivariate data set using the boxplot which is
a simple univariate device that detects outliers variable by variable and that can
compare distributions of the data among different groups.

Two basic techniques for estimating densities are also presented: histograms and
kernel densities, as they give a quick insight into the shape of the distribution
of the data.

Scatterplots are shown to be very useful for plotting bivariate or trivariate vari-
ables against each other: they help to understand the nature of the relationship
among variables in a data set and allow for the detection of groups or clusters
of points.

Scatterplot matrices allow the visualization of several bivariate scatterplots on
the same display.

Parallel coordinate plots are useful to detect outliers and/or groups.
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Visualizing multivariate data sets

The boxplot is a graphical technique that display the distribution of variables.

It help us see the location, spread, skewness, tail length and outliers.

Let x1j , . . . , xnj be the n observations of the random variable xj , for j = 1, . . . , p.

Then, the boxplot is a graphical representation of the sequence x1j , . . . , xnj
constructed with several statistics taken from it.
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Visualizing multivariate data sets

The sample order statistics of x1j , . . . , xnj , denoted by x(1)j , . . . , x(n)j , are the set
of sorted observations (in increasing order), where:

x(1)j = min {x1j , . . . , xnj}

and
x(n)j = max {x1j , . . . , xnj}

The sample median of x1j , . . . , xnj , denoted by Mj , typically cuts the set of
observations in two equal parts, and is defined as

Mj =

{
x( n+1

2 )j n odd

1
2

{
x( n

2 )j + x( n
2+1)j

}
n even

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 1 Master in Mathematical Engineering 22 / 89



Visualizing multivariate data sets

The sample quartiles of x1j , . . . , xnj , denoted by QLj and QUj , respectively, ty-
pically cut the set into four equal parts, and are defined as

QLj = x[ 1
4 (n+1)]j

and
QUj = x[ 3

4 (n+1)]j

respectively, where [·] denote the integer part.

Note that alternative definitions of the sample quartiles have been proposed.
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Visualizing multivariate data sets

The sample interquartile range of x1j , . . . , xnj , denoted by IQRj , and defined as

IQRj = QUj − QLj

is a measure of the spread of x1j , . . . , xnj .

The sample outside bars of x1j , . . . , xnj , denoted by OLj and OUj , respectively,
and defined as

OLj = QLj − 1.5IQRj

OUj = QUj + 1.5IQRj

are the borders beyond which a point is regarded as an outlier.

The number 1.5 used to construct the sample outside bars is selected based on
Gaussian arguments.
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Visualizing multivariate data sets

The boxplot is constructed in the following way:

1 Draw a box with borders at QLj and QUj (i.e., 50% of the data are in this box).

2 Draw the sample median as a solid line.

3 Draw “whiskers” from each end of the box to the most remote point that is not
an outlier.

4 Show outliers with special characters.
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Illustrative example (I)

The next slide shows the boxplots of the eight variables of the US states data
set.

The variable “percent high-school graduates” is a quite symmetric variable while
the other are clearly skewed.

In particular, “population” and “land area” are quite skewed and containing
some outliers.

Therefore, the variables have different shapes.
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Illustrative example (I)
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Illustrative example (II)

The next two slides show boxplots of the four quantitative variables of the iris
data set.

In the first figure, it can be seen that the variables measuring the length and
width of the sepal are more symmetric than the variables measuring the length
and width of the petal.

In the second figure, it can be seen that the boxplots are a useful tool to compare
the values of a variable divided in different groups, as it is the case here.

Note the different values that attains the same value when split based on the
variable “specie”.
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Illustrative example (II)
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Illustrative example (II)

setosa versicolor virginica
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Visualizing multivariate data sets

Histograms are density estimates.

In other words, histograms gives an estimation of the distribution of the data.

In contrast to boxplots, density estimates show possible multimodality of the
data.

The idea is to locally represent the data density by counting the number of
observations in a sequence of consecutive bins.
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Visualizing multivariate data sets

Let Br (x0j , hj) denote the bin of length hj starting at point x0j and given by:

Br (x0j , hj) = [x0j + (r − 1) hj , x0j + rh)

where j = 1 . . . , p and r ∈ Z.

Then, if x1j , . . . , xnj are observations of the variable xj with density fj , the
histogram is defined as follows:

f̂hj j (x) =
1

nhj

∑
r∈Z

n∑
i=1

I {xij ∈ Br (x0j , hj)} I {x ∈ Br (x0j , hj)}

where I {·} is an indicator function such that:

I {xij ∈ Br (x0j , hj)} =

{
1 if xij ∈ Br (x0j , hj)
0 otherwise

and

I {x ∈ Br (x0j , hj)} =

{
1 if x ∈ Br (x0j , hj)
0 otherwise
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Visualizing multivariate data sets

Therefore:

I I {xij ∈ Br (x0j , hj)} counts the number of observations falling into bin Br (x0j , hj);
and

I I {x ∈ Br (x0j , hj)} counts the number of observations around x .

The parameter hj is a smoothing parameter that controls the width of the
histogram bins:

I An hj too large leads to very big blocks, leading to an unstructured histogram.

I An hj too small gives a very variable estimate with many unimportant peaks.
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Visualizing multivariate data sets

There are several methods available to select an “optimal” binwidth hj , or
equivalently, the optimal number of bins of the histogram.

Let kj be the number of bins, where the first bin starts at x(1)j and the last bin
with points ends at x(n)j .

Then, the relationship between kj and hj is given by:

kj =
x(n)j − x(1)j

hj

We can select kj (then hj) using some of the following methods:

I Sturges method: kj = [log2 (n) + 1].

I Scott method: kj =
3.5σ̂j

n1/3
, where σ̂j is the sample standard deviation of the

sample.

I Freedman-Diaconis method: kj = 2
IQRj

n1/3
, where IQRj is the interquartile range of

the sample.
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Illustrative example (I)

The following two slides show histograms of the variables of the US states data
set.

In the first figure, it can be seen histograms of the variable “murder” taking
h = 1, 2, and 3, respectively.

As it can be seen, the shapes of the histograms are different.

In the second figure, it can be seen the histograms for the eight variables with
binwidth selected with the Sturges method.

Note that the histograms show the presence of multimodality in some of the
variables.

However, the histograms are not smooth as are expected to be the distribution
of the variables.
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Illustrative example (I)
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Illustrative example (I)
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Illustrative example (II)

The following two slides show histograms of the variables of the Iris data set.

In the first figure, it can be seen histograms of the four quantitative variables
with binwidth selected with the Sturges method.

Note that the histograms show the presence of multimodality in the last two
variables.

In the second figure, it can be seen histograms of the third variable with binwidth
selected with the Sturges method for the three species.

Note that here the histograms are unimodal.

In any case, the histograms are not smooth as are expected to be the distribution
of the variables.
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Illustrative example (II)
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Illustrative example (II)
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Visualizing multivariate data sets

The major difficulties of histogram estimation may be summarised in four criti-
ques:

I determination of the binwidth.

I choice of the bin origin.

I loss of information since close observations are summarised with the same quan-
tity.

I lack of smoothness of the histogram.
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Visualizing multivariate data sets

An approach that avoids the last three difficulties is the kernel density.

First, a smooth kernel function rather than a box is used as a basic building
block.

Second, the smooth function is centred directly over each observation.

The general form of a kernel estimator of the density of xj based on the sample
x1j , . . . , xnj is given by:

f̂hj (x) =
1

nhj

n∑
i=1

K

(
x − xij
hj

)
where K (·) is a kernel function.
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Visualizing multivariate data sets

Some commonly used kernels are:

I Uniform kernel: K (u) = 1
2
I {|u| ≤ 1}.

I Triangle kernel: K (u) = (1− |u|) I {|u| ≤ 1}.
I Epanechnikov kernel: K (u) = 3

4

(
1− u2

)
I {|u| ≤ 1}.

I Quartic (Biweight) kernel: K (u) = 15
16

(
1− u2

)2
I {|u| ≤ 1}.

I Gaussian kernel: K (u) = 1√
2π

exp
(
− u2

2

)
Different kernels generate different shapes of the estimated density.
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Visualizing multivariate data sets

The parameter hj is called the bandwidth and can be selected by minimizing
the mean integrated squared error (MISE):

MISE (hj) = E

[∫ (
f̂hj (x)− fj (x)

)2
dx

]
,

where fj (·) is the density function of the univariate variable xj .

A lot of asymptotic theory has been done to obtain an approximation of the
MISE leading to a rule useful in practice.

If the Gaussian kernel is used, minimizing the MISE is approximately equivalent
to choose the bandwith given by:

hj =

(
4s5j
3n

)1/5

where sj is the sample standard deviation of x1j , . . . , xnj .
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Visualizing multivariate data sets

The following two slides show kernel densities of the variables of the US states
data set.

In the first figure, it can be seen kernel densities for the eight variables with the
Gaussian kernel and bandwidth selected by minimising the integrated squared
error.

In the second figure, it can be seen a comparison of kernel densities for the eight
variables with the Gaussian (in blue) and the Epanechnikov (in green) kernels
and bandwidth selected by minimising the integrated squared error.

As it can be seen both kernel densities are very close showing the presence of
multimodality in some of the variables.

The kernel estimates are very smooth, although they can be influenced by iso-
lated observations.
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Illustrative example (I)
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Illustrative example (I)
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Visualizing multivariate data sets

Scatterplots are bivariate plots of one variable against another.

They help us to understand the relationship among the two variables.

It is possible to extend the scatterplot by adding a third variable to obtain a 3D
scatterplot.

The scatterplot matrix draw all possible two-dimensional scatterplots of the
variables.

The scatterplot matrix helps in creating new ideas and in building knowledge
about dependencies and structures among variables.
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Illustrative example (I)

The following four slides show scatterplots of the variables of the US states data
set.

In the first figure, it can be seen the scatterplot of the variables “Income” vs.
“Life expectancy”.

In the second and third figures, it can be seen 3D-scatterplots of the variables
“Income”, “Life expectancy” and “Murder”.

Finally, the last figure shows a scatterplot matrix of the eight variables.

As it can be seen, the relationships between variables are very different.

There are both linear and non-linear relationships, outliers, and many other
features.
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Illustrative example (I)
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Illustrative example (I)
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Illustrative example (I)

3000 3500 4000 4500 5000 5500 6000 6500

 0
 2

 4
 6

 8
1

0
1

2
1

4
1

6

67

68

69

70

71

72

73

74

Income

L
if
e
.E

x
pM
u

rd
e

r

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 1 Master in Mathematical Engineering 52 / 89



Illustrative example (I)
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Illustrative example (II)

The following slide shows a scatterplot matrix of the variables of the iris data
set.

Note that the figure represents the points with colors depending of the variable
“Specie” (in blue, setosa, in green, versicolor, and in orange, virginica).

Note how the relationship between the variables depends on the specie.
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Illustrative example (II)
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Visualizing multivariate data sets

Parallel Coordinates Plots (PCP) is a method for representing high-dimensional
data.

Instead of plotting observations in an orthogonal coordinate system, PCP draws
coordinates in parallel axes and connects them with straight lines.

The variables are drawn into the horizontal axis, and the values of the variables
are mapped onto the vertical axis.

The PCP is very useful for high-dimensional data.

However, it is sensitive to the order of the variables, since certain trends in the
data can be shown more clearly in one ordering than in another.
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Illustrative examples (I) and (II)

The following two slides show PCPs for the variables of the US states data set
and the iris data set.

Note that, in the first case, the PCPs help to detect outliers, at least outliers
that appear in some of the variables.

In the second case, note how the behavior of the variables strongly depends
on the variable “Specie” (in blue, setosa, in green, versicolor, and in orange,
virginica).
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Illustrative example (I)
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Illustrative example (II)
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Multivariate descriptive measures

We have seen that simple graphical devices can help in understanding the struc-
ture and dependency of data.

The graphical tools are based on either univariate (bivariate) data representati-
ons or on transformations of multivariate information perceivable by the human
eye.

Most of the tools are extremely useful in a modelling step but do not give the
full picture of the data set.

One reason for this is that the graphical tools capture only certain dimensions
of the data and do not concentrate on those dimensions or parts of the data
under analysis that carry the maximum structural information.

Chapters 3 and 4 will present powerful tools for reducing the dimension of a
data set.

Here, as a starting point, we use simple and basic tools to describe location,
dispersion and dependency.
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Multivariate descriptive measures

Given our data matrix, X , we want to define in a proper way the center of the
data.

One possible criteria is to propose the point a as the center of the data if:

n∑
i=1

(xi· − a) = 0p

where 0p is the p × 1 vector of zeros.

Therefore, the point a is the center of balance of the data as the sum of its
deviations is 0p.
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Multivariate descriptive measures

From the previous equation,

a =
1

n

n∑
i=1

xi· =


x1
x2
...
xp


where x1, . . . , xp are the sample means of the data of the variables x1, . . . , xp.

The point a above is called the sample mean vector, and it is denoted by x .

x is the natural extension of the sample mean of an univariate random sample.
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Illustrative example (I)

The sample mean vector for the data in the example is given by:

x = (4246.42, 4435.80, 1.17, 70.87, 7.37, 53.10, 104.46, 70735.88)′

Each component of the sample mean vector is the sample mean of the corre-
sponding variable.
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Multivariate descriptive measures

On the other hand, the sample median cannot be easily generalized for multi-
variate variables because of the lack of a natural ranking in multivariate data
(how to order multivariate observations?).

This can be done using depth measures.

The depth of an observation relative to the observations in the data matrix
X measures how deep that observation lies in the data cloud formed by the
observations in X .

Therefore, the depths of the observations in X provides a center-outward orde-
ring of these observations.

Indeed, the deepest observation can be defined as a sample multivariate median.
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Multivariate descriptive measures

The halfspace depth is one of the most popular depth measures.

The halfspace depth of an observation xi· with respect to the observations in X
is defined as the minimum fraction of observations of X contained in a closed
halfspace containing xi·.

Obviously, the problem of the halfspace depth is that its computation is very
complicated when the dimension is relatively large.

Alternatively, some approximations based on random generation of halfspaces
can be done.

Additionally, it is usual to get a certain number of ties among observations.
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Illustrative example (I)

We compute the halfspace depth of the states with 100000 random halfspaces.

The deepest observation turns out to be the state of Iowa.

This observation can be seen as a sample multivariate median of the states data
set given by:

x = (2861, 4628, 0.5, 72.56, 2.3, 59, 140, 55941)′

Note the difference with respect to the sample mean vector.
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Multivariate descriptive measures

Given any univariate variable xj of the data matrix X , the sample variance of xj
is given by:

s2j = 1
n−1

n∑
i=1

(xij − x j)
2

Given two univariate variables xj and xk of the data matrix X , the sample
covariance between xj and xk is given by:

sjk =
1

n − 1

n∑
i=1

(xij − x j) (xik − xk)

The sample covariance measures the linear dependency between the observations
of the variables xj and xk .

It is very important to note that sjk depends on the units of measurement of xj
and xk .
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Multivariate descriptive measures

We can mimic the previous definition to define the sample covariance matrix of
X is defined as:

Sx =
1

n − 1

n∑
i=1

(xi· − x) (xi· − x)′ =


s21 s12 · · · s1p

s21 s22
. . . s2p

...
. . .

. . .
...

sp1 sp2 · · · s2p


where xi· = (xi1, . . . , xip)′, for i = 1, . . . , n.

The sample covariance matrix contains the variances of xj , for all j = 1, . . . , p
and the covariances between any two univariate variables xj and xk , for all
j , k = 1, . . . , p with j 6= k .

Therefore, Sx contains all the information about the spread of the variables and
the linear dependence between all the variables.

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 1 Master in Mathematical Engineering 68 / 89



Multivariate descriptive measures

Some properties of the sample covariance matrix are the following:

I Sx is a symmetric matrix because sjk = skj .

I Sx can be written in terms of the centered data matrix X̃ = X − 1nx
′ :

Sx =
1

n − 1
X̃ ′X̃

I Sx is positive semidefinite, i.e., their eigenvalues λSx
1 , . . . , λ

Sx
p are non-negative,

i.e., λSx
j ≥ 0, j = 1, . . . , p.

I |Sx | =
∏p

j=1 λ
Sx
j ≥ 0.

I When |Sx | = 0, there are some variables that are linear combinations of the
others. Indeed, the rank of Sx is the number of linear independent variables.
Then, if |Sx | = 0, it is necessary to delete the redundant variables.

I Tr(Sx) = s21 + · · ·+ s2p = λSx
1 + · · ·+ λSx

p ≥ 0 (note that in general, s2j 6= λSx
j ).
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Illustrative example (I)

The sample covariance matrix of the variables in the data set is given by:

Sx =



19.93 × 106 57.12 × 103 292.86 −407.84 5663.52 −3551.50 −77.08 × 103 8.58 × 106

57.12 × 103 37 × 104 −163.70 280.66 −521.89 3076.76 7227.60 1.90 × 107

292.86 −163.70 0.37 −0.48 1.58 −3.23 −21.29 4.01 × 103

−407.84 280.66 −0.48 1.80 −3.86 6.31 18.28 −1.22 × 104

5663.52 −521.89 1.58 −3.86 13.62 −14.54 −103.40 7.19 × 104

−3551.50 3076.76 −3.23 6.31 −14.54 65.23 153.99 2.29 × 105

−77.08 × 103 7227.60 −21.29 1828 −103.40 153.99 2702.00 2.62 × 105

85.87 × 105 1.90 × 107 4.01 × 103 −1.22 × 104 7.19 × 104 2.29 × 105 2.62 × 105 7.28 × 109



The eigenvalues of Sx are λSx
1 = 7.28×109, λSx

2 = 1.99×107, λSx
3 = 3.12×105,

λSx
4 = 2.15 × 103, λSx

5 = 36.51, λSx
6 = 6.05, λSx

7 = 0.43 and λSx
8 = 0.08,

respectively.

Also, Tr (Sx) = 7301060101 and |Sx | = 7.87× 1026.

The eigenvalues are quite different. Why?

Indeed, why is the largest eigenvalue so close to the variance of the last variable?
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Multivariate descriptive measures

The usual approach to solve the problem of having different units of measure-
ment is to standardize the variables.

Therefore, we can standardize the variables as follows:

yij =
xij − x j

sj

Now, the sample covariance between the data of the variables yj and yk is given
by:

rjk =
1

n − 1

n∑
i=1

yijyik =
1

n − 1

n∑
i=1

(xij − x j)

sj

(xik − xk)

sk
=

sjk
sjsk

This is called the sample correlation between the observations of two variables
xj and xk of X .
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Multivariate descriptive measures

The sample correlation, as the sample covariance, measures the linear depen-
dence between the observations of the variables xj and xk .

However, the rjk does not depend on the units of measurement of xj and xk .

Note that rjk is in absolute value always less than 1.

In particular, the closer |rjk | to 1, the more linearly dependent the observations
of xj and xk .

In particular, rjk = 0 if, and only if, sjk = 0. In this case, we say that the
observations of xj and xk are uncorrelated.
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Multivariate descriptive measures

Now, it is easy to see that the sample covariance matrix of the standardized
variables in X is given by:

Rx =


1 r12 · · · r1p

r21 1
. . . r2p

...
. . .

. . .
...

rp1 rp2 · · · 1


Rx is called the sample correlation matrix and it is the multivariate (for more
than 2 variables) counterpart of the sample correlation.

The sample correlation matrix contains the correlations between any two univa-
riate variables xj and xk , for all j , k = 1, . . . , p with j 6= k.

Therefore, Rx contains all the information about the linear dependence between
all the variables.
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Multivariate descriptive measures

Some properties of the sample correlation matrix are the following:

I Rx is a symmetric matrix because rjk = rkj .

I Rx can be written in terms of Sx as follows:

Rx = D−1/2
x SxD

−1/2
x

where Dx is the p × p diagonal matrix containing the elements of the main
diagonal of Sx , i.e., the variances s21 , . . . , s

2
p .

I Rx is positive semidefinite, i.e., their eigenvalues λRx
1 , . . . , λ

Rx
p are non-negative,

i.e., λRx
j ≥ 0, j = 1, . . . , p.

I |Rx | =
∏p

j=1 λ
Rx
j ≥ 0.

I When |Rx | = 0, there are some variables that are linear combinations of the
others. Indeed, the rank of Rx is the number of linear independent variables.
Then, if |Rx | = 0, it is necessary to delete the redundant variables.

I Tr(Rx) = 1 + · · ·+ 1 = λRx
1 + · · ·+ λRx

p = p (note that in general, λRx
j 6= 1).
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Illustrative example (I)

The sample correlation matrix of the variables in the data set is given by:

Rx =



1 0.20 0.10 −0.06 0.34 −0.09 −0.33 0.02
0.20 1 −0.43 0.34 −0.23 0.61 0.22 0.36
0.10 −0.43 1 −0.58 0.70 −0.65 −0.67 0.07
−0.06 0.34 −0.58 1 −0.78 0.58 0.26 −0.10
0.34 −0.23 0.70 −0.78 1 −0.48 −0.53 0.22
−0.09 0.61 −0.65 0.58 −0.48 1 0.36 0.33
−0.33 0.22 −0.67 0.26 −0.53 0.36 1 0.05
0.02 0.36 0.07 −0.10 0.22 0.33 0.05 1


The eigenvalues of Rx are λRx

1 = 3.59, λRx
2 = 1.63, λRx

3 = 1.11, λRx
4 = 0.70,

λRx
5 = 0.38, λRx

6 = 0.30, λRx
7 = 0.14 and λRx

8 = 0.11, which are not very close
to 0. Why?

Also, Tr (Rx) = 6 and |Rx | = 0.0089.
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Multivariate descriptive measures

There are other coefficients to measure the dependency between the data of
two random variables.

For instance, the Kendall’s tau and the Spearman’s rho are two correlation
coefficients based on the ranks of the data.

However, there are no available generalizations of these coefficients to more
than two dimensions so we do not enter into details here.
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Linear transformations

In many practical applications we need to study linear transformations of the
original data.

For instance, to define the sample correlation matrix, we have standardize the
data, which is a linear transformation of the variables.

This motivates the question of how to calculate descriptive statistics after such
linear transformations.

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 1 Master in Mathematical Engineering 77 / 89



Linear transformations

Let X be a n×p data matrix and let c = (c1, . . . , cp)′ be a p×1 column vector.

Then, the n × 1 column vector y = Xc is a linear combination of X :

Y = Xc =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp




c1
c2
...
cp

 =


y1
y2
...
yn


where yi = c1xi1 + · · ·+ cpxip, for i = 1, . . . , n.

The sample mean and the sample variance of the new variable are given by:

y = c ′x s2y = c ′Sxc

respectively, where x and Sx are the sample mean and sample covariance matrix
of X .

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 1 Master in Mathematical Engineering 78 / 89



Linear transformations
If C is a p × r matrix, then, the n× r data matrix Y = XC is a linear transfor-
mation of X :

Y = XC =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp




c11 c12 · · · c1r
c21 c22 · · · c2r

...
...

. . .
...

cp1 cp2 · · · cpr

 =

=


y11 y12 · · · y1r
y21 y22 · · · y2r

...
...

. . .
...

yn1 yn2 · · · ynr


where yij = c1jxi1 + · · ·+ cpjxip, for i = 1, . . . , n and j = 1, . . . , p.

Then, the sample mean vector and sample covariance matrix of Y are given by:

y = C ′x Sy = C ′SxC

respectively.
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Illustrative example (II)

The mean vector of the iris data set is given by:

x = (5.84, 3.05, 3.75, 1.19)′

The sample covariance matrix of the iris data set is given by:

Sx =


0.68 −0.04 1.27 0.51
−0.04 0.18 −0.32 −0.12
1.27 −0.32 3.11 1.29
0.51 −0.12 1.29 0.58


We want to create two new variables from the variables in the data matrix X :

I the sum of the lengths of the sepal and the petal of each flower; and

I the sum of the widths of the sepal and the petal of each flower.
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Illustrative example (II)

The problem is to compute the mean and the covariance matrix of the new data
set given by:

Y = XC

where:

C =


1 0
0 1
1 0
0 1


Then,

y = C ′x =

(
9.60
4.25

)
and,

Sy = C ′SxC =

(
6.35 1.43
1.43 0.52

)
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Linear transformations

The individual standardization of X can be written as:

Y = X̃D−1/2x

where Dx is the p × p diagonal matrix formed by the elements of the principal
diagonal of Sx , i.e., the variances s21 , . . . , s

2
p .

Note that:
y = 0p Sy = D−1/2x SxD

−1/2
x = Rx

Therefore, the univariate standardization eliminates the mean and standardises
the variance of each variable.
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Linear transformations

The multivariate standardization of X is given by:

Y = X̃ S−1/2x

Note that:

y = 0p Sy =
(
S−1/2x

)′
SxS

−1/2
x = Ip

Therefore, the multivariate standardization eliminates the mean and the corre-
lation between the variables and standardises the variance of each variable.
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Illustrative example (I)

Next, see the scatterplot matrices corresponding to:

1 The original state data set.

2 The univariate standardized data set.

3 The multivariate standardized data set.
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Illustrative example (I)
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Illustrative example (I)
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Illustrative example (I)
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Conclusion

We are ready now for:

Chapter 2: Multivariate distributions and inference
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