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Introduction

As we have seen in previous chapters, principal components and factor analysis
are important dimension reduction tools.

However, in many applied sciences, data is recorded as ranked information.

For example, in marketing, one may record “product A is better than product
B”.

Multivariate observations therefore often have mixed data characteristics and
contain information that would enable us to employ one of the multivariate
techniques presented so far.

Multidimensional scaling (MDS) is a method based on proximities between ob-
jects, subjects, or stimuli used to produce a spatial representation of these items.

MDS is a dimension reduction technique since the aim is to find a set of points in
low dimension (typically two dimensions) that reflect the relative configuration
of the high-dimensional data objects.
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Introduction

The proximities between objects are defined as any set of numbers that express
the amount of similarity or dissimilarity between pairs of objects.

In contrast to the techniques considered so far, MDS does not start from a n×p
dimensional data matrix, but from a n× n dimensional dissimilarity or distance
matrix, D, with elements δii ′ or dii ′ , respectively, for i , i ′ = 1, . . . , n.

Hence, the underlying dimensionality of the data under investigation is in general
unknown.
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Introduction

MDS techniques are often used to understand how people perceive and evaluate
certain signals and information.

For instance, political scientists use MDS techniques to understand why political
candidates are perceived by voters as being similar or dissimilar.

Psychologists use MDS techniques to understand the perceptions and evaluati-
ons of speech, colors and personality traits, among other things.

Marketing researchers use MDS techniques to shed light on the way consumers
evaluate brands and to assess the relationship between product attributes.
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Introduction

What lies behind MDS is the concept of distance.

Therefore, we first review briefly the most important statistical distances.

After this, we are going to present two different MDS solutions:

I The Metric MDS solution is concerned with a representation of the distance
matrix in Euclidean coordinates where the projections are obtained via a spectral
decomposition of a distance matrix.

I The Non-metric MDS is a more sophisticated solution particularly useful when
the proximities are measured in an ordinal scale.
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Statistical distances

As mentioned before, MDS depends on the concept of statistical distance.

Distances also play an important role in other multivariate techniques such as
cluster analysis that will be presented in Chapter 6 and some of the methods
for classification in Chapter 7.

We already know some distances between multivariate observations: the Eucli-
dean distance and the Mahalanobis distance.

Next, we present alternative distances.
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Statistical distances

We begin with the definition of distance.

For simplicity we focus on distances between random variables defined in the
same probability space.

Definition: A distance between two independent random variables xi· and xi ′· is
a positive random variable which satisfies:

1 d (xi·, xi′·) ≥ 0;

2 d (xi·, xi′·) = 0, if and only if xi· = xi′·;

3 d (xi·, xi′·) = d (xi′·, xi·); and

4 d (xi·, xi′·) ≤ d (xi·, xi′′·) + d (xi′′·, xi′·), for any other independent random vari-
ables xi′′·.
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Statistical distances

The two most common distances in Statistics for quantitative multivariate
random variables are the Euclidean distance and the Mahalanobis distance.

The Euclidean distance, dE , between xi· and xi ′·, is given by:

dE (xi·, xi ′·) =
[
(xi· − xi ′·)

′ (xi· − xi ′·)
]1/2

The Mahalanobis distance, dM , between xi· and xi ′·, is given by:

dM (xi·, xi ′·) =
[
(xi· − xi ′·)

′ Σ−1x (xi· − xi ′·)
]1/2

where Σx is the common covariance matrix of xi· and xi ′·.

Note that the Euclidean distance coincides with the Mahalanobis distance if
Σx = Ip.
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Statistical distances

The Minkowski distance, dp, between xi· and xi ′·, is given by:

dp (xi·, xi ′·) =

 p∑
j=1

|xij − xi ′j |p
1/p

If p = 1, dp is called the Manhattan distance.

If p = 2, dp is the Euclidean distance.

If p = ∞, dp is the maximum distance or the Chebychev distance, dmax, that
can be written as:

dmax (xi·, xi ′·) = max
j=1,...,p

|xij − xi ′j |
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Statistical distances

The Canberra distance, dCanb, between xi· and xi ′·, is given by:

dCanb (xi·, xi ′·) =

p∑
j=1

|xij − xi ′j |
|xij |+ |xi ′j |

The Bhattacharyya distance, dBhat , between xi· and xi ′·, is given by:

dBhat (xi·, xi ′·) =

p∑
j=1

(
x
1/2
ij − x

1/2
i ′j

)2
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Statistical distances

The cosine distance (or dissimilarity), dcos, between xi· and xi ′·, is given by:

dcos (xi·, xi ′·) = 1− cos (xi·, xi ′·)

where cos (xi·, xi ′·) is the cosine of the included angle of the two random vectors,
given by:

cos (xi·, xi ′·) =
x ′i·xi ′·

‖xi·‖ ‖xi ′·‖
and ‖·‖ denotes the Euclidean norm of a vector.

The correlation distance (or dissimilarity), dcor , between xi· and xi ′·, for i , i ′ =
1, . . . , n, is given by:

dcor (xi·, xi ′·) = 1− ρii ′

where ρii ′ is the correlation coeficient betwen xi· and xi ′·.
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Statistical distances

The Hamming distance, dHamm, can be used for binary random variables with
entries 0 and 1.

The Hamming distance between xi· and xi ′·, for i , i ′ = 1, . . . , n, is given by:

dHamm (xi·, xi ′·) =
# {xij 6= xi ′j : 1 ≤ j ≤ p}

p
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Statistical distances

The Gower distance, dGow , can be used for random variables with quantitative
and qualitative entries.

The Gower distance can be computed as follows:

1 Express the qualitative variables as indicator variables (as seen in Chapter 1).

2 Standardize all variables individually such that the sample mean of each variable
is 0 and the sample variance is 1.

3 Compute the distance between observations using the Manhattan (or the Eucli-
dean) distance.

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 5 Master in Mathematical Engineering 14 / 37



Metric MDS

Metric MDS begins with a n × n distance matrix D with elements dii ′ , where
i , i ′ = 1, . . . , n.

The goal of Metric MDS is to find a configuration of points such that the
coordinates of the n points along p dimensions yields a Euclidean distance matrix
whose elements are as close as possible to the elements of the given distance
matrix D.

Before introducing metric MDS, we show how to obtain, from a data matrix X ,
the matrix of squared Euclidean distances between the observations of X .

Then, we will be ready to present metric MDS.
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Metric MDS

Let X be a n × p data matrix and let X̃ be the n × p centered data matrix.

Let D
(2)
E be the matrix of squared Euclidean distances between the observations

of X , with elements d2
E ,ii ′ = (xi· − xi ′·)

′ (xi· − xi ′·).

Then, D
(2)
E can be written as follows:

D
(2)
E = diag (Q) 1′n + 1ndiag (Q)′ − 2Q

where:
Q = X̃ X̃ ′

and diag (Q) is a column vector with the diagonal elements of Q.

In particular, the squared Euclidean distance between xi· and xi ′· can be written
in the terms of the elements of Q as follows:

d2
E ,ii ′ = Qii + Qi ′i ′ − 2Qii ′
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Metric MDS

Therefore, we can write the matrix D
(2)
E in terms of the matrix Q, or, in other

words, in terms of X̃ and then in terms of X .

The question is: is it possible to reconstruct the data matrix X from the matrix

D
(2)
E of squared Euclidean distances?

In order to do that, the goal is, first, to obtain Q, then, the matrix X̃ , and then,
the matrix X , if possible.
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Metric MDS

We begin by studying how to obtain the matrix Q given the matrix D
(2)
E .

First, noting that Q1n = 0p as X̃ ′1n = 0p, we get:

n∑
i=1

Qii ′ =
n∑

i ′=1

Qii ′ = 0

Then,

n∑
i=1

d2
E ,ii ′ =

n∑
i=1

(Qii + Qi ′i ′ − 2Qii ′) = Tr (Q) + nQi ′i ′ =⇒

=⇒ Qi ′i ′ =
1

n

n∑
i=1

d2
E ,ii ′ −

Tr (Q)

n
= di ′ −

Tr (Q)

n

where:

di ′ =
1

n

n∑
i=1

d2
E ,ii ′
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Metric MDS

Similarly,

n∑
i ′=1

d2
E ,ii ′ = nQii + Tr (Q) =⇒

=⇒ Qii =
1

n

n∑
i ′=1

d2
E ,ii ′ −

Tr (Q)

n
= di −

Tr (Q)

n

where:

di =
1

n

n∑
i ′=1

d2
E ,ii ′
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Metric MDS

On the other hand,

n∑
i=1

n∑
i ′=1

d2
E ,ii ′ =

n∑
i=1

(nQii + Tr (Q)) = 2nTr (Q) =⇒

=⇒ Tr (Q) =
1

2n

n∑
i=1

n∑
i ′=1

d2
E ,ii ′ =

n

2
d

where:

d =
1

n2

n∑
i=1

n∑
i ′=1

d2
E ,ii ′
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Metric MDS

Therefore,

d2
E ,ii ′ = Qii + Qi ′i ′ − 2Qii ′ = di −

Tr (Q)

n
+ di ′ −

Tr (Q)

n
− 2Qii ′ =

= di + di ′ − d − 2Qii ′ =⇒ Qii ′ = −1

2

(
d2
E ,ii ′ − di − di ′ + d

)
which allows to construct the matrix Q by means of the matrix D

(2)
E .

Indeed, from the last expression, it can be checked that:

Q = −1

2

(
In −

1

n
1n1′n

)
D

(2)
E

(
In −

1

n
1n1′n

)
= −1

2
PnD

(2)
E Pn

where Pn is the projection matrix.

Consequently, we can recover the matrix Q from the matrix D
(2)
E .
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Metric MDS

Now we turn to the problem of how to obtain the matrix X when the matrix Q
is given.

Assuming that Q is positive definite of rank p (remember that Q = X̃ X̃ ′ and

X̃ has dimension n × p with p < n), it can be represented by:

Q = VpΛpV
′
p

where Vp is a n×p matrix containing the eigenvectors corresponding to nonzero
eigenvalues of Q and Λp is a p × p diagonal matrix containing the eigenvalues.

We write:

Q =
(
VpΛ1/2

p

)(
VpΛ1/2

p

)′
= YpY

′
p

where Yp = VpΛ
1/2
p is a n×p matrix with p uncorrelated variables that reproduce

the initial metric.
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Metric MDS

Is Yp the matrix X̃ that has lead to the matrix Q that leads to the distance

matrix D
(2)
E ?

The answer is no almost surely, because there is an indeterminacy in the problem
when the only information available are the distances.

In fact, the distances between variables do not vary if:

1 We modify the means of the variables.

2 We multiply X̃ by an orthogonal matrix A as follows:

Q = X̃ X̃ ′ = X̃AA′X̃ ′

Therefore, from D
(2)
E , it is only possible to obtain a rotation from the data matrix

X̃ given by the matrix Yp, which is called the matrix of principal coordinates.
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Metric MDS

In practice, the distance matrix D may not be the matrix of Euclidean distances.

However, the metric MDS solution considers the way of obtaining the principal
coordinates as if D is the matrix of Euclidean distances.

Therefore, in practice we assume that we have a n × n distance matrix D.

The procedure to obtain the principal coordinates is:

1 Obtain the matrix of squared distances or dissimilarities D(2) just computing the
square of each element of D.

2 Construct the matrix Q = − 1
2
PnD

(2)Pn.

3 Obtain the eigenvalues of Q. Take the r largest eigenvalues, where r is chosen
so that the remaining n − r eigenvalues are much smaller than the first ones.

4 Define the matrix of r principal coordinates:

Yr = VrΛ
1/2
r
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Metric MDS

Note that given the matrix D there is no reason to think that all the eigenvalues
of Q = − 1

2PnD
(2)Pn should be positive.

Then, in the algorithm, we consider the r largest eigenvalues of the matrix Q
and discard the others, including the negative ones.

This is necessary because, in order to compute the principal coordinates, we
need to compute the square root of the Λr , and thus, the eigenvalues of Q
considered should be be nonnegative.

A precision measure of the principal components obtained from the r positive
eigenvalues of the squared distance matrix D(2) by means of the following coef-
ficient:

mr =

∑r
i=1 λi∑n
i=1 |λi |
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Illustrative example (I)

A good example of how metric MDS works is the following.

We have a distance matrix with the road distances (in km) between 21 cities in
Europe.

The problem is to recreate the map that has generated the road distances.

Metric MDS is a method for solving this problem in arbitrary dimensions.

The next two slides shows the eigenvalues of the matrix Q obtained using metric
MDS and the corresponding solution taking r = 2.

The precision of this solution is:

m2 =
31394932

41651413
= 0.7537
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Illustrative example (I)
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Illustrative example (I)
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Metric MDS

When the original data are in the matrix X̃ and we construct the matrix D(2)

using the Euclidean distances between the points with the original variables,
then the principal coordinates obtained from matrix D(2) are equivalent to the
principal components of the variables.

Indeed, if Q = X̃ X̃ ′, it is not difficult to show that the r -th principal component
of X , Zr , is proportional to the r -th principal coordinate, i.e., Yr = aZr , for
certain value of a.
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Non-metric MDS

Problems of non-metric MDS start from a matrix of differences or dissimilarities
between objects that have been obtained via enquiries or from procedures of
ordering the elements.

For example, non-metric MDS is applied to the study of dissimilarities between
people’s attitudes, preferences or perceptions about political or social affairs or
in order to evaluate preferences for products or services in marketing and quality.

It is thought that the dissimilarity matrix is related to the (real) distance matrix,
but in a complex way.

For instance, it is accepted that the judges, in their assessment, use certain
variables or dimensions, however, this also means that the data include elements
of error and personal variability.
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Non-metric MDS

Therefore, the variables that explain the dissimilarities between the elements
being compared will determine the (true) distances between them, dii ′ , which
are related to the dissimilarities given, δii ′ , by means of an unknown function:

δii ′ = f (dii ′)

where the only constraint imposed is that f is a monotonous function, meaning
that:

δii ′ > δii ′′ ⇐⇒ dii ′ > dii ′′

The objective is to try to find the principal coordinates corresponding to the
unknown distances dii ′ , for i , iprime = 1, . . . , n, using only the constraint of
monotonicity and using the dissimilarities given.

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 5 Master in Mathematical Engineering 31 / 37



Non-metric MDS

For that the usual approach is to use the Shepard-Kruskal algorithm:

1 Use the metric MDS in the dissimilarities to obtain an initial set of principal
coordinates.

2 Compute the Euclidean distances between the obtained principal coordinates.

3 Regress these Euclidean distances on the dissimilarities taking into account the
monotonicity constraint (not entering into details here).

4 Compare the Euclidean distances with the predicted values given by the regression
using the STRESS:

S2 =

∑
i<i′

(
δii′ − d̂E ,ii′

)2∑
i<i′ δ

2
ii′

where d̂E ,ii′ are the predicted Euclidean distances from the regression.

5 Replace the original Euclidean distances with the predicted distances and repeat
the process until the STRESS is very small.
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Non-metric MDS

The dimension taken is usually r = 2, in order to ease the graphical representa-
tion of the data.

Anyway, the number of dimensions needed for a good representation of the data
can be estimated by testing different values of r and studying the evolution of
the criterion in a similar way to that of determining the number of principal
components.
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Illustrative example (II)

We consider a data set that shows the number of times 15 congressmen from
New Jersey voted differently in the House of Representatives on 19 environmen-
tal bills.

Abstentions are not recorded.

The question is whether party affiliations can be detected in the data.

We apply non-metric scaling to the voting behavior shown in the data set. We
plot in the next slide the two-dimensional solution.

The figure suggests that voting behavior is essentially along party lines, although
there is more variation among Republicans.

The voting behavior of one of the Republicans (Rinaldo) seems to be closer to his
Democratic colleagues rather than to the voting behavior of other Republicans.
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Illustrative example (II)
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Chapter outline

We are ready now for:

Chapter 6: Cluster analysis
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