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Introduction

The problem of classification is as follows:

1 We have a set of objects (items, elements,. . . ) that may come from two or more
populations.

2 We observe the value of a p-dimensional random variable x = (x1, . . . , xp)′ on
these objects.

3 We want to classify a new object, with known values of the variables but with
unknown population, in one of the populations.

The techniques we will study here are also known as supervised classification,
in order to indicate that we know a sample of well-classified objects that serves
as information for the classification of subsequent objects.

Supervised classification is a different problem than unsupervised classification
or cluster analysis, seen in Chapter 6, where a sample of well-classified objects
is not available.
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Introduction

Classification is one of the most popular problems in practical analysis nowadays:

I In finance, the automatic credit scoring systems of financial institutions today are
based on using many measurable variables (income, seniority in place of work,
wealth,. . . ) in order to predict future behavior.

I In quality control, certain components should be classified as good or defective
(lamps, televisions,. . . ).

I In engineering, it is important to design machines capable of automatic classifi-
cation of voices, bills or coins, on-screen characters, or postal codes in letters.

I Other examples are: assigning a written text of unknown origin to one of several
authors using word frequency, assigning a musical score or painting to an artist,
recognizing a tax declaration as potentially fraudulent or not, a business as a
bankruptcy risk or not or a new manufacturing process as efficient or not.
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Introduction

The elements of a classification problem are the following:

I A p-dimensional random variable, x = (x1, . . . , xp)′, defined in a set of objects
belonging to one out of G populations, Pg , for g = 1, . . . ,G .

I An indicator variable, y , that takes value g , where g ∈ {1, . . . ,G}, if a randomly
chosen object from one of the G populations belongs to group g .

I The (unknown) probabilities, πg , for g = 1, . . . ,G , that a randomly chosen object
comes from the g -th population (obviously, π1 + · · ·+ πG = 1).

I A data matrix X of dimension n× p, with observations xi·, for i = 1, . . . , n, with
known population membership, i.e., with known values of the indicator variable
y .

We are going to study the problem of classifying a new object with known values
of x , say x0 = (x01, . . . , x0p)′, in one of the G populations.
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Introduction

There are many possible classification techniques that one might use to classify
an observation.

Even if the problem has been traditionally analyzed by statisticians, several
methods have been more recently proposed in the machine learning area.

Here, we focus on three of the most widely-used statistical classifiers:

I k-Nearest Neighbors (k-NN);

I Bayes rule classifiers; and

I Logistic regression.
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k-Nearest Neighbors (k-NN)

k-Nearest Neighbors (k-NN) is probably one of the simplest methods to perform
classification.

k-NN can be considered a non-parametric method because it does not require
any distributional assumption on the random variable x .

Indeed, k-NN can be used with data sets with any kind of variables, as long as
a distance between observations exists.

Moreover, this method does not require to estimate the probabilities π1, . . . , πG .
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k-Nearest Neighbors (k-NN)

Given the data matrix X , the k-NN algorithm runs as follows:

1 Define a measure of distance adequate for the observed random variable x .

2 Compute the distance between the observation x0, corresponding to the object
to classify, and all the observations in the data matrix X .

3 Select the k closest observations to x0 and compute the proportion of the k
observations that belongs to each population.

4 Then, classify x0 in the population with largest proportion (ties are broken at
random).

A key point in the algorithm is the selection of an adequate k.

Several alternatives are available, but here we focus on leave-one-out cross-
validation.
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k-Nearest Neighbors (k-NN)

Cross-validation is a general methodology useful to evaluate the performance of
statistical methods.

Given an observed sample and a certain method (model) that depends on certain
parameters, the most general cross-validation procedure is as follows:

1 Split the observed sample in two sub-samples.

2 Use the first sub-sample to estimate the parameters of the method (model).

3 Use the second sub-sample to validate the performance of the method (model)
with the estimated parameters obtained from the first sub-sample.

Leave-one-out cross-validation is a particular example of cross-validation when
the second sub-sample consists only of a single observation of the whole observed
sample.

The idea is to extract conclusions with the results corresponding to apply leave-
one-out cross-validation n times, one for each observation in the whole observed
sample.
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k-Nearest Neighbors (k-NN)

k-NN with the leave-one-out cross-validation procedure runs as follows:

1 Repeat the following steps for k = 1 to k = kmax, for certain upper bound kmax:

a. Given k, skip one observation of X and use k-NN to classify this observation.

b. Repeat step 1.a skipping all the observations in X one time.

c. Obtain a contingency table with the results:

Classify in P1 · · · Classify in PG

Belongs to P1 n11 · · · n1G

...
...

. . .
...

Belongs to PG nG1 · · · nGG

where nij is the amount of observations that, coming from Pi , are classified in Pj .

d. Compute the misclassification rate given by:

MR =
n12 + · · · + nG ,G−1

n
=

Total misclassified observations

Total number of observations

2 Select the optimal k as the one that gives the minimum misclassification rate or
the one most equilibrated one among the best performances.
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k-Nearest Neighbors (k-NN)

Note that k-NN does not take into account the number of observations coming
from each population, nor the probabilities π1, . . . , πG .

If the data set is highly unbalanced, i.e., one or more of the populations have
much more elements than others, k-NN (as well as other classification methods)
might classify most of the observations to the most represented populations.

Note that this will lead to very small misclassification rates, but this is only
reflecting the unbalanced situation.

For instance, we have a problem with 2 populations with 100 observations, 90
coming from P1 and 10 coming from P2.

If we get a misclassification rate of 0.1 is because the method always classify in
P1.
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k-Nearest Neighbors (k-NN)

There is no a gold-standard solution to this problem, but probably the best thing
to do is resampling the data set.

There are two options:

1 Add sampled copies at random of observations from the populations less repre-
sented (over-sampling); or

2 Delete observations at random from the populations more represented (under-
sampling).
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Illustrative example (I)

We apply the k-NN algorithm to the Iris data set with cross-validation for k =
1, . . . , 20.

For that, we use the Euclidean distance because all the variables are quantitative
and measured in the same units of measurements.

The optimal k is 14, although different runs of the algorithm can lead to different
optimal k ′s because of the existence of ties.
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Illustrative example (I)

The contingency table for k = 14 is given by:

Clas. in Setosa Clas. in Versicolor Clas. in Virginica
Setosa 50 0 0

Versicolor 0 48 2
Virginica 0 1 49

Therefore, the misclassification error is estimated as:

Error =
3

150
= 0.02

which means that it is expected that the 2% of the new classifications are going
to be wrong.

The next two slides show the scatterplot matrix of the observations with the
true populations and the scatterplot matrix of misclassified elements for k = 14.
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Illustrative example (I)
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Illustrative example (I)
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Bayes rule classifiers

Bayes rule classifiers are built up with the Bayes Theorem, thus they are under
a probabilistic framework.

The idea under the Bayes rule classifiers is to classify a new object in the popula-
tion that has largest probability of having generated the associated observation.

For easiness in presentation, assume that x is continuous and that the density
functions of the G populations, denoted by f1, . . . , fG , are known.

Using the Bayes Theorem, the probability that the object with associated ob-
servation x0 has been generated by the population Pg is given by:

Pr (y = g |x = x0) =
πg fg (x0)∑G
k=1 πk fk (x0)

where πg , for g = 1, . . . ,G , are the probabilities that a randomly chosen obser-
vation x0 comes from the g -th population.
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Bayes rule classifiers

In other words, we classify the new object in Pg if Pr (y = g |x = x0) is the
maximum one among the G populations.

Note that this is similar to the new object in Pg if πg fg (x0) is the maximum
one among the G populations.

In particular, if π1 = · · · = πG , then, the condition for classifying in Pg is that
fg (x0) is the maximum one among the G populations, which means that we
classify the new object in the population with largest density at the value x0.
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Bayes rule classifiers

Next, we see what happens if we evaluate the Bayes rule classifier assuming that
the density functions f1, . . . , fG are Gaussian.

First, assume that f1, . . . , fG have different mean vectors, µ1, . . . , µG , but the
same covariance matrix, Σ.

Therefore, under Pg , x follows a N (µg ,Σ) distribution.

The optimal decision is, according to the Bayes rule, to classify the new element
in the population Pg that maximize πg fg (x0), which is given by:

πg fg (x0) = πg (2π)−p/2 |Σ|−1/2 exp

(
− (x0 − µg )′Σ−1 (x0 − µg )

2

)
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Bayes rule classifiers

Taking logarithms and deleting some nuisance constants, this is equivalent to
classify the new element in the population Pg that maximize:

2 log πg − (x0 − µg )′ Σ−1 (x0 − µg )

Note that the last expression is equal to:

2 log πg − x0Σ−1x0 + 2µ′gΣ−1x0 − µ′gΣ−1µg

Consequently, the Bayes rule reduces to classify the new element in the popu-
lation Pg that maximize:

pg (x0) = 2µ′gΣ−1x0 − µ′gΣ−1µg + 2 log πg

because x0Σ−1x0 does not depend on the population Pg , so it can be skipped
for classification purposes.

As pg (x0) depends linearly on x0, the method is called the linear discriminant
classifier.
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Bayes rule classifiers

Note that the linear discriminant classifier has an interesting interpretation if
π1 = · · · = πG .

From the first formula in the previous slide, the linear discriminant rule classify
the new element in the population Pg that maximize:

2 log πg − (x0 − µg )′ Σ−1 (x0 − µg )

If π1 = · · · = πG , this is equivalent to classify the new element in the population
Pg that minimize:

(x0 − µg )′Σ−1 (x0 − µg )

or, in other words, in the population whose mean vector is closest in terms of
the squared Mahalanobis distance.
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Bayes rule classifiers

The linear discriminant classifier leads to the following expression of the proba-
bilities Pr (y = g |x = x0):

Pr (y = g |x = x0) =
πg exp

(
− (x0−µg )′Σ−1(x0−µg )

2

)
∑G

k=1 πk exp
(
− (x0−µk )′Σ−1(x0−µk )

2

) =

=
πg exp

(
− 1

2D
2
M (x0, µg )

)∑G
k=1 πk exp

(
− 1

2D
2
M (x0, µk)

)
where D2

M (x0, µk) = (x0 − µk)′Σ−1 (x0 − µk) is the squared Mahalanobis dis-
tance between x0 and µk .
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Bayes rule classifiers

Note that, in the development of the linear discriminant rule, we are assuming
that we know the probabilities, π1, . . . , πG , and the parameters of the Gaussian
distributions, i.e., the means µ1, . . . , µG and the common covariance matrix Σ.

Obviously, in practice, this is not going to hold and, consequently, we need to
estimate all these quantities.
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Bayes rule classifiers

For that, the data matrix X , of dimension n × p, can be thought of as divided
into G matrices corresponding to the G populations.

Let xijg be the elements of these submatrices where i represents the individual,
j the variable, and g the group or submatrix.

Let xi·g be the column vector that contains the p values of the variable x for
the individual i in group g , that is, xi·g = (xi1g , . . . , xipg )′.

Let ng be the number of elements in group g , such that the total number of

observations is n =
∑G

g=1 ng .
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Bayes rule classifiers

First, the probabilities, π1, . . . , πG , can be estimated with the proportion of
observed data in each group, i.e.,

π̂g =
ng
n

Second, the mean vector of x under Pg , i.e., µg , can be estimated with the
sample mean vector within group g , i.e.

xg =
1

ng

ng∑
i=1

xi·g
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Bayes rule classifiers

Third, the common covariance matrix of x , i.e., Σ, can be estimated with:

Sw =
G∑

g=1

(
ng − 1

n − G

)
Sg

where Sg is the sample covariance matrix for the elements of class g , i.e.:

Sg =
1

ng − 1

ng∑
i=1

(xi·g − xg ) (xi·g − xg )′

Now, we can apply the linear discrimination rule and to estimate the probabilities
Pr (y = g |x = x0) after replacing the parameters of the Gaussian populations
with their sample counterparts.
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Bayes rule classifiers

The question now is how to estimate the performance of the linear discrimination
rule for a given data set.

As with k-NN, we can use leave-one-out cross validation to achieve such goal.

The idea is to classify each observation in the sample without including this
element in the estimation step described before.

Therefore, n classifications are performed from which we can obtain the corre-
sponding contingency table and the associated misclassification rate.
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Illustrative example (I)

We use the linear discriminant rule to classify the flowers in the Iris data set
using leave-one-out cross-validation.

As with k-NN, there are only three misclassifications.

Clas. in Setosa Clas. in Versicolor Clas. in Virginica
Setosa 50 0 0

Versicolor 0 48 2
Virginica 0 1 49

Therefore, the misclassification error is again:

Error =
3

150
= 0.02

The next slides show the scatterplot matrix of the classified elements, the scat-
terplot matrix of misclassified elements and the probabilities of the observations
to belong to the three groups.
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Illustrative example (I)
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Illustrative example (I)
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Illustrative example (I)
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Bayes rule classifiers

The second use of the Bayes rule classifier assumes that the density functions
f1, . . . , fG are Gaussian with different mean vectors and different covariance
matrices.

Therefore, under Pg , x follows a N (µg ,Σg ) distribution.

The optimal decision is, according to the Bayes rule, to classify the element in
the population Pg that maximize πg fg (x0), which is given by:

πg fg (x0) = πg (2π)−p/2 |Σg |−1/2 exp

(
−

(x0 − µg )′ Σ−1
g (x0 − µg )

2

)
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Bayes rule classifiers

Taking logarithms and deleting some nuisance constants, this is equivalent to
classify the new element in the population Pg that maximize:

2 log πg − log |Σg | − (x0 − µg )′Σ−1
g (x0 − µg )

Note that the last expression is equal to:

2 log πg − log |Σg | − x0Σ−1
g x0 + 2µ′gΣ−1

g x0 − µ′gΣ−1
g µg

Consequently, the Bayes rule reduces to classify the new element in the popu-
lation Pg that maximize:

pg (x0) = −x0Σ−1
g x0 + 2µ′gΣ−1

g x0 − µ′gΣ−1
g µg + 2 log πg − log |Σg |

As pg (x0) depends quadratically on x0, the method is called the quadratic
discriminant classifier.
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Bayes rule classifiers

The quadratic discriminant classifier leads to the following expression of the
probabilities Pr (y = g |x = x0):

Pr (y = g |x = x0) =
πg |Σg |−1/2 exp

(
− (x0−µg )′Σ−1

g (x0−µg )

2

)
∑G

k=1 πk |Σk |−1/2 exp
(
− (x0−µk )′Σ−1

k (x0−µk )

2

) =

=
πg |Σg |−1/2 exp

(
− 1

2D
2
M (x0, µg )

)∑G
k=1 πk |Σk |−1/2 exp

(
− 1

2D
2
M (x0, µk)

)
where D2

M (x0, µk) = (x0 − µk)′Σ−1
k (x0 − µk) is the squared Mahalanobis dis-

tance between x0 and µk , under population Pk .

Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 7 Master in Mathematical Engineering 34 / 55



Bayes rule classifiers

As for the linear discrimination classifier, we are assuming that we know the
probabilities π1, . . . , πG and the parameters of the Gaussian distributions, i.e.
the means µ1, . . . , µG and the covariance matrices Σ1, . . . ,ΣG .

The prior probabilities can be estimated as in the previous case, i.e., π̂g = ng/n.

The mean vector under Pg , i.e., µg , can be estimated with the sample mean
vector within population Pg , i.e.

xg =
1

ng

ng∑
i=1

xi·g

The covariance matrix under Pg , i.e., Σg , can be estimated with the sample
covariance matrix within population Pg :

Sg =
1

ng − 1

ng∑
i=1

(xi·g − xg ) (xi·g − xg )′
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Bayes rule classifiers

Now, we can apply the quadratic discriminant rule and to estimate the proba-
bilities Pr (y = g |x = x0) after replacing the parameters of the Gaussian popu-
lations with their sample counterparts.

However, note that in the linear case we have to estimate Gp + p(p + 1)/2
parameters, while in the quadratic case, we have to estimate G (p+p(p+ 1)/2)
parameters.

Therefore, except for very large samples, the quadratic discriminant rule is re-
latively unstable and, although the covariance matrices are very different, we
frequently obtain better results using the linear rule than the quadratic one.

Also, the quadratic discriminant classifier is more sensitive to deviations from
Gaussianity in the data than the linear classifier, so that it is recommended al-
ways to apply both rules and to check which of them have a better performance.

Finally, we use leave-one-out cross validation to estimate the performance of
the quadratic discriminant rule for a given data set.
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Illustrative example (I)

We use the quadratic discriminant rule to classify the flowers in the Iris data set
using leave-one-out cross-validation.

Here, we find four misclassifications:

Clas. in Setosa Clas. in Versicolor Clas. in Virginica
Setosa 50 0 0

Versicolor 0 47 3
Virginica 0 1 49

Therefore, the misclassification error is again:

Error =
4

150
= 0.0266

The next slides show the scatterplot matrix of the classified elements, the scat-
terplot matrix of misclassified elements and the probabilities of the observations
to belong to the three groups.
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Illustrative example (I)
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Illustrative example (I)
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Illustrative example (I)
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Logistic regression

One of the main problems of Bayes rule classifiers is that it requires to as-
sume that the random variable x has a certain distribution function under every
population Pg .

This restrict the type of variables that can be used with the linear and quadratic
discriminant rules.

Nevertheless, the probabilistic argument provides with strong support to the
decisions taken by the rules.

The question is whether is possible to compute the probabilities Pr (y = g |x = x0),
for g = 1, . . . ,G , without explicit knowledge of the densities.

Logistic regression is a method to undertake such goal.
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Logistic regression

To avoid the use of the Bayes Theorem, one possibility is to assume that:

Pr (y = g |x = x0) = hg (x0)

where hg (x0) are certain positive functions of x0 such that h1 (x0) + · · · +
hG (x0) = 1.

The question is which functions h1 (x0) , . . . , hG (x0) are the most appropriate
to provide good classifications?
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Logistic regression

In logistic regression, these functions (probabilities) are defined as:

hg (x0) = Pr (y = g |x = x0) =
exp

(
βg0 + β′g1x0

)
1 +

∑G−1
k=1 exp (βk0 + β′k1x0)

for g = 1, . . . ,G − 1, while for g = G :

hG (x0) = Pr (y = G |x = x0) =
1

1 +
∑G−1

k=1 exp (βk0 + β′k1x0)

where βg0, for g = 1, . . . ,G − 1 are real parameters and βg1 are p-dimensional
vector parameters.

Note that,
G∑

g=1

hg (x0) =
G∑

g=1

Pr (y = g |x = x0) = 1
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Logistic regression

To understand the explicit form of the probabilities in logistic regression, consider
the case of G = 2.

In this case, we have:

Pr (y = 1|x = x0) =
exp (β10 + β′11x0)

1 + exp (β10 + β′11x0)

and:

Pr (y = 2|x = x0) =
1

1 + exp (β10 + β′11x0)

respectively.
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Logistic regression

Then:
Pr (y = 1|x = x0)

Pr (y = 2|x = x0)
= exp (β10 + β′11x0)

In other words,

log

(
Pr (y = 1|x = x0)

1− Pr (y = 1|x = x0)

)
= β10 + β′11x0

i.e., the logit of Pr (y = 1|x = x0) is a linear function of x0.
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Logistic regression

In practice, the parameters of the logistic regression method should be estimated.

This can be achieved using maximum likelihood estimation (MLE).

For that, the likelihood function is given by:

L (β10, . . . , βG0, β11, . . . , βG1|X ) =
n∏

i=1

Pr (y = gi |x = xi )

where gi is the population number corresponding to the observation xi·.

The log-likelihood function is:

` (β10, . . . , βG0, β11, . . . , βG1|X ) =
n∑

i=1

log Pr (y = gi |x = xi )

The MLE of the parameters are obtained after maximizing the log-likelihood
function.
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Logistic regression

Nevertheless, the MLE method has a drawback in terms of estimation.

If some variables have more discriminant power that others, the parameter es-
timates might be largely biased.

Several possibilities to solve this problem are the following:

1 Skip variables without discriminant power from the analysis using graphical techni-
ques.

2 Use a variable selection procedure to select the variables most significant in the
estimation procedure.

3 Use a penalization method of the likelihood function, such as LASSO, to es-
timate the parameters of the model, and to shrink parameters associated with
unimportant variables to 0.
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Logistic regression

In order to assess estimation error of the procedure we can also perform leave-
one-out cross-validation as in the case of k-NN, the linear and the quadratic
discriminant classifiers.

Logistic regression can be applied to situations in which the observed variables
are non-Gaussian, including discrete variables and categorical variables, that can
be included in the model via dummy variables, as in multiple regression.

However, under Gaussian populations, the linear and/or the quadratic discrimi-
nant classifiers are expected to have a better behavior.
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Illustrative example (I)

We use logistic regression to classify the flowers in the Iris data set using leave-
one-out cross-validation.

As with k-NN and the linear discriminant rule, there are only three misclassifi-
cations.

Clas. in Setosa Clas. in Versicolor Clas. in Virginica
Setosa 50 0 0

Versicolor 0 48 2
Virginica 0 1 49

Therefore, the misclassification error is again:

Error =
3

150
= 0.02

The next slides show the scatterplot matrix of the classified elements, the scat-
terplot matrix of misclassified elements and the probabilities of the observations
to belong to the three groups.
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Illustrative example (I)
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Illustrative example (I)
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Illustrative example (I)
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Alternative methods

There are a large number of alternatives to the previous methods, some of them
more computing-intensive methods (popular machine learning), including:

I Generalized additive models.

I Trees, random forests and boosting.

I Support vector machines.
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Chapter outline

1 Introduction

2 k-Nearest Neighbors (k-NN)

3 Bayes rule classifiers

4 Logistic regression

5 Alternative methods
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We are ready now for:

The project and the exam
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