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Introduction

@ The problem of classification is as follows:

@ We have a set of objects (items, elements,...) that may come from two or more
populations.

@ We observe the value of a p-dimensional random variable x = (xi,...,x,) on
these objects.

© We want to classify a new object, with known values of the variables but with
unknown population, in one of the populations.

@ The techniques we will study here are also known as supervised classification,
in order to indicate that we know a sample of well-classified objects that serves
as information for the classification of subsequent objects.

@ Supervised classification is a different problem than unsupervised classification
or cluster analysis, seen in Chapter 6, where a sample of well-classified objects
is not available.
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Introduction

o Classification is one of the most popular problems in practical analysis nowadays:

> In finance, the automatic credit scoring systems of financial institutions today are
based on using many measurable variables (income, seniority in place of work,
wealth,...) in order to predict future behavior.

> In quality control, certain components should be classified as good or defective
(lamps, televisions,.. . ).

> In engineering, it is important to design machines capable of automatic classifi-
cation of voices, bills or coins, on-screen characters, or postal codes in letters.

> Other examples are: assigning a written text of unknown origin to one of several
authors using word frequency, assigning a musical score or painting to an artist,
recognizing a tax declaration as potentially fraudulent or not, a business as a
bankruptcy risk or not or a new manufacturing process as efficient or not.
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Introduction

@ The elements of a classification problem are the following:

> A p-dimensional random variable, x = (x1,...,x,)’, defined in a set of objects
belonging to one out of G populations, Pg, for g =1,...,G.
> An indicator variable, y, that takes value g, where g € {1,..., G}, if a randomly

chosen object from one of the G populations belongs to group g.

> The (unknown) probabilities, 7, for g = 1,..., G, that a randomly chosen object
comes from the g-th population (obviously, 1 + -+ + ¢ = 1).

> A data matrix X of dimension n x p, with observations x;., for i = 1,..., n, with
known population membership, i.e., with known values of the indicator variable
y.

o We are going to study the problem of classifying a new object with known values
of x, say xo = (Xo1, - - - 7Xop)', in one of the G populations.
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Introduction

@ There are many possible classification techniques that one might use to classify
an observation.

o Even if the problem has been traditionally analyzed by statisticians, several
methods have been more recently proposed in the machine learning area.

@ Here, we focus on three of the most widely-used statistical classifiers:

> k-Nearest Neighbors (k-NN);

» Bayes rule classifiers; and

> Logistic regression.
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k-Nearest Neighbors (k-NN)

o k-Nearest Neighbors (k-NN) is probably one of the simplest methods to perform
classification.

@ k-NN can be considered a non-parametric method because it does not require
any distributional assumption on the random variable x.

@ Indeed, k-NN can be used with data sets with any kind of variables, as long as
a distance between observations exists.

@ Moreover, this method does not require to estimate the probabilities 71, ..., 7¢.

Pedro Galeano (Course 2017,/2018) Multivariate Statistics - Chapter 7 Master in Mathematical Engineering 7 /55



k-Nearest Neighbors (k-NN)

@ Given the data matrix X, the k-NN algorithm runs as follows:

@ Define a measure of distance adequate for the observed random variable x.

@ Compute the distance between the observation xp, corresponding to the object
to classify, and all the observations in the data matrix X.

© Select the k closest observations to xo and compute the proportion of the k
observations that belongs to each population.

@ Then, classify xp in the population with largest proportion (ties are broken at
random).

@ A key point in the algorithm is the selection of an adequate k.

@ Several alternatives are available, but here we focus on leave-one-out cross-
validation.
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k-Nearest Neighbors (k-NN)

o Cross-validation is a general methodology useful to evaluate the performance of
statistical methods.

o Given an observed sample and a certain method (model) that depends on certain
parameters, the most general cross-validation procedure is as follows:
@ Split the observed sample in two sub-samples.
@ Use the first sub-sample to estimate the parameters of the method (model).
© Use the second sub-sample to validate the performance of the method (model)

with the estimated parameters obtained from the first sub-sample.

@ Leave-one-out cross-validation is a particular example of cross-validation when
the second sub-sample consists only of a single observation of the whole observed
sample.

@ The idea is to extract conclusions with the results corresponding to apply leave-
one-out cross-validation n times, one for each observation in the whole observed
sample.
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k-Nearest Neighbors (k-NN)

@ k-NN with the leave-one-out cross-validation procedure runs as follows:

@ Repeat the following steps for k = 1 to k = kmax, for certain upper bound Kmax:

a. Given k, skip one observation of X and use k-NN to classify this observation.
b. Repeat step 1.a skipping all the observations in X one time.

c. Obtain a contingency table with the results:

Classify in Py | --- Classify in Pg
Belongs to P N L. me
Belongs to Pg nGi s nGe

where njj is the amount of observations that, coming from P;, are classified in Pj.
d. Compute the misclassification rate given by:

MR — n+---+nGc-1 . Total misclassified observations
- n " Total number of observations

@ Select the optimal k as the one that gives the minimum misclassification rate or
the one most equilibrated one among the best performances.
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k-Nearest Neighbors (k-NN)

@ Note that k-NN does not take into account the number of observations coming
from each population, nor the probabilities 7y, ..., 7¢g.

o If the data set is highly unbalanced, i.e., one or more of the populations have
much more elements than others, k-NN (as well as other classification methods)
might classify most of the observations to the most represented populations.

o Note that this will lead to very small misclassification rates, but this is only
reflecting the unbalanced situation.

o For instance, we have a problem with 2 populations with 100 observations, 90
coming from P; and 10 coming from P,.

o If we get a misclassification rate of 0.1 is because the method always classify in
Py.
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k-Nearest Neighbors (k-NN)

@ There is no a gold-standard solution to this problem, but probably the best thing
to do is resampling the data set.

@ There are two options:

@ Add sampled copies at random of observations from the populations less repre-
sented (over-sampling); or

@ Delete observations at random from the populations more represented (under-
sampling).
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lllustrative example (1)

o We apply the k-NN algorithm to the Iris data set with cross-validation for k =
1,...,20.

@ For that, we use the Euclidean distance because all the variables are quantitative
and measured in the same units of measurements.

@ The optimal k is 14, although different runs of the algorithm can lead to different
optimal k’s because of the existence of ties.
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lllustrative example (1)

@ The contingency table for kK = 14 is given by:

Clas. in Setosa

Clas. in Versicolor

Clas. in Virginica

Setosa 50 0 0
Versicolor 0 48 2
Virginica 0 1 49

@ Therefore, the misclassification error is estimated as:

Error = i =0.02

150

which means that it is expected that the 2% of the new classifications are going

to be wrong.

@ The next two slides show the scatterplot matrix of the observations with the
true populations and the scatterplot matrix of misclassified elements for k = 14.
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lllustrative example (1)

Iris data set
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lllustrative example (1)

Good (in red) and bad (in black) classifications for the Iris data set with k-NN
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Bayes rule classifiers

@ Bayes rule classifiers are built up with the Bayes Theorem, thus they are under
a probabilistic framework.

@ The idea under the Bayes rule classifiers is to classify a new object in the popula-
tion that has largest probability of having generated the associated observation.

@ For easiness in presentation, assume that x is continuous and that the density
functions of the G populations, denoted by fi, ..., fg, are known.

@ Using the Bayes Theorem, the probability that the object with associated ob-
servation xg has been generated by the population P, is given by:

ot X0
Pr(y = glx = x0) = e
> k=1 Tk (xo0)
where g, for g = 1,..., G, are the probabilities that a randomly chosen obser-
vation xp comes from the g-th population.
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Bayes rule classifiers

o In other words, we classify the new object in P, if Pr(y = g|x = xg) is the
maximum one among the G populations.

o Note that this is similar to the new object in Py if msfy (X0) is the maximum
one among the G populations.

o In particular, if m; = --- = 7g, then, the condition for classifying in Pg is that
fe (x0) is the maximum one among the G populations, which means that we
classify the new object in the population with largest density at the value xp.
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Bayes rule classifiers

o Next, we see what happens if we evaluate the Bayes rule classifier assuming that
the density functions fi,..., fg are Gaussian.

o First, assume that fi, ..., fg have different mean vectors, pu1,..., g, but the
same covariance matrix, X.

@ Therefore, under Pg, x follows a N (1g, %) distribution.

o The optimal decision is, according to the Bayes rule, to classify the new element
in the population P, that maximize mgfy (xo), which is given by:

(x0 — Hg)/ r! (%0 — #g))

iy ) = g (27) 777 2 e (- g
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Bayes rule classifiers

o Taking logarithms and deleting some nuisance constants, this is equivalent to
classify the new element in the population P, that maximize:

2logmg — (%0 — ,ug)/ ! (%0 — pg)
o Note that the last expression is equal to:
-1 /-1 /-1
2logmg — XoX T X0 + 21g X X0 — HgX T Hg

o Consequently, the Bayes rule reduces to classify the new element in the popu-
lation P, that maximize:

pe (x0) = 2N;Z’1xo — u’g):’lug + 2log my

because xpX ~!xp does not depend on the population P,, so it can be skipped
for classification purposes.

@ As pg (xp) depends linearly on xp, the method is called the linear discriminant
classifier.
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Bayes rule classifiers

o Note that the linear discriminant classifier has an interesting interpretation if
T, =" =TG-

@ From the first formula in the previous slide, the linear discriminant rule classify
the new element in the population P, that maximize:
Is—1
2logmg — (x0 — pg) T (%0 — Hg)

o If m = .-+ = 7mg, this is equivalent to classify the new element in the population
Pg that minimize:
Is—1
(x0 — 1g) T (%0 — Hg)
or, in other words, in the population whose mean vector is closest in terms of
the squared Mahalanobis distance.
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Bayes rule classifiers

@ The linear discriminant classifier leads to the following expression of the proba-
bilities Pr (y = g|x = xo):

Tg €XP (_(Xo—#g)/zz’l(Xo—ug))
Pr(y =glx=x) = - — = T— =
2 k=1 Tk €Xp (_f)

_ TgexXp (—3Di (30, 1))
= =6
> k—1 Tk €Xp (_%D?w (%0, uk))

where D%, (xo, ftk) = (x0 — k) 7% (%0 — pk) is the squared Mahalanobis dis-
tance between xp and puk.
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Bayes rule classifiers

o Note that, in the development of the linear discriminant rule, we are assuming
that we know the probabilities, 71, ..., 7¢g, and the parameters of the Gaussian
distributions, i.e., the means p1, ..., g and the common covariance matrix .

@ Obviously, in practice, this is not going to hold and, consequently, we need to
estimate all these quantities.
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Bayes rule classifiers

@ For that, the data matrix X, of dimension n x p, can be thought of as divided
into G matrices corresponding to the G populations.

o Let xjjz be the elements of these submatrices where i represents the individual,
J the variable, and g the group or submatrix.

o Let x;.; be the column vector that contains the p values of the variable x for
the individual i in group g, that is, Xz = (Xi1g, - - -, Xipg) -

o Let n, be the number of elements in group g, such that the total number of
. . G
observationsis n=3_’_, ng.
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Bayes rule classifiers

o First, the probabilities, 71,...,mg, can be estimated with the proportion of

observed data in each group, i.e.,

@ Second, the mean vector of x under Pg, i.e., fig, can be estimated with the
sample mean vector within group g, i.e.
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Bayes rule classifiers

@ Third, the common covariance matrix of x, i.e., ¥, can be estimated with:
c n 1
_ g —
S0=3 ( . G) s,

where S, is the sample covariance matrix for the elements of class g, i.e.:

1 & _ _
Sg = Z (Xi.g = Xg) (Xig — Xg)/

ny, —1
g i=1

@ Now, we can apply the linear discrimination rule and to estimate the probabilities
Pr(y = g|x = xo) after replacing the parameters of the Gaussian populations
with their sample counterparts.
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Bayes rule classifiers

@ The question now is how to estimate the performance of the linear discrimination
rule for a given data set.

@ As with k-NN, we can use leave-one-out cross validation to achieve such goal.

@ The idea is to classify each observation in the sample without including this
element in the estimation step described before.

@ Therefore, n classifications are performed from which we can obtain the corre-
sponding contingency table and the associated misclassification rate.
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lllustrative example (1)

@ We use the linear discriminant rule to classify the flowers in the Iris data set
using leave-one-out cross-validation.

@ As with k-NN, there are only three misclassifications.

Clas. in Setosa | Clas. in Versicolor | Clas. in Virginica
Setosa 50 0 0
Versicolor 0 48 2
Virginica 0 1 49

@ Therefore, the misclassification error is again:

3
Error = — =0.02
rror 150

@ The next slides show the scatterplot matrix of the classified elements, the scat-
terplot matrix of misclassified elements and the probabilities of the observations
to belong to the three groups.
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lllustrative example (1)

Iris data set
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lllustrative example (1)

Good (in red) and bad (in black) classifications for the Iris data set with LDC
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lllustrative example (1)

Posterior probabilities (blue, group 1, green, group 2 and orange, group 3)
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Bayes rule classifiers

@ The second use of the Bayes rule classifier assumes that the density functions
fi,...,fc are Gaussian with different mean vectors and different covariance
matrices.

o Therefore, under Py, x follows a N (jg, %) distribution.

@ The optimal decision is, according to the Bayes rule, to classify the element in
the population P, that maximize mgzfg (x), which is given by:

Xo — ,Z—l Xy —
refy (x0) = g (27) P2 E| e <—(0 S
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Bayes rule classifiers

o Taking logarithms and deleting some nuisance constants, this is equivalent to
classify the new element in the population P, that maximize:

2log g — log |Tg| — (x0 — pg)’ Z;l (%0 — g)
o Note that the last expression is equal to:
2logmg — log |[Tg| — x0X; X0 + 25T X0 — 11X, g

o Consequently, the Bayes rule reduces to classify the new element in the popu-
lation P, that maximize:

pe (x0) = —xozg_lxo + 2u;Zg_IXO - u'gzg_lug + 2log mg — log | X,|

@ As pg (xp) depends quadratically on xp, the method is called the quadratic
discriminant classifier.
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Bayes rule classifiers

o The quadratic discriminant classifier leads to the following expression of the
probabilities Pr (y = g|x = xo):

/y—1
7Tg |Zg|_1/2 exp (_ (XO_l‘g) 225 (XO_l‘g))
Pr(y = glx =x) = =

rs—1
2521 T |zk|—1/2 exp (_(Xo—uk) Z2k (Xo—#k)>

2 exp (=305 (%0, 1))

S8 T |Zk T exp (—1D2, (x0, 1))

Tg | Xl

where D2, (xo, i) = (x0 — f1x) ' (xo — k) is the squared Mahalanobis dis-
tance between xp and pi, under population Py.
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Bayes rule classifiers

@ As for the linear discrimination classifier, we are assuming that we know the
probabilities 71, ..., m¢ and the parameters of the Gaussian distributions, i.e.
the means g, ..., g and the covariance matrices >1,...,2¢.

@ The prior probabilities can be estimated as in the previous case, i.e., Tg = ng/n.

@ The mean vector under P, i.e., jg, can be estimated with the sample mean
vector within population P, i.e.

@ The covariance matrix under Pg, i.e.,, ., can be estimated with the sample
covariance matrix within population Pg:

L i’: (xig — Xg) (xig — Xg)'

i=1
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Bayes rule classifiers

o Now, we can apply the quadratic discriminant rule and to estimate the proba-
bilities Pr (y = g|x = xo) after replacing the parameters of the Gaussian popu-
lations with their sample counterparts.

@ However, note that in the linear case we have to estimate Gp + p(p + 1)/2
parameters, while in the quadratic case, we have to estimate G(p+ p(p+1)/2)
parameters.

Therefore, except for very large samples, the quadratic discriminant rule is re-
latively unstable and, although the covariance matrices are very different, we
frequently obtain better results using the linear rule than the quadratic one.

(]

Also, the quadratic discriminant classifier is more sensitive to deviations from
Gaussianity in the data than the linear classifier, so that it is recommended al-
ways to apply both rules and to check which of them have a better performance.

Finally, we use leave-one-out cross validation to estimate the performance of
the quadratic discriminant rule for a given data set.
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lllustrative example (1)

o We use the quadratic discriminant rule to classify the flowers in the Iris data set
using leave-one-out cross-validation.

@ Here, we find four misclassifications:

Clas. in Setosa | Clas. in Versicolor | Clas. in Virginica
Setosa 50 0 0
Versicolor 0 47 3
Virginica 0 1 49

@ Therefore, the misclassification error is again:

4
Error = 50 = 0.0266

@ The next slides show the scatterplot matrix of the classified elements, the scat-
terplot matrix of misclassified elements and the probabilities of the observations
to belong to the three groups.
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lllustrative example (1)

Iris data set
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lllustrative example (1)

Good (in red) and bad (in black) classifications for the Iris data set with QDC
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lllustrative example (1)

Posterior probabilities (blue, group 1, green, group 2 and orange, group 3)
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Logistic regression

@ One of the main problems of Bayes rule classifiers is that it requires to as-
sume that the random variable x has a certain distribution function under every
population P,.

@ This restrict the type of variables that can be used with the linear and quadratic
discriminant rules.

o Nevertheless, the probabilistic argument provides with strong support to the
decisions taken by the rules.

@ The question is whether is possible to compute the probabilities Pr (y = g|x = xg),
forg=1,..., G, without explicit knowledge of the densities.

o Logistic regression is a method to undertake such goal.
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Logistic regression

@ To avoid the use of the Bayes Theorem, one possibility is to assume that:

Pr(y = g|x = x0) = hg (x0)

where hg (xp) are certain positive functions of xq such that hy (xo) + --- +
h(; (Xo) =1.

@ The question is which functions hy (xo),. .., hs (xo) are the most appropriate
to provide good classifications?
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Logistic regression

@ In logistic regression, these functions (probabilities) are defined as:

exp (ﬂgo + B41%0)
1+ Zk 1 exp (Bko + Bl %0)

hg (x0) = Pr(y = glx = x0) =

forg=1,...,G —1, while for g = G:

1
he (x0) =Pr(y = Glx = x0) = —
L+ Y255 xp (Bro + Bjxo)
where g0, for g =1,..., G — 1 are real parameters and 3,1 are p-dimensional
vector parameters.
o Note that,
G G
Y ohe(x0) =) Pr(y=glx=x)=1
g=1 g=1
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Logistic regression

o To understand the explicit form of the probabilities in logistic regression, consider
the case of G = 2.

@ In this case, we have:

exp (B1o + B11%0)
1+ exp (B0 + B11%0)

Pr(y =1x=x) =

and:
1

" 1+exp (B0 + Bi1x0)

Pr(y =2|x = xo)

respectively.
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Logistic regression

@ Then:
Pr(y =1|x = xo)

Pr(y =2|x = xo)

= exp (S10 + B11%0)

@ In other words,

o ( Pry = 1|x = x)

_ /
1—Pr (y = 1|X = X0)> B lBlO +ﬂ11X0

i.e., the logit of Pr(y = 1|x = x¢) is a linear function of xo.
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Logistic regression

@ In practice, the parameters of the logistic regression method should be estimated.
@ This can be achieved using maximum likelihood estimation (MLE).
o For that, the likelihood function is given by:
L(Bro; -- -+ Bco: P, -, BarlX) = [ [ Pr(y = &ilx = x)
i=1
where g; is the population number corresponding to the observation x;..
@ The log-likelihood function is:

(P10, - - Beo, Bun, - - B X) =Y log Pr(y = gilx = x))

i=1

@ The MLE of the parameters are obtained after maximizing the log-likelihood
function.
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Logistic regression

@ Nevertheless, the MLE method has a drawback in terms of estimation.

@ If some variables have more discriminant power that others, the parameter es-
timates might be largely biased.

@ Several possibilities to solve this problem are the following:

@ Skip variables without discriminant power from the analysis using graphical techni-
ques.

@ Use a variable selection procedure to select the variables most significant in the
estimation procedure.

© Use a penalization method of the likelihood function, such as LASSO, to es-
timate the parameters of the model, and to shrink parameters associated with
unimportant variables to 0.
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Logistic regression

@ In order to assess estimation error of the procedure we can also perform leave-
one-out cross-validation as in the case of k-NN, the linear and the quadratic
discriminant classifiers.

@ Logistic regression can be applied to situations in which the observed variables
are non-Gaussian, including discrete variables and categorical variables, that can
be included in the model via dummy variables, as in multiple regression.

@ However, under Gaussian populations, the linear and/or the quadratic discrimi-
nant classifiers are expected to have a better behavior.

Pedro Galeano (Course 2017,/2018) Multivariate Statistics - Chapter 7 Master in Mathematical Engineering 48 / 55



lllustrative example (1)

@ We use logistic regression to classify the flowers in the Iris data set using leave-
one-out cross-validation.

@ As with k-NN and the linear discriminant rule, there are only three misclassifi-

cations.
Clas. in Setosa | Clas. in Versicolor | Clas. in Virginica
Setosa 50 0 0
Versicolor 0 48 2
Virginica 0 1 49

@ Therefore, the misclassification error is again:

Error = i =0.02

150

@ The next slides show the scatterplot matrix of the classified elements, the scat-
terplot matrix of misclassified elements and the probabilities of the observations
to belong to the three groups.
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lllustrative example (1)

Iris data set
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lllustrative example (1)

Good (in red) and bad (in black) classifications for the Iris data set with LR
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lllustrative example (1)

Posterior probabilities (blue, group 1, green, group 2 and orange, group 3)

10

02

0.0
L

Observation number

Multivariate Statistics - Chapter 7



Alternative methods

@ There are a large number of alternatives to the previous methods, some of them
more computing-intensive methods (popular machine learning), including:

» Generalized additive models.

> Trees, random forests and boosting.

» Support vector machines.

Pedro Galeano (Course 2017,/2018) Multivariate Statistics - Chapter 7 Master in Mathematical Engineering 53 / 55



Chapter outline

@ Introduction

© Kk-Nearest Neighbors (k-NN)
© Bayes rule classifiers

0 Logistic regression

© Alternative methods
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We are ready now for:

The project and the exam
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