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Abstract

We consider the identifiability problem in the nonlinear mixed-
effects model Yi = m(θi) + εi, with εi ∼ iid N(0, σ2In) and θi ∼iid Q,
i = 1, . . . , N, where σ2 and Q are unknown variance and probability
measure. We give several explicit conditions on m which ensure the
identifiability of

(
Q, σ2

)
from the common distribution of the observed

vectors Yi. Remarkably, one of these conditions fits the intuition : the
model is identifiable as soon as m is injective and n ≥ dim(θi) + 1.
Even if the latter condition is necessary for gaussian linear models, it
is not for general nonlinear models. Three classical pharmacokinetic
models are used to illustrate the three different conditions of their
identifiability.

Keywords: Identifiability of measures; Nonlinear mixed-effects mod-
els; Mixture of distributions.

1 Introduction.

This paper deals with the identifiability problem in a version of the nonlinear

mixed-effects model proposed by Lindstrom and Bates (1990). This kind of

models is often used to analyze longitudinal data. Assume that the vector of

observations on the ith subject is modeled as

Yi = m(θi) + εi, i = 1, . . . , N (1)

1



2

where the error terms εi are independent and identically distributed (iid)

with a common normal distribution N(0, σ2In). The vector function m =

(mj)1≤j≤n , is assumed measurable and known given the experimental de-

sign. The mean vector function m is not necessarily linear; its argument is a

parameter θi ∈ Rq which describes the response curve of the ith subject. In

order to analyze the between subjects variability, the θi are assumed to be

drawn independently from a latent distribution function Q lying in the set

P (Rq) of probability measures with support in Rq. So Q and σ2 determine

the probability distribution of the observations from (1); the identifiability

property guarantees that, in turn, this distribution determines Q and σ2.

This property is necessary to obtain a consistent estimator of the unknown

parameter (Q, σ2). If no parametric assumptions are made about the shape

of Q, the most common way to estimate this latent distribution is to use the

nonparametric maximum likelihood estimator (Kiefer and Wolfowitz 1956)

which has at most N support points (Lindsay 1995).

Liu and Taylor (1989), Stefansky and Carroll (1990), Zhang (1990), Fan

(1991), and Cordy and Thomas (1997) addressed the estimation of Q using

deconvolution techniques, when the function m is linear. Most of the papers

cited above propose kernel estimators for Q and compute their optimal rate

of convergence for some specific error distribution. This rate appears to be

very slow for normal errors. Fan (1992), however, shows that if σ2 is not too

large, such a method can still be practical.

The identifiability problem of (Q, σ2) is related to the identifiability of

mixtures of distributions which was addressed by many authors including

Teicher (1960, 1961, and 1967), Barndorff-Nielsen (1965), Bruni and Koch

(1985), Li and Sedransk (1988), and Pfanzagl (1994). Barndorff Nielsen

(1965) provided sufficient conditions for the identifiability of mixtures of nat-
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ural exponential families, but these conditions are generally too strong for

the curve gaussian family considered in this paper. Bruni and Koch (1985)

dealt with gaussian mixtures when Q has a compact support in Rq and the

function m is unknown. Li and Sedransk (1988) studied the identifiability

of finite mixtures (Q has a finite support) and Pfanzagl (1994) considered a

general case of non identifiability for some parameter of the mixture density

function when the mixing distribution Q is completely unknown.

This paper is organized as follow. In the next section, several explicit

conditions on the functions m ensuring the identifiability of the mixing distri-

bution Q and the variance parameter σ2, are given. As examples, conditions

on the experimental design which ensure the identifiability of three classical

pharmacokinetic models are derived in section 3.

2 The result.

First, let us define more precisely the identifiability we want to prove.

Definition 1 Let PY |Q,σ2 be the common distribution of the vectors Yi in

model (1). The parameter (Q, σ2) is identifiable from PY |Q,σ2 , if for every

Q,Q0 in P (Rq) and σ2, σ2
0 in (0,∞),

PY |Q,σ2 = PY |Q0,σ2
0
⇐⇒

(
Q, σ2

)
=

(
Q0, σ

2
0

)
To study the identifiability of (Q, σ2) in the model (1), the problem of

identifiability in a simple transformation model is first considered. Suppose

that for every draw θ from a probability distribution Q, one observes

Z = m(θ), (2)
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in which m : Rq → Rn is a fixed and known Borel measurable function.

Let PZ|Q be the probability distribution of Z. The following result gives a

necessary and sufficient condition on m for Q to be identifiable from PZ|Q.

Lemma 2 The probability distribution Q is identifiable from PZ|Q, if and

only if the function m is injective in Rq.

Proof. Clearly it is necessary for m to be injective. If m was not injective,

there would exist at least two distinct points θ and θ0 in Rq, such that

m(θ) = m(θ0). So, choosing for instance Q = δθ and Q0 = δθ0 , where δθ is

the Dirac point mass at θ would lead to PZ|Q = PZ|Q0 with Q 6= Q0.

The injectivity of m is also sufficient. Let C be a Borel set of Rn. By definition

of PZ|Q, we have that PZ|Q(C) = Q ({m(θ) ∈ C}) . Thus, the knowledge of

PZ|Q induces the knowledge of Q on the events {m(θ) ∈ C} . Now, according

to a theorem of Kuratowski (see Parthasarathy (1967), p. 22), the image

of a Borel subset of a complete separable metric space under a one-to-one

measurable map of that subset into a separable metric space is a Borel subset

of the second space so that the map is an isomorphism between the two Borel

subsets. The function m is injective and measurable. Thus, for all Borel B

in Rq, the set m(B) is Borel in Rn, and the sets {m(θ) ∈ m(B)} and B are

equal. It follows that Q is known on any Borel B in Rq.

This lemma can be slightly weakened with an assumption on the absolute

continuity of Q.

Corollary 3 Assume that Q is absolutely continuous with respect to the

Lebesgue measure on Rq. The probability distribution Q is identifiable from

PZ|Q, if and only if the function m is injective Lebesgue-almost everywhere.

Proof. Indeed, if m |Nc is injective for a Borel set N ⊂ Rq with Lebesgue

measure 0, then the Kuratowski theorem still gives unicity of laws on N c,
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because a Borel set of N c is a Borel set of the whole Rq, which is complete.

Unicity of absolute continuous laws on the whole space follows.

In the model considered in the introduction, the observed transformations

of the θ is contaminated by an error terms ε, which are normally distributed.

So, let us assume that for every draw θ from Q, one observes

Y = m(θ) + ε,

where ε is a random vector in Rn such that θ and ε are independent and the

components of ε are iid according to a normal distribution with mean 0 and

variance σ2In for some fixed unknown σ2 > 0.

Let PY |Q,σ2 be the probability distribution of Y . The following lemma gives

a condition that allows identifiability of Q when σ2 is identifiable or known.

Note that σ2 is identifiable when for every Q,Q0 in P(Rq) and every σ2, σ2
0

in (0,∞), PY |Q,σ2 = PY |Q0,σ2
0

implies that σ2 = σ2
0.

Lemma 4 Assume σ2 is identifiable or known. Then, Q is identifiable from

PY |Q,σ2 if and only if m is injective.

Proof. Since Z = m(θ) and ε are independent, we have the identity

Eei〈ξ,Y 〉 = Eei〈ξ,Z〉Eei〈ξ,ε〉 for the Fourier-Stieltjes (FS) transforms. From the

identifiability of σ2 and the fact that Eei〈ξ,ε〉 is unequal to 0 for every ξ in

Rn, it follows that ξ 7→ Eei〈ξ,Z〉 is determined by ξ 7→ Eei〈ξ,Y 〉, that is, PZ|Q is

identifiable from PY |Q,σ2 . Now, according to Lemma 2, if m is injective (and

measurable), Q is identifiable from PZ|Q. But, since PZ|Q is itself identifiable

from PY |Q,σ2 , it follows that Q is identifiable from PY |Q,σ2 .

The latter lemma shows that when σ2 is identifiable, the injectivity of m

is a necessary and sufficient condition for identifiability of Q. It remains to

identify situations where identifiability of σ2 holds. Actually, σ2 is identifiable
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when the observation of Y allows to separate the conditional mean m(θ) and

the error term ε. Since only the distribution of Y is observed, situations

where σ2 is identifiable occurs when the distributions of m(θ) and ε do not

weight the space in the same way. Three of these situations are described

hereafter.

(i) There exist some components of m, m# = (mj1 , mj2 , . . . mjr) and a

(nonempty) open set O  Rr such that m#(θ) ∈ O for all θ ∈ Rq.

(ii) There exists a set Θ ⊂ Rq with a null Lebesgue measure in Rq and such

that Q (Θ) > 0.

(iii) The number n of components of m is greater or equal to q + 1.

In case (i), the distribution of m(θ) does not put weight in some area

of the space while the distribution of ε does. The case (iii) is an extreme

situation of (i) : m(θ) and ε live in spaces with different dimensions. Case

(ii) treats the case where there exists Lebesgue negligible sets (e.g. points)

on which Q puts weight (while the gaussian distribution does not).

Theorem 5 If m is injective and if one of the three conditions (i), (ii) or

(iii), holds, (Q, σ2) is identifiable from PY |Q,σ2 .

Proof. Once the identifiability of σ2 holds, identifiability of Q is deduced

from the injectivity of m and Lemma 4. The proof of the theorem thus

reduces to show the identifiability of σ2 in the cases (i)-(iii).

Let us consider (θ0, ε0) ∼ Q0 × N (0, σ2
0In) and (θ, ε) ∼ Q × N (0, σ2In),

and let us assume that the random vectors m(θ0)+ ε0 and m(θ)+ ε have the

same distribution. Then, the following identity holds for the FS transforms

Eei〈ξ,m(θ)〉Eei〈ξ,ε〉 = Eei〈ξ,m(θ0)〉Eei〈ξ,ε0〉, ∀ ξ ∈ Rn.
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Without loss of generality, we can assume that σ2 ≤ σ2
0. Let us then consider

γ2 = σ2
0 − σ2. Since, for every ξ ∈ Rn, Eei〈ξ,ε〉 = e−

1
2
〈ξ,ξ〉σ2 6= 0, the latter

identity may thus be rewritten as

Eei〈ξ,m(θ)〉 = Eei〈ξ,m(θ0)〉e−
1
2
〈ξ,ξ〉γ2

. (3)

The last display states that if ε̃ ∼ N (0, γ2In) then Z = m(θ) and Z0 =

m(θ0) + ε̃ have the same distribution.

Assume that condition (i) holds and let us denote Z# = m#(θ) and Z#
0 =

m#(θ0) + ε̃#. Then from (3), P (Z# ∈ C) = P (Z#
0 ∈ C) for all borel sets

C in Rq. But P (Z# ∈ O) = 1 and if γ2 > 0, P (Z#
0 ∈ O) < 1 which is

impossible. It turns that γ2 = 0, that is, σ2 = σ2
0.

Let us now consider Θ ⊂ Rq satisfying condition (ii) and let us denote O =

m (Θ) . By the measurability of m, O is Lebesgue negligible. It follows that

P (Z0 ∈ O) = 0 if γ2 > 0. Since Q(Θ) > 0, P (Z ∈ O) > 0. But from (3)

P (Z ∈ O) = P (Z0 ∈ O) which is only possible when γ2 = 0.

When (iii) holds, m(Rq) is a surface of Rn with a dimension at most equal to

q. Thus, there exists a (nonempty) open set O in Rn, such that m(Rq)∩O = ∅.
It follows that P (Z ∈ O) = 0 and P (Z0 ∈ O) > 0 if γ2 > 0. Since from (3 )

P (Z ∈ O) = P (Z0 ∈ O) , necessarily γ2 = 0.

A simple illustration of condition (i) is the case when for instance at least

one of the components of m is positive (i.e.: r = 1 and O = (0,∞)).

Condition (ii) obviously holds when Q is a discrete probability measure. Of

course, the injectivity of m is the more difficult condition to check at least

when q is large.

Condition (iii) and the injectivity of m are necessary and sufficient conditions

for identifiability of the gaussian linear model: Yi = m(θi)+ εi where m(θ) =

Xθ and X is a n × q matrix. From the theorem 5, identifiability of the

parameter (Q, σ2) holds if X is a full rank matrix and n ≥ q + 1. Let us
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assume now that Q is normal Nq(α, Λ). In this simple case, the common

distribution of the observed vectors Yi is normal Nn(Xα, XΛX ′ + σ2In).

Thus identifiability may be also checked from the first two moments of this

distribution. Identifiability holds when Xα = Xα0 and XΛX ′ + σ2In =

XΛ0X
′ + σ2

0In imply (α, Λ, σ2) = (α0, Λ0, σ
2
0) . By the first equation, α = α0

if and only if X is a full rank matrix. The second equation may be rewritten

as X (Λ− Λ0) X ′ = (σ2
0 − σ2) In. Since the rank of X (Λ− Λ0) X ′ is at most

q and the rank of In is n, it follows that σ2
0 = σ2 and Λ = Λ0 if and only if

n ≥ q + 1. Thus, at least for the gaussian linear model, the condition (iii)

is necessary and sufficient. One could think that (iii) is also necessary for

nonlinear models. We will see in examples 2 and 3 that it is not the case.

The result given in the previous theorem can be extended to the non

iid framework which is the good framework to analyze longitudinal data.

Assume that one observes

Yi = mi(θi) + εi, i = 1, . . . , N,

where the θi are iid random vectors distributed according to the unknown

distribution Q ∈ P (Rq) , the εi are independent gaussian vectors in Rni with

mean 0 and variance σ2Ini
for some fixed unknown σ2 > 0. The θi and εi

are assumed mutually independent. The vectorial functions mi are assumed

measurable and known given the experimental design.

Let us now consider the following additional condition.

(iv) For some i ∈ {1, . . . , N} there exist j, k ∈ {1, . . . , ni} such that mi
j(θ) =

mi
k(θ).

This last condition can be interpreted as the existence of repetitions on

the ith subject. In such a case, two components (j, k) of its conditional mean

are equal.
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Corollary 6 Assume that there exists i ∈ {1, . . . , N} such that mi is injec-

tive. If (ii) holds or if there exists j ∈ {1, . . . , N} such that (i), (iii) or (iv)

holds then (Q, σ2) is identifiable from PY1,...,YN |Q,σ2.

Proof. The proof is the same as in the iid framework for conditions

(i), (ii) and (iii). It remains to shows that (iv) allows identifiability of σ2.

When (iv) holds there exist k and l with mj
k(θ) = mj

l (θ). Then, the difference

between the kth and lth components of Yj is Yjk − Yjl = εjk − εjl, so that

(Yjk − Yjl)
2 is an unbiased estimator for 2σ2. Therefore, σ2 has a (strongly)

consistent estimator which implies its identifiability.

In the following section, we study the identifiability of three common

models in the analysis of longitudinal data.

3 Examples

Example 1: The Michaelis-Menten model may be written (Pinheiro and

Bates, 2000) as

Yij =
θi1tj

(θi2 + tj)
+ εij

where Yij is the concentration measured at time tj on the ith subject. The

measurement error terms εij are independent and identically normally dis-

tributed with 0 mean and variance σ2. The subject parameter vectors θi

are iid with a common distribution Q assumed absolutely continuous with

respect to the Lebesgue measure on R2. The adopted design should at least

ensure that (Q, σ2) are identifiable.

Let t1 6= t2, two different and positive times. Then, one can see with a little

algebra, that the function (θ1, θ2) → (θ1t1/ (θ2 + t1) , θ1t2/ (θ2 + t2)) is injec-

tive on the domain {(θ1, θ2) ∈ R2, θ1 6= 0, θ2 6= −t1, θ2 6= −t2}, and therefore

Lebesgue-almost everywhere. It follows from the condition (iii) of the the-
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orem, that σ2 and Q are identifiable as soon as the experimental design

contains three times, two of these being different and positive.

Example 2: In order to study the kinetic behavior of a substance with an

endogen secretion, an experimental design is needed. The plasma concen-

tration of that substance is to be measured at various times. Suppose that

(as it is for some substance) the kinetics can be modeled with the following

one-compartment mixed model with a baseline:

Yij = a + eθi1 + eθi2−tjθi3 + εij,

where Yij and εij have the same meaning as in example 1. The subject pa-

rameter vectors θi are iid with a common distribution Q assumed absolutely

continuous with respect to the Lebesgue measure on R3. The known num-

ber a represents a lower bound for the true concentrations. However, it is

possible to observe a concentration lower than a due to the error ε.

The injectivity of m (θ) =
(
a + eθ1 + eθ2−tjθ3

)
1≤j≤n

is obtained on the

domain M = {θ ∈ R3, θ3 6= 0} as soon as n = 3 and t1 < t2 < t3.

A simple way to show such injectivity is to consider the following function

(θ, θ
′
) ∈ M ×M 7→ m(θ)−m(θ′) (4)

and to show that it cancels on M only when θ = θ′. But (4) can be seen as a

linear application that can be rewritten as Av, where v =
(
eθ1 − eθ1 , eθ2 , eθ′

2

)
and

A =

 1 e−t1θ3 e−t1θ′
3

1 e−t2θ3 e−t2θ′
3

1 e−t3θ3 e−t3θ′
3

 .

Now, let us solve the linear system Av = 0. When θ3 6= θ′3, the matrix A

is not singular (see for instance Polya and Szegö, p.46), it follows that the

solution is v = 0, which is impossible. So, if θ, θ′ belong to M, necessar-

ily θ3 = θ′3. Solving Av = 0, where v =
(
eθ1 − eθ1 , eθ2 − eθ′

2

)
and A is the
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submatrix of A obtained after removing its third column, gives the solution

(θ1, θ2) = (θ′1, θ
′
2).

From condition (i) of theorem, we deduce that (Q, σ2) is identifiable as soon

as the experimental design contains three different times. Even if it is not in-

tuitive, the reason for which only 3 different times are sufficient is that when

one observation is less than the lower bound of concentration a, the variance

is directly observed as the squared difference between the observation and a.

This example shows that the condition (iii), which would lead to a design

with four times (three of these being different), is not necessary for general

nonlinear mixed-effects models.

Example 3: The Batman model is often used to model an oral administra-

tion of a drug. When a single administration of the drug is carried out at

time t = 0, the mean plasma concentration at time t is given by

f(t, θ1, θ2, θ3) = eθ1
(
e− exp(θ2)t − e−(exp(θ3)+exp(θ2))t

)
.

When an additional oral administration is planned at time t∗ > 0, a non null

percentage of patients (say 100(1 − p)%) can forget to take the pill. The

measured plasma concentration on the ith patient becomes

Yij = f(tj, θi1, θi2, θi3) + θi4f((tj − t∗)+, θi1, θi2, θi3) + εij

where θi4 is a Bernoulli random variable with parameter p which takes the

value 1 when the ith patient takes the drug at time t∗ and 0 if not, (x)+ = x

if x ≥ 0 and (x)+ = 0 elsewhere. This is the simplest model that can be

used to describe the compliance to the treatment. The subject parameter

vectors θi are iid with a common distribution Q whose support is R3×{0, 1}.
Assume that the observation times are 0 < t1 < t2 < t3 < t4. The proof of

injectivity of m (θ) on the domain M = {θ ∈ R3 × {0, 1}} is obtained if for
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instance 0 < t1 < t2 < t3 < t∗ < t4. The function

(θ, θ
′
) ∈ M ×M 7→ m(θ)−m(θ′) (5)

can be rewritten as Av, where v =
(
eθ1 ,−eθ′

1 , θ4e
θ1 ,−θ′4e

θ′
1

)
and

A =


g(θ, t1) g(θ′, t1) 0 0
g(θ, t2) g(θ′, t2) 0 0
g(θ, t3) g(θ′, t3) 0 0
g(θ, t4) g(θ′, t4) g(θ, t4 − t∗) g(θ′, t4 − t∗)

 ,

with

g(θ, t) = e− exp(θ2)t − e−(exp(θ2)+exp(θ3))t.

Let consider the first three equations of the system Av = 0. If θ2 6= θ′2 or

θ3 6= θ′3, these equations are linearly independent because whatever α 6= 0,

the function t 7→ g(θ, t)−αg(θ′, t) has at most 2 positive roots. Since the first

two components of v cannot be equal to zero, necessarily (θ2, θ3) = (θ′2, θ
′
3)

and it follows that θ1 = θ′1. The last equation of the system allows to conclude

that θ4 = θ′4. It follows that m is injective on M and from the condition (ii)

of the theorem, we deduce that σ2 and Q are identifiable for the previous

design.

Conclusion: The results given in this paper deals with identifiability of

model (1) when the error terms are gaussian. These results can be extended

to models for which the error distribution has a Fourier-Stieltjes transform

that does not cancel and a support on Rn. As an example, the same results

hold for multidimensional Student distributions.

It is not clear that the given criteria are necessary, especially in the non iid

framework. More work is needed to investigate such property.
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