Hoja de Ejercicios # 10

1.- Un modelo genético indica que la distribución de la población entre hombres y mujeres, daltónicos o normales, se ajusta a las probabilidades:

	Hombres	Mujeres
Normales	q/2	$q^2/2 + pq$
Daltónicos	p/2	$p^{2}/2$

siendo p = 1 - q, la proporción en la población de cromosomas X portadores de daltonismo. Para comprobar la teoría se examinaron 2000 individuos elegidos al azar, con los siguientes resultados:

	Hombres	Mujeres
Normales	894	1015
Daltónicos	81	10

Se pide contrastar si las observaciones concuerdan con el modelo postulado.

- **2.-** En un experimento genético se postula la hipótesis nula de que las probabilidades de tres genotipos son: $p_1 = \theta^2, p_2 = 2\theta(1-\theta)$ y $p_3 = (1-\theta)^2$. Para una m.a.s. de tamaño 100 de esta población los números observados fueron $n_1 = 30, n_2 = 48$ y $n_3 = 22$. Contrastar esta hipótesis con un nivel de significación de 0.01.
- **3.-** La tabla siguiente muestra el grado de visión del ojo derecho e izquierdo (clasificado de mejor a peor del 1 al 4) de una muestra de 7477 mujeres:

$O_d \backslash O_i$	1	2	3	4
1	1520	266	124	66
2	234	1512	432	78
3	117	362	1772	205
4	36	82	179	492

- (a) Realice el contraste de independencia y de simetría.
- (b) Utilice la siguiente tabla, en la que se ha agrupado la visión mejor (1,2) y la visión peor (3,4), para realizar un contraste de identidad de las distribuciones marginales.

$$\begin{array}{c|ccc} O_d \backslash O_i & \text{Mejor} & \text{Peor} \\ \hline \text{Mejor} & 3532 & 700 \\ \text{Peor} & 597 & 2648 \\ \end{array}$$