Hoja de Ejercicios # 2

1.- Se dispone de una muestra aleatoria simple (m.a.s.) de tamaño n de una población normal $\mathcal{N}(\mu, \sigma^2)$, donde σ es un valor positivo conocido y μ puede valer μ_0 y μ_1 , con $\mu_1 > \mu_0$. Se pide:

(a) Contrastar, con nivel de significación α , $H_0: \mu = \mu_0$ frente a $H_1: \mu = \mu_1$.

(b) Calcule el riesgo β asociado a rechazar la hipótesis alternativa cuando esta es cierta.

(c) Sean $\mu_0 = 15$, $\mu_1 = 18$ y $\sigma = 1$, y sean $x_1 = 17.5$, $x_2 = 16.2$, $x_3 = 19.1$ los valores en una m.a.s. de 3 individuos. Utilice el contraste del apartado (a) y evalúe el riesgo β calculado en (b).

2.- Sobre una variable aleatoria X se desea contrastar la hipótesis:

$$H_0: f_0(x) = \frac{1}{20}$$
 $x = 1, 2, ..., 20$

frente a

$$H_1: f_1(x) = \begin{cases} \frac{6}{10} & \text{si } x = 1\\ \frac{15}{100} & \text{si } x = 2, 3\\ \frac{1}{170} & \text{si } x = 4, 5, ..., 20 \end{cases}$$

con un nivel de significación $\alpha=0.1$ y muestras de tamaño 1. Consideremos las regiones $RC_1=\{1,2\},\ RC_2=\{1,3\},\ y\ RC_3=\{1,4\}.$ Se pide:

(a) Demostrar que son regiones con nivel de significación 0.1.

(b) ¿Qué decisión tomaríamos con cada uno de los contrastes si obtuviésemos el valor muestral x = 3?

(c) Analizar si RC_1 y RC_2 son regiones críticas óptimas.

3.- Un fabricante de tornillos afirma que la diferencia (medida en mm) entre el tamaño verdadero y el tamaño teórico de los tornillos que produce sigue una distribución uniforme $\mathcal{U}(-1,1)$. Sin embargo, la competencia afirma que sigue una distribución uniforme $\mathcal{U}(-2,2)$. Denotemos por D_1, D_2, \ldots, D_n las diferencias en una muestra aleatoria simple de n tornillos producidos por el fabricante. Se pide:

(a) Utilizando como estadístico de contraste a $T_1 = \max\{D_1, D_2, \dots, D_n\}$. Contrastar, con nivel de significación α , $H_0: D \sim \mathcal{U}(-1,1)$ frente a $H_1: D \sim \mathcal{U}(-2,2)$.

(b) Repita el apartado (a) utilizando como estadístico de contraste a $T_2 = \max\{|D_1|, |D_2|, \dots, |D_n|\}.$