
Estimation of the Income Distribution and

Detection of Subpopulations: an Explanatory Model

by

Emmanuel Flachaire
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Abstract

Empirical evidence, obtained from nonparametric estimation of the income

distribution, exhibits strong heterogeneity in most populations of interest. It is

common, therefore, to suspect that the population is composed of several homo-

geneous subpopulations. Such an assumption leads us to consider mixed income

distributions whose components feature the distributions of the incomes of a par-

ticular homogeneous subpopulation. We develop a model with mixing probabilities

that are allowed to vary with exogenous individual variables that characterize each

subpopulation. This model simultaneously provides a flexible estimation of the in-

come distribution, a breakdown into several subpopulations and an explanation of

income heterogeneity.

JEL classification : C13, D31

Key-words : income distribution, mixture models.
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1 Introduction

In inequality analysis, parametric and non-parametric estimation often suggests heavy-

tails or bi-modality in the income distribution (Marron and Schmitz 1992, Schluter and

Trede 2002, Davidson and Flachaire 2004). This suggests heterogeneity in the underlying

population. To model this heterogeneity it is natural is to assume that the population

can be broken down into several homogeneous subpopulations. This is the starting point

of our paper. Empirical studies on income distribution indicate that the Lognormal dis-

tribution fits homogeneous subpopulations quite well (Aitchison and Brown 1957, Weiss

1972). And the theory of mixture models indicates that, under regularity conditions,

any probability density can be consistently estimated by a mixture of normal densities

(see Ghosal and van der Vaart 2001 for recent results about rates of convergence). Thus,

from the relationship between the Normal and Lognormal distributions, we see that any

probability density with a positive support (as for instance income distribution) can be

consistently estimated by a mixture of Lognormal densities. We expect, then, to be

able to estimate closely the true income distribution with a finite mixture of Lognormal

distributions and so to identify the subpopulations.

In this paper, we analyse conditional income distributions using lognormal mixtures.

Our contribution is to propose a conditional model by specifying the mixing probabilities

as a particular set of functions of individual characteristics. This allows us to character-

ize the distinct homogeneous subpopulations: we assume that an individual’s belonging

to a specific subpopulation can be explained by his individual characteristics. For in-

stance, households with no working adult are more likely to be nearer the bottom of the
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income distribution than those with all-working adults. The probability of belonging

to a given subpopulation, then, may vary among individuals as explained by individual

characteristics.

The method is applied to disposable household income, as obtained from a survey

studying changes in inequality and polarization in the United Kingdom in the 1980s and

1990s. This empirical study demonstrates the usefulness of our method and, although

the results are all confirmed by previous studies, they do not lead to conclusions as rich

as those achieved here. We find that our method produces results that are readily given

to economic interpretation.

The paper is organized as follows: we present our explanatory mixture model in

Section 2 and illustrate its use in Section 3.

2 The Explanatory Mixture Model

We assume that the population can be broken down into K homogeneous subpopulations

with a proportion pk of the population, each being a logarithmic-transformation of the

Normal distribution with mean µk and standard deviation σk. Thus, the density function

of the income distribution in the population is defined as,

f(y) =
K∑

k=1

pk Λ (y ; µk, σk) (1)
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where Λ(.; µ, σ) is the Lognormal distribution with parameters µ and σ. Note that, as

with the number of modes used to detect heterogeneity, the number of components in

the mixture is invariant under a continuous and monotonic transformation of income Y .

So, if Y is a mixture of K Lognormal densities, then log(Y ) is a mixture of K Normal

densities.

A conditional model can be constructed by letting the mixing probabilities vary with

exogenous individual characteristics. Given a vector of individual characteristics X,

we consider that the income of an individual with these characteristics is distributed

according to the mixture

f (y |X) =

K∑

k=1

pk(X) Λ (y ; µk, σk) , (2)

where pk(X) is the probability of belonging to the homogeneous subpopulation k. We

can typically assume that these mixing probabilities depend on a linear index of X.

Note that this model is more flexible than the classical analysis of variance, since the

probability of belonging to one subpopulation is not necessarily 1 or 0. Moreover, the

range of values of the household characteristics which characterize the subpopulation

are not pre-fixed but determined by the sample.

For a fixed number of components K, we can estimate f(y) by maximum likelihood

(Titterington et al. 1985 and Lindsay 1995), and f(y |X) with a specific algorithm, the

details of which are given below. In practice, the number of components K is unknown

and can be chosen as that which minimizes some criterion. There is a large number of
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criteria and the literature on this subject is still in progress (McLachlan and Peel 2000).

The optimal criterion for our model requires more study, which we leave to future work.

For the moment, we select the K that minimizes the BIC criterion (Schwarz 1978), which

is known to give consistent estimation of K in mixture models (Keribin 2000).

An alternative conditional model could be constructed by assuming the individual

characteristics influence the magnitude of the group-specific earnings µk. Then, the

individual characteristics could be used to model the mean of the subpopulations rather

than the probabilities of belonging to a subpopulation. This conditional model could be

written

f (y |X) =
K∑

k=1

pk Λ (y ; µk (X) , σk) , (3)

where the conditional mean is typically assumed to depend linearly on X, i.e., µk (X) =

Xβk. Conditioning means is relevant when one wishes to analyse the intra-group vari-

ability, whereas conditioning probabilities applies when focusing on inter-group variabil-

ity. In inequality measurement, the major concern is more often to detect the individual

characteristics which discriminate between ”rich and poor” individuals, rather than to

explain the differences between the ”rich”. Since, in model (3), a different vector of

parameters βk is required for each subpopulation, model (2) provides a potentially more

effective framework to analyse inequalities.
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2.1 Model

Our principal interest is to explain the distribution of individuals across groups by means

of individual characteristics, as in a regression analysis.

Define the variables Ui = Xc
i β + εi, (i = 1, 2, . . . , n) , where Xc

i is a centered vector of

individual characteristics, β is an l-vector of parameters and the εi are i.i.d. random

variables with a common continuous distribution - we assume N (0, 1) without loss of

generality. Now, for k = 1, 2, , . . . , K, let

Zik =





1 if Ui ∈
[
γk−1, γk

[

0 if Ui /∈
[
γk−1, γk

[ ,

where −∞ = γ0 < γ1 < . . . < γK−1 < γK = +∞.

The unobserved vector Zi = (Zi1, Zi2, . . . , ZiK) of dummy variables has the value 1 at the

coordinate of the group the individual i belongs to. Moreover, it is assumed that, given

the vectors Zi, the observed logarithmic transformations of income Yi are independent

and distributed according to the density

f (yi|Zi) =

K∑

k=1

Zik ϕ (yi; µk, σk) , (4)

where ϕ (.; µ, σ) is the Normal density function with mean µ and standard deviation σ.

To avoid the classical “label switching” problem (Redner and Walker 1984), the follow-

ing identifiability constraint is imposed: µ1 < µ2 < . . . < µK.

Note that the Zi’s are independent and distributed according to the multinomial distri-
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butions M (1; pi1, pi2, . . . , piK) , where

pik ≡ E (Zik) = Φ (γk − Xc
i β) − Φ

(
γk−1 − Xc

i β
)
. (5)

Consequently, for each individual, the probability of belonging to the k-th group is the

probability that a standard normal variable belongs to a certain interval with bounds

depending on the values of that individual’s characteristics.

From the previous model, it follows that, marginally, the Yi are independent and dis-

tributed according to the mixture densities

f (yi|Xi) =
K∑

k=1

pik ϕ (yi; µk, σk) . (6)

Letting µ =(µ1, . . . , µK) , σ =(σ1, . . . , σK) , γ =
(
γ1, . . . , γK−1

)
and θ = (µ, σ, γ, β)′, the

log-likelihood function of the parameters is equal to

`n(θ, y) =

n∑

i=1

log f (yi|Xi) . (7)

The maximum likelihood estimator (MLE) can be found by equating the first derivatives

of `n(θ, y) with respect to the different parameters to zero. There is no explicit solution

to this system of equations and an iterative algorithm may be used.
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2.2 Estimation

The log-likelihood function (7) is not necessarily globally concave with respect to the

unknown parameters θ, and so Newton’s methods can diverge. Another approach is

often used to estimate mixture models: for a fixed K, an easy scheme for estimating θ

is the Expectation-Maximisation (EM) algorithm (Dempster et al., 1977), the “missing

data” being Zi’s. However, this algorithm often exhibits slow linear convergence. We use

it therefore only initially, to take advantage of its good global convergence properties,

and then switch to a direct Maximum Likelihood (ML) estimation method (Redner and

Walker 1984 and McLachlan and Peel 2000) exploiting the rapid local convergence of

Newton-type methods.

The full log-likelihood for our model is

`n (θ, Z, y) =

n∑

i=1

K∑

k=1

Zik (log ϕ (yi; µk, σk) + log pik) .

Since `n (θ, Z, y) is linear in Z, the expectation step in the EM algorithm is carried out

by substituting for the missing data Zik their respective conditional expectations

p̂ik ≡ E (Zik|θ, yi) =
pik ϕ (yi; µk, σk)∑K

j=1 pij ϕ
(
yi; µj, σj

) .

Then, in the maximisation step, an estimate of θ is obtained by maximizing the predicted

log-likelihood `n (θ, p̂, y) with respect to its first argument. The equations ∂`n (θ, p̂, y) /∂µ =
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0 and ∂`n (θ, p̂, y) /∂σ = 0 give the explicit estimates

µ̂k =
1

Nk

n∑

i=1

p̂ikyi, and σ̂k =

√√√√ 1

Nk

n∑

i=1

p̂ik (yi − µ̂k)
2,

where Nk =
∑n

i=1 p̂ik, is the current estimate of the number of observations in the kth

cluster, k = 1, 2, . . . , K.

Current estimates of β and γ are computed using iteration on a Newton algorithm based

on the first derivatives:

∂`n (θ, p̂, y)

∂βj

= −
n∑

i=1

Xc
ij

K∑

k=1

p̂ik

pik

[
ϕ (γk; X

c
i β, 1) − ϕ

(
γk−1; X

c
i β, 1

)]

for j = 1 . . . l, and

∂`n (θ, p̂, y)

∂γk

=
n∑

i=1

ϕ (γk; X
c
i β, 1)

[
p̂ik

pik

−
p̂i(k+1)

pi(k+1)

]

for k = 1, 2, . . . , K − 1.

These two steps are iterated until some convergence criterion is met.

The Newton-Raphson method is then used to refine the estimates obtained from the

EM, and the standard errors of the parameter estimates are approximated by the square

root of the diagonal elements of the inverse of the observed information matrix.

Note that, in Normal mixture model with unequal variance components, the like-

lihood is usually unbounded. Nevertheless, assuming that the variances are not too

disparate (Hathaway 1985), the maximum likelihood is well defined. Typically, the

10



unboundedness problem arises when the estimation procedure assigns a certain com-

ponent to an outlier. Following Policello (1981), we solve this problem by requiring

that there be at least two observations from each subpopulation present in the sample

(Nk ≥ 2, k = 1, 2, . . . , K).

2.3 Simulations

In mixture models, the presence of significant multimodality in finite samples has sev-

eral important consequences (Lindsay 1995). The first is that the solution from the

algorithm employed can depend on the initial values chosen. Starting values can be

chosen in different ways. Finch, Mendell, and Thode (1989) suggest using multiple ran-

dom starts. Furman and Lindsay (1994) investigate using moment estimators. However,

there is no best solution. In our experiments, we estimate initial values of the mean

µ and of the standard deviation σ with robust statistics: from a sorted subsample, we

compute the median and the interquartile range in K subgroups with the same number

of observations. This choice works well in many simulation experiments.

The second consequence is that the results of a simulation study can depend on

the stopping rules and search strategies employed, so it can be difficult to compare

simulation studies. In mixture models, convergence problems can be encountered when

the proportion of observations in a subgroup is too small, when the initial parameter

values are too far from the true values, or when K, the number of components chosen,

is too large. We reduce the number of components when the current estimate of the

number of observations in a subpopulation is smaller than 2 (Nk < 2).
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In our simulations, we consider the explanatory mixture model defined in (6) and (5)

with the following values,

µk = 2 k σk = 0.5 + (k/100)(−1)k γk = −3 + 6 k/K and βj = (−1)j (8)

for j = 1, . . . , l. These values are chosen to have distinct Lognormal distributions with

quite similar, but different, variances and proportions of individuals in each distribution.

We define the n × l matrix of regressors X by drawing observations from the Normal

distribution N(0, 1). In our experiments, the number of observations (n = 2000) and

the number of regressors (l = 5) are fixed, and the number of components is varied

according to K = 2, 4, 6, 8. For each value of K, we conduct 1000 replications.

In a first set of experiments, K is assumed to be known. The mean and standard

deviation of the 1000 realizations obtained for each parameter are presented in Table 1,

with the true values given in the second column. Note that the true values of γk are not

given because they are not the same for different values of K. From this table, we can

see that the unknown parameters are very well estimated with the explanatory mixture

model: means are very close to the true values and standard deviations are small.

In practice, the number of components K is unknown and has to be selected. The

selection criterion used here is the BIC (Schwarz 1978):

BIC = −2`n(θ̂, y) + (3K − 1 + l) log n

In our experiments, the rates of correct selection by the BIC, for K = 2, 4, 6, 8, are
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respectively 100%, 99%, 97% and 65%. These results suggest that the BIC performs

well when K is not too large. When K is large, we need to examine the robustness

of the method. Table 2 presents simulation results with K unknown and selected with

the BIC (they are given for the parameter vector β only, because this parameter does

not depend on K). These results show that the estimation method performs quite well.

However, compared to the results obtained with K known (Table 1), we can see small

biases, with a similar magnitude, and greater standard deviations, for large values of K.

While additional experiments could be done, it is not our goal here to conduct a

complete simulation study. We see from our experiments that explanatory mixture

model estimation works quite well when the observed population is defined as a mixture

of sufficiently distinct subpopulations.

2.4 Interpretation

From our explanatory mixture model, we can make a few observations about its use in

practice.

• Let us consider model (6), with individual probabilities pik defined in (5). Under

the null hypothesis H0 : βj = 0, the individual characteristic Xij is not significant in pik.

A t-test can easily be computed: we divide the parameter estimate by its standard error,

as is done in standard linear regression. If we reject the null hypothesis βj = 0, it means

that individual probabilities are not the same and therefore that the characteristic Xij

is statistically significant in explaining inter-group variability.
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• We can interpret the parameter βj, j = 1, . . . , l, as explaining the individual’s

position in the income distribution based on his characteristics Xij,

If β̂j > 0 (resp. β̂j < 0), then the individual’s position moves toward the upper

part of the income distribution (resp. bottom) as Xij increases.

To describe this result formally, we consider the expected individual income (in

logarithm scale) Pi =
∑K

k=1 p̂ik µ̂k, where µ̂1 < µ̂2 < . . . < µ̂K. Then, the partial

derivatives of Pi with respect to the Xij measure the influences on Pi of a change in the

value of Xij,

∂Pi

∂Xij

= −β̂j

[
K∑

k′=1

(
ϕ

(
γ̂k; Xiβ̂, 1

)
− ϕ

(
γ̂k−1; Xiβ̂, 1

))
µ̂k

]
(9)

= β̂j

[
K−1∑

k′=1

ϕ
(
γ̂k; Xiβ̂, 1

) (
µ̂k+1 − µ̂k

)
]

(10)

The righthand term, in brackets, is always positive, so we see that, if β̂j is positive, Pi

increases if Xij increases, ceteris paribus. In addition, we can see that the first term β̂j

does not depend on the component k, and the last term, in brackets, is specific to the

component k. Thus, we can view β̂j as the overall influence of the characteristic j on

the position of the individual i in the income distribution.

• To provide a plot of the whole income distribution, we can use an estimate of the

marginal distribution,

f̂(y) =
K∑

k=1

p̄k Λ (y ; µ̂k, σ̂k) with p̄k =
1

n

n∑

i=1

p̂ik (11)
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where p̄k is the average proportion of individuals in subpopulation k, calculated as the

mean of the estimated individual probabilities of belonging to this subpopulation.

3 Application

Clearly, the method developed above is useful only if it works well with real data.

To investigate its application, we use known data and compare its results with those

obtained in the literature with different techniques. The data are from the Family

Expenditure Survey (FES), a continuous survey of samples of the UK population living

in households. The data are made available by the data archive at the University of

Essex: Department of Employment, Statistics Division. We take disposable household

income (i.e., post-tax and transfer income) before housing costs, divide household income

by an adult-equivalence scale defined by McClements, and exclude the self-employed,

as recommended by the methodological review produced by the Department of Social

Security (1996). To restrict the study to relative effects, the data for each year are

normalized by the arithmetic mean of the year. For each person in the households we

know the sex, age and labour force status (employee, unemployed, inactive, student).

For a description of the data and equivalent scale, see the annual report produced by

the Department of Social Security (1998).

Based on these data, Jenkins (2000) and the annual report produced by the Depart-

ment of Social Security (1998) show that, while increasing during the 1980s, inequality

appears to have fallen slightly during the 1990s. Table 3 shows the Theil, Mean Loga-
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rithmic Deviation, and Gini indexes, with their standard errors in parentheses, for the

years 1979, 1988, 1992 and 1996. All these inequality measures increase considerably

from 1979 to 1988 and decrease from 1992 to 1996.

Here, we analyse this evolution of inequality using our method, a mixture estimation

with explanatory variables. An individual is an adult if aged 19 or over, or if aged 16 to

18 but not a student; otherwise (s)he is a child. We consider the following characteristics:

Xi1 - Pensioner : the head of the family is a person of state pension age or above.

Xi2 - Lone parent family : a single non-pensioner adult with children.

Xi3 - All-working : non-pensioner household with all adults working.

Xi4 - Non-working : non-pensioner household with all adults not working.

Xi5 - Number of children.

Note that Xi1, Xi3 and Xi4 are mutually exclusive variables (a pensioner household

cannot be a non-working or all-working household). We use the explanatory mixture

estimation with the dummy variables Xi1, Xi2, Xi3, Xi4 and Xi5 as the set of regressors.

3.1 The Shape of the Income Distribution

Figures 1, 2, 3 and 4 plot the marginal distribution of our estimation by mixture with

explanatory variables (mixture) and the several Lognormal distributions that constitute

the mixture, pLogk = p̄k Λ(µ̂k, σ̂k), for k = 1, . . . , K, for the years 1979, 1988, 1992 and

1996. See equation (11) and estimation results in Table 4. Restricting our attention to

the global curve, we see in all figures a multimodal distribution, which is slightly modified
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over the years. However, from the estimation of the income distribution alone, no clear

conclusion can been drawn to explain the inequality evolution. Our method allows us

to break down the income distribution into several distinct Lognormal distributions, so

we can analyse the relative evolution of these distinct distributions over the years.

Initially, we see from the figures that a mixture of K Lognormal distributions does not

necessarily mean that the observed population is composed of K homogeneous subpop-

ulations. This may arise from the choice of the BIC criterion. As discussed in Section 2,

the selection of the number of components is a difficult task and a rigorous study of

this issue should be investigated. An optimal choice of K should pair the number of

components with the number of homogeneous subpopulations. However, even with a

suboptimal K, we obtain interesting results using our approach.

Let us compare the income distributions in 1979 and 1988 (Figures 1 and 2). First,

we see five distinct homogeneous subpopulations in 1979 and six in 1988 - a new small

distribution appears at the bottom. And we see that the lowest distributions move

leftwards (µ̂3 = 0.6184 in 1979 and µ̂4 = 0.5550 in 1988, see Table 4). Secondly, we see

that the upper single Lognormal distribution has significantly increased: more people

are in the upper distribution, p̄5 = 0.2106 in 1979 becomes p̄6 = 0.3240 in 1988, meaning

that the “richest” subpopulation comprises 21.06% of the population in 1979 and 32.40%

in 1988. Finally, we see two disparate changes: the number of people at the top of the

distribution increases and the gap between upper and lower distributions widens. This

suggests increasing inequality in the 1980s.

Let us compare the income distributions in 1988 and 1992 (Figures 2 and 3). We de-
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tect six homogeneous subpopulations in 1988 and seven in 1992. The lowest distribution

has significantly increased (p̄1 = 0.0280 in 1988 and p̄1 = 0.0419 in 1992) and the upper

distribution has significantly decreased (p̄6 = 0.3240 in 1988 and p̄7 = 0.2104 in 1992).

This suggests that there are fewer very “rich” people and more very “poor” people, and

so explains increasing inequality with fewer changes than in the 1980s.

Comparing the income distributions in 1992 and 1996 (Figures 3 and 4), note that

the lowest distribution - and so, the bottom of the global curve - moves significantly to

the right: the condition of life for the “poorest” people gets better. In addition, from

the shape of the global curve, we see a narrowing of the gap between the two major

modes. This suggests decreasing inequality.

We can see, from these figures, K varying over time. For instance, in 1979 we select

K = 5 and in 1988 K = 6, the analysis suggesting increasing inequality with the forming

of a small subpopulation of very poor people. Here, we select K with the BIC criterion

in order to obtain a better fit of the income distribution. Note that, if panel data were

available, it could be more appropriate to focus the analysis on individual trajectories

and thus to fix K over time using a mixture autoregressive model (Wong and Li 2000).

3.2 The structure of the income distribution

The parameter estimates of the explanatory variables Xi1, Xi2, Xi3, Xi4 and Xi5, based

on mixture estimation, for the years 1979, 1988, 1992 and 1996 are given in Table 5, with

standard errors in parenthesis. These results allow us to analyse the position of house-
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holds in the income distribution. In 1979, the largest negative values are successively

associated with pensioners (Xi1 : β̂1 = −1.770) and non-working (Xi4 : β̂4 = −1.160),

the largest positive value is associated with all-working (Xi3 : β̂3 = 0.611). Thus, house-

holds with no working adult and pensioners are strongly over-represented in the bottom

of the distribution, while households with all working adults are over-represented in the

top of the distribution. If we restrict our attention to the most significant variables,

from Table 5, major changes over years can be reduced to:

1. The income position of pensioners improves: parameter estimates β̂1 decrease

over time, from −1.770 in 1979 to −0.999 in 1996.

2. The gap between the income position of all-working and non-working households

increases in the 1980s and decreases slightly in the 1990s: β̂3 − β̂4 is, respectively, equal

to 1.771, 2.221, 1.957, 1.865.

3. The income position of non-working households becomes less than that of pen-

sioners: respectively, -1.160 vs. -1.770 in 1979 and -1.107 vs. -0.999 in 1996.

These results must be interpreted conditionally on the value of the other parameters

and explanatory variables staying the same, since their meaning comes from the partial

derivatives (9). They show that, in the 1980s, the polarization between all-working and

non-working households increased and then decreased slowly in the 1990s. By contrast,

the position of pensioners improved steadily over the years.

From these studies on the shape and structure of the income distribution over the

years, we can now explain the increasing inequality in the 1980s as due to an increasing
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polarization between working and non-working households and increasing numbers in

the upper part of the distribution. We can explain the slight decrease in inequality dur-

ing the 1990s as due to a small decrease in this polarization: the number of people in the

upper part of the distribution decreased and the income position of non-working house-

holds improved slightly. The income position of pensioners, however, has improved. All

of these results are supported in one or another of the previous studies using differ-

ent methods, see Cowell et al. (1996), Jenkins (1995, 1996, 2000) and the descriptive

statistical studies by the Department of Social Security (1998).

4 Conclusion

In this paper, we propose a new method for analysing the income distribution, based on

mixture models. It allows us to estimate the density of the income distribution, to detect

homogeneous subpopulations, and to analyse the position of individuals with specific

characteristics. The method is illustrated using income data in the United Kingdom in

the 1980s and 1990s. We are able to analyse not only the shape and structure of the

income distribution, but also to see at the same time how inequality and polarization

have changed over years. Our empirical results demonstrate that this method can be

successfully used in practice.
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true K = 2 K = 4 K = 6 K = 8
µ̂1 2 1.986 (0.017) 1.988 (0.021) 2.011 (0.028) 2.023 (0.029)
µ̂2 4 4.003 (0.021) 3.982 (0.030) 3.978 (0.040) 4.012 (0.048)
µ̂3 6 6.012 (0.027) 6.010 (0.035) 6.020 (0.043)
µ̂4 8 7.966 (0.025) 7.998 (0.040) 7.963 (0.046)
µ̂5 10 9.951 (0.035) 10.020 (0.038)
µ̂6 12 12.002 (0.030) 11.946 (0.048)
µ̂7 14 13.977 (0.042)
µ̂8 16 15.990 (0.034)
σ̂1 0.49 0.499 (0.013) 0.483 (0.017) 0.477 (0.020) 0.475 (0.021)
σ̂2 0.52 0.522 (0.012) 0.532 (0.027) 0.495 (0.039) 0.533 (0.048)
σ̂3 0.47 0.438 (0.023) 0.489 (0.031) 0.460 (0.038)
σ̂4 0.54 0.532 (0.027) 0.511 (0.039) 0.537 (0.049)
σ̂5 0.45 0.463 (0.031) 0.480 (0.036)
σ̂6 0.56 0.551 (0.023) 0.515 (0.051)
σ̂7 0.43 0.399 (0.038)
σ̂8 0.58 0.592 (0.028)
γ̂1 0.012 (0.048) -1.537 (0.057) -2.014 (0.064) -2.237 (0.067)
γ̂2 0.016 (0.044) -1.012 (0.051) -1.506 (0.052)
γ̂3 1.389 (0.058) 0.039 (0.046) -0.729 (0.046)
γ̂4 0.994 (0.050) 0.024 (0.043)
γ̂5 1.958 (0.065) 0.763 (0.047)
γ̂6 1.498 (0.056)
γ̂7 2.296 (0.066)

β̂1 -1 -0.987 (0.054) -0.969 (0.038) -0.986 (0.035) -1.027 (0.031)

β̂2 1 0.982 (0.053) 0.963 (0.040) 0.985 (0.035) 1.027 (0.033)

β̂3 -1 -1.028 (0.060) -0.988 (0.038) -0.982 (0.035) -1.005 (0.033)

β̂4 1 1.038 (0.059) 0.981 (0.038) 0.976 (0.034) 1.047 (0.034)

β̂5 -1 -1.046 (0.066) -0.992 (0.039) -1.009 (0.034) -1.019 (0.033)

Table 1: Simulation results with K known

true K = 2 K = 4 K = 6 K = 8

β̂1 -1 -0.987 (0.054) -0.984 (0.038) -1.104 (0.056) -1.169 (0.171)

β̂2 1 0.982 (0.053) 0.986 (0.040) 1.133 (0.055) 1.169 (0.169)

β̂3 -1 -1.028 (0.060) -1.047 (0.038) -1.131 (0.053) -1.168 (0.167)

β̂4 1 1.038 (0.059) 0.975 (0.038) 1.122 (0.053) 1.170 (0.171)

β̂5 -1 -1.046 (0.066) -1.006 (0.039) -1.149 (0.055) -1.169 (0.168)

Table 2: Simulation results with K unknown
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Theil MLD Gini

1979 0.1066 (0.0023) 0.1056 (0.0020) 0.2563 (0.0023)
1988 0.1619 (0.0053) 0.1542 (0.0036) 0.3074 (0.0034)
1992 0.1794 (0.0065) 0.1743 (0.0046) 0.3214 (0.0037)
1996 0.1507 (0.0046) 0.1457 (0.0036) 0.2976 (0.0033)

Table 3: Inequality measures over years
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1979 1988 1992 1996

µ̂1 0.4096 (0.0041) 0.3080 (0.0218) 0.2828 (0.0168) 0.3369 (0.0100)

µ̂2 0.4967 (0.0065) 0.3657 (0.0056) 0.3304 (0.0086) 0.3962 (0.0098)

µ̂3 0.6184 (0.0070) 0.4458 (0.0068) 0.4102 (0.0090) 0.4869 (0.0075)

µ̂4 0.7910 (0.0116) 0.5550 (0.0118) 0.5010 (0.0134) 0.5928 (0.0103)

µ̂5 0.9053 (0.0129) 0.6949 (0.0132) 0.6307 (0.0129) 0.7228 (0.0156)

µ̂6 - 0.8918 (0.0127) 0.8014 (0.0182) 0.8973 (0.0255)

µ̂7 - 1.3216 (0.1167) 0.9550 (0.0208) 0.9846 (0.0253)

µ̂8 - - 1.4536 (0.1879) -
σ̂1 0.0507 (0.0024) 0.1117 (0.0107) 0.1094 (0.0076) 0.0649 (0.0061)

σ̂2 0.0426 (0.0034) 0.0418 (0.0034) 0.0325 (0.0053) 0.0455 (0.0041)

σ̂3 0.0668 (0.0044) 0.0407 (0.0038) 0.0372 (0.0036) 0.0421 (0.0046)

σ̂4 0.1109 (0.0069) 0.0552 (0.0064) 0.0473 (0.0050) 0.0501 (0.0063)

σ̂5 0.2349 (0.0077) 0.0889 (0.0067) 0.0718 (0.0058) 0.0834 (0.0087)

σ̂6 - 0.2086 (0.0075) 0.1258 (0.0104) 0.1491 (0.0206)

σ̂7 - 0.4358 (0.0443) 0.2419 (0.0113) 0.3398 (0.0280)

σ̂8 - - 0.6068 (0.0781) -
γ̂1 -1.2964 (0.0831) -2.6619 (0.1500) -2.3222 (0.1027) -1.9912 (0.1821)

γ̂2 -0.6855 (0.0573) -1.3767 (0.1060) -1.5818 (0.1309) -1.1308 (0.0971)

γ̂3 0.1538 (0.0728) -0.6687 (0.0640) -0.8137 (0.0932) -0.4395 (0.0740)

γ̂4 1.1937 (0.1098) -0.1540 (0.0835) -0.3227 (0.0752) 0.0629 (0.0751)

γ̂5 - 0.6188 (0.0772) 0.2897 (0.0794) 0.7316 (0.1116)

γ̂6 - 2.8623 (0.1930) 1.0760 (0.1276) 1.6041 (0.2285)

γ̂7 - - 3.0681 (0.1747) -

p̄1 0.1893 0.0280 0.0419 0.0687
p̄2 0.1328 0.1421 0.0792 0.1309
p̄3 0.2131 0.1559 0.1554 0.1724
p̄4 0.2543 0.1329 0.1310 0.1450
p̄5 0.2106 0.2002 0.1740 0.1850
p̄6 - 0.3240 0.1995 0.1799
p̄7 - 0.0170 0.2104 0.1181
p̄8 - - 0.0086 -

Table 4: Estimation by explanatory mixture: numerical results.
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β̂1 β̂2 β̂3 β̂4 β̂5

1979 -1.770 (0.059) -0.672 (0.106) 0.611 (0.050) -1.160 (0.086) -0.439 (0.020)

1988 -1.329 (0.058) -0.694 (0.106) 0.781 (0.053) -1.440 (0.068) -0.352 (0.022)

1992 -1.109 (0.053) -0.546 (0.083) 0.717 (0.050) -1.240 (0.060) -0.345 (0.019)

1996 -0.999 (0.055) -0.616 (0.078) 0.758 (0.053) -1.107 (0.062) -0.384 (0.020)

Table 5: Parameter estimates β̂j of individual characteristics Xj

27



histogram

pLog5
pLog4

pLog3
pLog2
pLog1

Mixture

2.521.510.50

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 1: Income distribution in 1979
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Figure 2: Income distribution in 1988
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Figure 3: Income distribution in 1992
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Figure 4: Income distribution in 1996
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