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Course objectives

Starting from first principles, we shall firstly review the main properties of
probability and random variables and their properties. In particular, we shall
introduce the probability and moment generating functions. Secondly, we shall
analyze the different methods of collecting, displaying and summarizing data
samples. This course should provide the basic knowledge necessary for the first
term course in Statistics.
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Recommended reading

• CM Grinstead and JM Snell (1997). Introduction to Probability, AMS.
Available from:

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/pdf.html

• Online Statistics: An Interactive Multimedia Course of Study is a good
online course at:

http://onlinestatbook.com/

• MP Wiper (2006). Here are some notes on probability from an elementary
course.

http://halweb.uc3m.es/esp/Personal/personas/mwiper/docencia/Spanish/Doctorado_EEMC/probability_class.pdf
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• Probability and random variables:

– Mathematical probability and the Kolmogorov axioms.
– Different interpretations of probability.
– Conditional probability and Bayes theorem.
– Random variables and their characteristics.
– Generating functions.

• Descriptive statistics:

– Sampling.
– Different types of data.
– Displaying a sample of data.
– Sample moments.
– Bivariate samples and regression.
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Probability

Chance is a part of our everyday lives. Everyday we make judgements based
on probability:

• There is a 90% chance Real Madrid will win tomorrow.

• There is a 1/6 chance that a dice toss will be a 3.

Probability Theory was developed from the study of games of chance by Fermat
and Pascal and is the mathematical study of randomness. This theory deals
with the possible outcomes of an event and was put onto a firm mathematical
basis by Kolmogorov.
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The Kolmogorov axioms

Kolmogorov

For a random experiment with sample space Ω, then a probability measure
P is a function such that

1. for any event A ∈ Ω, P (A) ≥ 0.

2. P (Ω) = 1.

3. P (∪j∈JAj) =
∑

j∈J P (Aj) if {Aj : j ∈ J} is a countable set of
incompatible events.
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Laws of probability

The basic laws of probability can be derived directly from set theory and the
Kolmogorov axioms. For example, for any two events A and B, we have the
addition law,

P (A ∪B) = P (A) + P (B)− P (A ∩B).



Laws of probability

The basic laws of probability can be derived directly from set theory and the
Kolmogorov axioms. For example, for any two events A and B, we have the
addition law,

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof

A = (A ∩B) ∪ (A ∩ B̄) so

P (A) = P (A ∩B) + P (A ∩ B̄) and similarly for B. Also,

A ∪B = (A ∩ B̄) ∪ (B ∩ Ā) ∪ (A ∩B) so

P (A ∪B) = P (A ∩ B̄) + P (B ∩ Ā) + P (A ∩B)

= P (A)− P (A ∩B) + P (B)− P (A ∩B) + P (A ∩B)

= P (A) + P (B)− P (A ∩B).
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Partitions

The previous example is easily extended when we have a sequence of events,
A1, A2, . . . , An, that form a partition, that is

n⋃
i=1

Ai = Ω, Ai ∩Aj = φ for all i 6= j.

In this case,

P (∪n
i=1Ai) =

n∑
i=1

P (Ai)−
n∑

j>i=1

P (Ai ∩Aj) +
n∑

k>j>i=1

P (Ai ∩Aj ∩Ak) + . . .

+(−1)nP (A1 ∩A2 ∩ . . . ∩An).
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Interpretations of probability

The Kolmogorov axioms provide a mathematical basis for probability but don’t
provide for a real life interpretation. Various ways of interpreting probability in
real life situations have been proposed.

• The classical interpretation.

• Frequentist probability.

• Subjective probability.

• Other approaches; logical probability and propensities.
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Classical probability

Bernoulli

This derives from the ideas of Jakob Bernoulli (1713) contained in the principle
of insufficient reason (or principle of indifference) developed by Laplace
(1812) which can be used to provide a way of assigning epistemic or subjective
probabilities.
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The principle of insufficient reason

If we are ignorant of the ways an event can occur (and therefore have no
reason to believe that one way will occur preferentially compared to another),
the event will occur equally likely in any way.

Thus the probability of an event is the coefficient between the number of
favourable cases and the total number of possible cases.

This is a very limited definition and cannot be easily applied in infinite
dimensional or continuous sample spaces.
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Frequentist probability

Venn Von Mises

The idea comes from Venn (1876) and von Mises (1919).

Given a repeatable experiment, the probability of an event is defined to be the
limit of the proportion of times that the event will occur when the number of
repetitions of the experiment tends to infinity.

This is a restricted definition of probability. It is impossible to assign
probabilities in non repeatable experiments.
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Subjective probability

Ramsey

A different approach uses the concept of ones own probability as a subjective
measure of ones own uncertainty about the occurrence of an event. Thus,
we may all have different probabilities for the same event because we all have
different experience and knowledge. This approach is more general than the
other methods as we can now define probabilities for unrepeatable experiments.
Subjective probability is studied in detail in Bayesian Statistics.
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Other approaches

Keynes

• Logical probability was developed by Keynes (1921) and Carnap (1950)
as an extension of the classical concept of probability. The (conditional)
probability of a proposition H given evidence E is interpreted as the (unique)
degree to which E logically entails H.
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Popper

• Under the theory of propensities developed by Popper (1957), probability
is an innate disposition or propensity for things to happen. Long run
propensities seem to coincide with the frequentist definition of probability
although it is not clear what individual propensities are, or whether they
obey the probability calculus.
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Conditional probability and independence

The probability of an event B conditional on an event A is defined as

P (B|A) =
P (A ∩B)

P (A)
.

This can be interpreted as the probability of B given that A occurs.

Two events A and B are called independent if P (A ∩ B) = P (A)P (B) or
equivalently if P (B|A) = P (B) or P (A|B) = P (A).
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The multiplication law

A restatement of the conditional probability formula is the multiplication law

P (A ∩B) = P (B|A)P (A).

Example 1
What is the probability of getting two cups in two draws from a Spanish pack
of cards?

Write Ci for the event that draw i is a cup for i = 1, 2. Enumerating all
the draws with two cups is not entirely trivial. However, the conditional
probabilities are easy to calculate:

P (C1 ∩ C2) = P (C2|C1)P (C1) =
9
39
× 10

40
=

3
52

.

The multiplication law can be extended to more than two events. For example,

P (A ∩B ∩ C) = P (C|A,B)P (B|A)P (A).
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The birthday problem

Example 2
What is the probability that among n students in a classroom, at least two
will have the same birthday?

http://webspace.ship.edu/deensley/mathdl/stats/Birthday.html



The birthday problem

Example 2
What is the probability that among n students in a classroom, at least two
will have the same birthday?

http://webspace.ship.edu/deensley/mathdl/stats/Birthday.html

The solution is not obvious but can be solved using conditional probability. Let
bi be the birthday of student i, for i = 1, . . . , n. Then it is easiest to calculate
the probability that all birthdays are distinct

P (b1 6= b2 6= . . . 6= bn) = P (bn /∈ {b1, . . . , bn−1}|b1 6= b2 6= . . . bn−1)×
P (bn−1 /∈ {b1, . . . , bn−2}|b1 6= b2 6= . . . bn−2)× · · ·
×P (b3 /∈ {b1, b2}|b1 6= b2)P (b1 6= b2)
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Now clearly,

P (b1 6= b2) =
364
365

, P (b3 /∈ {b1, b2}|b1 6= b2) =
363
365

and similarly

P (bi /∈ {b1, . . . , bi−1}|b1 6= b2 6= . . . bi−1) =
366− i

365

for i = 3, . . . , n.

Thus, the probability that at least two students have the same birthday is, for
n < 365,

1− 364
365

× · · · × 366− n

365
=

365!
365n(365− n)!

.

For n = 23, this probability is greater than 0.5 and for n > 50, it is virtually
one.
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The law of total probability

The simplest version of this rule is the following.

Theorem 1
For any two events A and B, then

P (B) = P (B|A)P (A) + P (B|Ā)P (Ā).

We can also extend the law to the case where A1, . . . , An form a partition. In
this case, we have

P (B) =
n∑

i=1

P (B|Ai)P (Ai).
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Bayes theorem

Theorem 2
For any two events A and B, then

P (A|B) =
P (B|A)P (A)

P (B)
.

Supposing that A1, . . . , An form a partition, using the law of total probability,
we can write Bayes theorem as

P (Aj|B) =
P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

for j = 1, . . . , n.

Probability and Statistics



The Monty Hall problem

Example 3
The following statement of the problem was given in a column by Marilyn vos
Savant in a column in Parade magazine in 1990.

Suppose you’re on a game show, and you’re given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say No.
1, and the host, who knows what’s behind the doors, opens another door,
say No. 3, which has a goat. He then says to you, “Do you want to pick
door No. 2?” Is it to your advantage to switch your choice?
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Simulating the game

Have a look at the following web page.

http://www.stat.sc.edu/~west/javahtml/LetsMakeaDeal.html



Simulating the game

Have a look at the following web page.

http://www.stat.sc.edu/~west/javahtml/LetsMakeaDeal.html

Using Bayes theorem

http://en.wikipedia.org/wiki/Monty_Hall_problem
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Random variables

A random variable generalizes the idea of probabilities for events. Formally, a
random variable, X simply assigns a numerical value, xi to each event, Ai,
in the sample space, Ω. For mathematicians, we can write X in terms of a
mapping, X : Ω → R.

Random variables may be classified according to the values they take as

• discrete

• continuous

• mixed
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Discrete variables

Discrete variables are those which take a discrete set range of values, say
{x1, x2, . . .}. For such variables, we can define the cumulative distribution
function,

FX(x) = P (X ≤ x) =
∑

i,xi≤x

P (X = xi)

where P (X = x) is the probability function or mass function.

For a discrete variable, the mode is defined to be the point, x̂, with maximum
probability, i.e. such that

P (X = x) < P (X = x̂)for all x 6= x̂.
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Moments

For any discrete variable, X, we can define the mean of X to be

µX = E[X] =
∑

i

xiP (X = xi).

Recalling the frequency definition of probability, we can interpret the mean as
the limiting value of the sample mean from this distribution. Thus, this is a
measure of location.

In general we can define the expectation of any function, g(X) as

E[g(X)] =
∑

i

g(xi)P (X = xi).

In particular, the variance is defined as

σ2 = V [X] = E
[
(X − µX)2

]
and the standard deviation is simply σ =

√
σ2. This is a measure of spread.
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Chebyshev’s inequality

It is interesting to analyze the probability of being close or far away from the
mean of a distribution. Chebyshev’s inequality provides loose bounds which
are valid for any distribution with finite mean and variance.

Theorem 3
For any random variable, X, with finite mean, µ, and variance, σ2, then for
any k > 0,

P (|X − µ| ≥ kσ) ≤ 1
k2

.

Thus, we know that P (µ−
√

2σ ≤ X ≤ µ +
√

2σ) ≥ 0.5 for any variable X.
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Proof

P (|X − µ| ≥ kσ) = P
(
(X − µ)2 ≥ k2σ2

)
= P

((
X − µ

kσ

)2

≥ 1

)

= E

[
I(

X−µ
kσ

)2
≥1

]
where I is an indicator function

≤ E

[(
X − µ

kσ

)2
]

=
1
k2

Probability and Statistics



Important discrete distributions

The binomial distribution

Let X be the number of heads in n independent tosses of a coin such that
P (head) = p. Then X has a binomial distribution with parameters n and p
and we write X ∼ BI(n, p). The mass function is

P (X = x) =
(

n
x

)
px(1− p)n−x for x = 0, 1, 2, . . . , n.

The mean and variance of X are np and np(1− p) respectively.
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The geometric distribution

Suppose that Y is defined to be the number of tails observed before the first
head occurs for the same coin. Then Y has a geometric distribution with
parameter p, i.e. Y ∼ GE(p) and

P (Y = y) = p(1− p)y for y = 0, 1, 2, . . .

The mean any variance of X are 1−p
p and 1−p

p2 respectively.
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The negative binomial distribution

A generalization of the geometric distribution is the negative binomial
distribution. If we define Z to be the number of tails observed before
the r’th head is observed, then Z ∼ NB(r, p) and

P (Z = z) =
(

r + z − 1
z

)
pr(1− p)z for z = 0, 1, 2, . . .

The mean and variance of X are r1−p
p and r1−p

p2 respectively.

The negative binomial distribution reduces to the geometric model for the case
r = 1.
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The hypergeometric distribution

Suppose that a pack of N cards contains R red cards and that we deal n cards
without replacement. Let X be the number of red cards dealt. Then X has
a hypergeometric distribution with parameters N,R, n, i.e. X ∼ HG(N,R, n)
and

P (X = x) =

(
R
x

)(
N −R
n− x

)
(

N
n

) for x = 0, 1, . . . , n.

Example 4
In the Primitiva lottery, a contestant chooses 6 numbers from 1 to 49 and 6
numbers are drawn without replacement. The contestant wins the grand prize
if all numbers match. The probability of winning is thus

P (X = x) =

(
6
6

)(
43
0

)
(

49
6

) =
6!43!
49!

=
1

13983816
.
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What if N and R are large?

For large N and R, then the factorials in the hypergeometric probability
expression are often hard to evaluate.

Example 5
Suppose that N = 2000 and R = 500 and n = 20 and that we wish to find
P (X = 5). Then the calculation of 2000! for example is very difficult.



What if N and R are large?

For large N and R, then the factorials in the hypergeometric probability
expression are often hard to evaluate.

Example 5
Suppose that N = 2000 and R = 500 and n = 20 and that we wish to find
P (X = 5). Then the calculation of 2000! for example is very difficult.

Theorem 4
Let X ∼ HG(N,R, n) and suppose that R,N →∞ and R/N → p. Then

P (X = x) →
(

n
x

)
px(1− p)n−x for x = 0, 1, . . . , n.
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Proof

P (X = x) =

(
R
x

)(
N −R
n− x

)
(

N
n

) =

(
n
x

)(
N − n
R− x

)
(

N
R

)
=

(
n
x

)
R!(N −R)!(N − n)!

(R− x)!(N −R− n + x)!N !

→
(

n
x

)
Rx(N −R)n−x

Nn
→
(

n
x

)
px(1− p)n−x

In the example,p = 500/2000 = 0.25 and using a binomial approximation,

P (X = 5) ≈
(

20
5

)
0.2550.7515 = 0.2023. The exact answer, from Matlab

is 0.2024.
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The Poisson distribution

Assume that rare events occur on average at a rate λ per hour. Then we can
often assume that the number of rare events X that occur in a time period
of length t has a Poisson distribution with parameter (mean and variance) λt,
i.e. X ∼ P(λt). Then

P (X = x) =
(λt)xe−λt

x!
for x = 0, 1, 2, . . .



The Poisson distribution

Assume that rare events occur on average at a rate λ per hour. Then we can
often assume that the number of rare events X that occur in a time period
of length t has a Poisson distribution with parameter (mean and variance) λt,
i.e. X ∼ P(λt). Then

P (X = x) =
(λt)xe−λt

x!
for x = 0, 1, 2, . . .

Formally, the conditions for a Poisson distribution are

• The numbers of events occurring in non-overlapping intervals are
independent for all intervals.

• The probability that a single event occurs in a sufficiently small interval of
length h is λh + o(h).

• The probability of more than one event in such an interval is o(h).
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Continuous variables

Continuous variables are those which can take values in a continuum. For a
continuous variable, X, we can still define the distribution function, FX(x) =
P (X ≤ x) but we cannot define a probability function P (X = x). Instead, we
have the density function

fX(x) =
dF (x)

dx
.

Thus, the distribution function can be derived from the density as FX(x) =∫ x

−∞ fX(u) du. In a similar way, moments of continuous variables can be
defined as integrals,

E[X] =
∫ ∞

−∞
xfX(x) dx

and the mode is defined to be the point of maximum density.

For a continuous variable, another measure of location is the median, x̃,
defined so that FX(x̃) = 0.5.
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Important continuous variables

The uniform distribution

This is the simplest continuous distribution. A random variable, X, is said to
have a uniform distribution with parameters a and b if

fX(x) =
1

b− a
for a < x < b.

In this case, we write X ∼ U(a, b) and the mean and variance of X are a+b
2

and (b−a)2

12 respectively.
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The exponential distribution

Remember that the Poisson distribution models the number of rare events
occurring at rate λ in a given time period. In this scenario, consider the
distribution of the time between any two successive events. This is an
exponential random variable, Y ∼ E(λ), with density function

fY (y) = λe−λy for y > 0.

The mean and variance of X are 1
λ and 1

λ2 respectively.
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The normal distribution

This is probably the most important continuous distribution. A random
variable, X, is said to follow a normal distribution with mean and variance
parameters µ and σ2 if

fX(x) =
1

σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

)
for −∞ < x < ∞.

In this case, we write X ∼ N
(
µ, σ2

)
.

• If X is normally distributed, then a + bX is normally distributed. In
particular, X−µ

σ ∼ N (0, 1).

• P (|X−µ| ≥ σ) = 0.3174, P (|X−µ| ≥ 2σ) = 0.0456, P (|X−µ| ≥ 3σ) =
0.0026.

• Any sum of normally distributed variables is also normally distributed.
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Example 6
Let X ∼ N (2, 4). Find P (3 < X < 4).

P (3 < X < 4) = P

(
3− 2√

4
<

X − 2√
4

<
4− 2√

4

)
= P (0.5 < Z < 1) where Z ∼ N (0, 1)

= P (Z < 1)− P (Z < 0.5) = 0.8413− 0.6915

= 0.1499
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The central limit theorem

One of the main reasons for the importance of the normal distribution is that
it can be shown to approximate many real life situations due to the central
limit theorem.

Theorem 5
Given a random sample of size X1, . . . , Xn from some distribution, then
under certain conditions, the sample mean X̄ = 1

n

∑n
i=1 Xi follows a normal

distribution.

Proof See later.

For an illustration of the CLT, see

http://cnx.rice.edu/content/m11186/latest/
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Mixed variables

Occasionally it is possible to encounter variables which are partially discrete
and partially continuous. For example, the time spent waiting for service by
a customer arriving in a queue may be zero with positive probability (as the
queue may be empty) and otherwise takes some positive value in (0,∞).
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The probability generating function

For a discrete random variable, X, taking values in some subset of the non-
negative integers, then the probability generating function, GX(s) is defined
as

GX(s) = E
[
sX
]

=
∞∑

x=0

P (X = x)sx.

This function has a number of useful properties:

• G(0) = P (X = 0) and more generally, P (X = x) = 1
x!

dxG(s)
dsx |s=0.

• G(1) = 1, E[X] = dG(1)
ds and more generally, the k’th factorial moment,

E[X(X − 1) · · · (X − k + 1)], is

E

[
X!

(X − k)!

]
=

dkG(s)
dsk

∣∣∣∣
s=1
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• The variance of X is

V [X] = G′′(1) + G′(1)−G′(1)2.

Example 7
Consider a negative binomial variable, X ∼ NB(r, p).

P (X = x) =
(

r + x− 1
x

)
pr(1− p)x for z = 0, 1, 2, . . .

E[sX] =
∞∑

x=0

sx

(
r + x− 1

x

)
pr(1− p)x

= pr
∞∑

x=0

(
r + x− 1

x

)
{(1− p)s}x =

(
p

1− (1− p)s

)r
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dE

ds
=

rpr(1− p)
(1− (1− p)s)r+1

dE

ds

∣∣∣∣
s=1

= r
1− p

p
= E[X]

d2E

ds2
=

r(r + 1)pr(1− p)2

(1− (1− p)s)r+2

d2E

ds2

∣∣∣∣
s=1

= r(r + 1)
(

1− p

p

)2

= E[X(X − 1)]

V [X] = r(r + 1)
(

1− p

p

)2

+ r
1− p

p
−
(

r
1− p

p

)2

= r
1− p

p2
.

Probability and Statistics



The probability generating function for a sum of independent variables

Suppose that X1, . . . , Xn are independent with generating functions Gi(s) for
s = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then

GY (s) = E
[
sY
]

= E
[
s

∑n
i=1 Xi

]
=

n∏
i=1

E
[
sXi
]

by independence

=
n∏

i=1

Gi(s)

Furthermore, if X1, . . . , Xn are identically distributed, with common generating
function GX(s), then

GY (s) = GX(s)n.
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Example 8
Suppose that X1, . . . , Xn are Bernoulli trials so that

P (Xi = 1) = p and P (Xi = 0) = 1− p for i = 1, . . . , n

Then, the probability generating function for any Xi is GX(s) = 1 − p + sp.
Now consider a binomial random variable, Y =

∑n
i=1 Xi. Then

GY (s) = (1− p + sp)n

is the binomial probability generating function.
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Another useful property of pgfs

If N is a discrete variable taking values on the non-negative integers and with
pgf GN(s) and if X1, . . . , XN is a sequence of independent and identically

distributed variables with pgf GX(s), then if Y =
∑N

i=1 Xi, we have

GY (s) = E
[
s

∑N
i=1 Xi

]
= E

[
E
[
s

∑N
i=1 Xi | N

]]
= E

[
GX(s)N

]
= GN(GX(s))

This result is useful in the study of branching processes. See the course in
Stochastic Processes.
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The moment generating function

For any variable, X, the moment generating function of X is defined to be

MX(s) = E
[
esX
]
.

This generates the moments of X as we have

MX(s) = E

[ ∞∑
i=1

(sX)i

i!

]
diMX(s)

dsi

∣∣∣∣
s=0

= E
[
Xi
]
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Example 9
Suppose that X ∼ G(α, β). Then

fX(x) =
βα

Γ(α)
xα−1e−βx for x > 0

MX(s) =
∫ ∞

0

esx βα

Γ(α)
xα−1e−βx dx

=
∫ ∞

0

βα

Γ(α)
xα−1e−(β−s)x dx

=
(

β

β − s

)α

dM

ds
=

αβα

(β − s)α−1

dM

ds

∣∣∣∣
s=0

=
α

β
= E[X]
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Example 10
Suppose that X ∼ N (0, 1). Then

MX(s) =
∫ ∞

−∞
esx 1√

2π
e−

x2

2 dx

=
∫ ∞

−∞

1√
2π

exp
(
−1

2
[
x2 − 2s

])
dx

=
∫ ∞

−∞

1√
2π

exp
(
−1

2
[
x2 − 2s + s2 − s2

])
dx

=
∫ ∞

−∞

1√
2π

exp
(
−1

2

[
(x− s)2 − s2

])
dx

= e
s2

2 .
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The moment generating function of a sum of independent variables

Suppose we have a sequence of independent variables, X1, X2, . . . , Xn with
mgfs M1(s), . . . ,Mn(s). Then, if Y =

∑n
i=1 Xi, it is easy to see that

MY (s) =
n∏

i=1

Mi(s)

and if the variables are identically distributed with common mgf MX(s), then

MY (s) = MX(s)n.
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Example 11
Suppose that Xi ∼ E(λ) for i = 1, . . . , n are independent. Then

MX(s) =
∫ ∞

0

esxλe−λx dx

= λ

∫ ∞

0

e−(λ−s)x dx

=
λ

λ− s
.

Therefore the mgf of Y =
∑n

i=1 Xi is given by

MY (s) =
(

λ

λ− s

)n

which we can recognize as the mgf of a gamma distribution, Y ∼ G(n, λ).

Probability and Statistics



Proof of the central limit theorem

For any variable, Y , with zero mean and unit variance and such that all
moments exist, then the moment generating function is

MY (s) = E[esY ] = 1 +
s2

2
+ o(s2).

Now assume that X1, . . . , Xn are a random sample from a distribution with
mean µ and variance σ2. Then, we can define the standardized variables,
Yi = Xi−µ

σ , which have mean 0 and variance 1 for i = 1, . . . , n and then

Zn =
X̄ − µ

σ/
√

n
=
∑n

i=1 Yi√
n

Now, suppose that MY (s) is the mgf of Yi, for i = 1, . . . , n. Then

MZn(s) = MY

(
s/
√

n
)n
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and therefore,

MZn(s) =
(

1 +
s2

2n
+ o(s2/n)

)n

→ e
s2

2

which is the mgf of a normally distributed random variable.



and therefore,

MZn(s) =
(

1 +
s2

2n
+ o(s2/n)

)n

→ e
s2

2

which is the mgf of a normally distributed random variable.

To make this result valid for variables that do not necessarily possess
all their moments, then we can use essentially the same arguments but
defining the characteristic function CX(s) = E[eisX] instead of the moment
generating function.
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Multivariate distributions

It is straightforward to extend the concept of a random variable to the
multivariate case. Full details are included in the course on Multivariate
Analysis.

For two discrete variables, X and Y , we can define the joint probability function
at (X = x, Y = y) to be P (X = x, Y = y) and in the continuous case, we
similarly define a joint density function fX,Y (x, y) such that∑

x

∑
y

P (X = x, Y = y) = 1

∑
y

P (X = x, Y = y) = P (X = x)

∑
x

P (X = x, Y = y) = P (Y = y)

and similarly for the continuous case.
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Conditional distributions

The conditional distribution of Y given X = x is defined to be

fY |x(y|x) =
fX,Y (x, y)

fX(x)
.

Two variables are said to be independent if for all x, y, then fX,Y (x, y) =
fX(x)fY (y) or equivalently if fY |x(y|x) = fY (y) or fX|y(x|y) = fX(x).

We can also define the conditional expectation of Y |x to be E[Y |x] =∫
yfY |x(y|x) dx.
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Covariance and correlation

It is useful to obtain a measure of the degree of relation between the two
variables. Such a measure is the correlation.

We can define the expectation of any function, g(X, Y ), in a similar way to
the univariate case,

E[g(X, Y )] =
∫ ∫

g(x, y)fX,Y (x, y) dx dy.

In particular, the covariance is defined as

σX,Y = Cov[X, Y ] = E[XY ]− E[X]E[Y ].

Obviously, the units of the covariance are the product of the units of X and
Y . A scale free measure is the correlation,

ρX,Y = Corr[X, Y ] =
σX,Y

σXσY
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Properties of the correlation are as follows:

• −1 ≤ ρX,Y ≤ 1

• ρX,Y = 0 if X and Y are independent. (This is not necessarily true in
reverse!)

• ρXY
= 1 if there is an exact, positive relation between X and Y so that

Y = a + bX where b > 0.

• ρXY
= −1 if there is an exact, negative relation between X and Y so that

Y = a + bX where b < 0.
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Conditional expectations and variances

Theorem 6
For two variables, X and Y , then

E[Y ] = E[E[Y |X]]

V [Y ] = E[V [Y |X]] + V [E[Y |X]]

Proof

E[E[Y |X]] = E

[∫
yfY |X(y|X) dy

]
=
∫

fX(x)
∫

yfY |X(y|X) dy dx

=
∫

y

∫
fY |X(y|x)fX(x) dx dy

=
∫

y

∫
fX,Y (x, y) dx dy

=
∫

yfY (y) dy = E[Y ]
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Example 12
A random variable X has a beta distribution, X ∼ B(α, β), if

fX(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for 0 < x < 1.

The mean of X is E[X] = α
α+β .

Suppose now that we toss a coin with probability P (heads) = X a total of n
times and that we require the distribution of the number of heads, Y .

This is the beta-binomial distribution which is quite complicated:
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P (Y = y) =
∫ 1

0

P (Y = y|X = x)fX(x) dx

=
∫ 1

0

(
n
y

)
xy(1− x)n−y Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx

=
(

n
y

)
Γ(α + β)
Γ(α)Γ(β)

∫ 1

0

xα+y−1(1− x)β+n−y−1 dx

=
(

n
y

)
Γ(α + β)
Γ(α)Γ(β)

Γ(α + y)Γ(β + n− y)
Γ(α + β + n)

for y = 0, 1, . . . , n.
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We could try to calculate the mean of Y directly using the above probability
function. However, this would be very complicated. There is a much easier
way.



We could try to calculate the mean of Y directly using the above probability
function. However, this would be very complicated. There is a much easier
way.

E[Y ] = E[E[Y |X]]

= E[nX] because Y |X ∼ BI(n, X)

= n
α

α + β
.
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Statistics

Statistics is the science of data analysis. This is concerned with

• how to generate suitable samples of data

• how to summarize samples of data to illustrate their important features

• how to make inference about populations given sample data.
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Sampling

In statistical problems we usually wish to study the characteristics of some
population. However, it is usually impossible to measure the values of the
variables of interest for all members of the population. This implies the use of
a sample.

There are many possible ways of selecting a sample. Non random approaches
include:

• Convenience sampling

• Volunteer sampling

• Quota sampling

Such approaches can suffer from induced biases.
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Random sampling

A better approach is random sampling. For a population of elements, say
e1, . . . , eN , then a simple random sample of size n selects every possible n-tuple
of elements with equal probability. Unrepresentative samples can be selected
by this approach, but is no a priori bias which means that this is likely.

When the population is large or heterogeneous, other random sampling
approaches may be preferred. For example:

• Systematic sampling,

• Stratified sampling

• Cluster sampling

• Multi stage sampling

Sampling theory is studied in more detail in Quantitative Methods.
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Descriptive statistics

Given a data sample, it is important to develop methods to summarize
the important features of the data both visually and numerically. Different
approaches should be used for different types of data.

• Categorical data:

– Nominal data,
– Ordinal data.

• Numerical data:

– Discrete data,
– Continuous data.
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Categorical data

Categorical data are those that take values in different categories, e.g. blood
types, favourite colours, etc. These data may be nominal, when the different
categories have no inherent sense of order or ordinal, when the categories are
naturally ordered.

Example 13
The following table gives the frequencies of the different first moves
in a chess game found on 20/02/1996 using the search engine of
http://www.chessgames.com/.

Opening Frequency Relative frequency
e4 178130 0.4794
d4 125919 0.3389

Nf3 32206 0.0867
c4 28796 0.0776

Others 6480 0.0174
Total 371531 1.0000
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This is an example of a sample of nominal data. The frequency table has been
augmented with the relative frequencies or proportions in each class. We can
see immediately that the most popular opening or modal class is e4, played in
nearly half the games.

A nice way of visualizing the data is via a pie chart. This could be augmented
with the frequencies or relative frequencies in each class.

e4

d4

Nf3

c4
Others
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An alternative display is a bar chart which can be constructed using frequencies
or relative frequencies.

e4 d4 Nf3 c4 Others
0

2

4

6

8

10

12

14

16

18
x 10

4

Opening

F
re

qu
en

cy

When the data are categorical, it is usual to order them from highest to lowest
frequency. With ordinal data, it is more sensible to use the ordering of the
classes.
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A final approach which is good to look at but not so easy to interpret is the
pictogram. The area of each image is proportional to the frequency.

e4 d4 Nf3 c4 Others
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Measuring the relation between two categorical variables

Often we may record the values of two (or more) categorical variables. In such
cases we are interested in whether or not there is any relation between the
variables. To do this, we can construct a contingency table.

Example 14
The following data given in Morrell (1999) come from a South African study
of single birth children. At birth in 1990 it was recorded whether or not the
mothers received medical aid and later, in 1995 the researchers attempted to
trace the children. Those children found were included in the five year group
for further study.

Children not traced Five-Year Group
Had Medical Aid 195 46
No Medical Aid 979 370

1590

CH Morrell (1999). Simpson’s Paradox: An Example From a Longitudinal Study in South Africa. Journal of Statistics Education, 7.
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Analysis of a contingency table

In order to analyze the contingency table it is useful to first calculate the
marginal totals.

Children not traced Five-Year Group
Had Medical Aid 195 46 241
No Medical Aid 979 370 1349

1174 416 1590

and then to convert the original data into percentages.

Children not traced Five-Year Group
Had Medical Aid .123 .029 .152
No Medical Aid .615 .133 .848

.738 .262 1
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Then it is also possible to calculate conditional frequencies. For example, the
proportion of children not traced who received medical aid is

195/1174 = .123/.738 = .166.

Finally, we may often wish to assess whether there exists any relation between
the two variables. In order to do this we can assess how many data we would
expect to see in each cell, assuming the marginal totals if the data really were
independent.

Children not traced Five-Year Group
Had Medical Aid 177.95 63.05 241
No Medical Aid 996.05 352.95 1349

1174 416 1590

Comparing these expected totals with the original frequencies, we could set up
a formal statistical (χ2) test for independence.
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Simpson’s paradox

Sometimes we can observe apparently paradoxical results when a population
which contains heterogeneous groups is subdivided. The following example of
the so called Simpson’s paradox comes from the same study.

http://www.amstat.org/publications/jse/secure/v7n3/datasets.morrell.cfm
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Numerical data

When data are naturally numerical, we can use both graphical and numerical
approaches to summarize their important characteristics. For discrete data, we
can frequency tables and bar charts in a similar way to the categorical case.

Example 15
The table reports the number of previous convictions for 283 adult males
arrested for felonies in the USA taken from Holland et al (1981).

# Previous convictions Frequency Rel. freq. Cum. freq. Cum. rel. freq.

0 0 0.0000 0 0.0000
1 16 0.0565 16 0.0565
2 27 0.0954 43 0.1519
3 37 0.1307 80 0.2827
4 46 0.1625 126 0.4452
5 36 0.1272 162 0.5724
6 40 0.1413 202 0.7138
7 31 0.1095 233 0.8233
8 27 0.0954 260 0.9187
9 13 0.0459 273 0.9647

10 8 0.0283 281 0.9929
11 2 0.0071 283 1.0000

> 11 0 0.0000 283 1.0000

TR Holland, M Levi & GE Beckett (1981). Associations Between Violent And Nonviolent Criminality: A Canonical Contingency-Table

Analysis. Multivariate Behavioral Research, 16, 237–241.
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Note that we have augmented the table with relative frequencies and cumulative
frequencies. We can construct a bar chart of frequencies as earlier but we
could also use cumulative or relative frequencies.
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Note that the bars are much thinner in this case. Also, we can see that the
distribution is slightly positively skewed or skewed to the right.
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Continuous data and histograms

With continuous data, we should use histograms instead of bar charts. The
main difficulty is in choosing the number of classes. We can see the effects of
choosing different bar widths in the following web page.

http://www.shodor.org/interactivate/activities/histogram/

An empirical rule is to choose around
√

n classes where n is the number of
data. Similar rules are used by the main statistical packages.

It is also possible to illustrate the differences between two groups of individuals
using histograms. Here, we should use the same classes for both groups.
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Example 16
The table summarizes the hourly wage levels of 30 Spanish men and 25 Spanish
women, (with at least secondary education) who work > 15 hours per week.

M W
Interval ni fi ni fi

[300, 600) 1 .033 0 0
[600, 900) 1 .033 1 .04

[900, 1200) 2 .067 7 .28
[1200, 1500) 5 .167 10 .4
[1500, 1800) 10 .333 6 .24
[1800, 2100) 8 .267 1 .04
[2100, 2400) 3 .100 0 0

> 2400 0 0 0 0
30 1 25 1

J Dolado and V LLorens (2004). Gender Wage Gaps by Education in Spain: Glass Floors vs. Glass Ceilings, CEPR DP., 4203.

http://www.eco.uc3m.es/temp/dollorens2.pdf
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The male average wage is a little higher and the distribution of the male wages
is more disperse and asymmetric.
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Histograms with intervals of different widths

In this case, the histogram is constructed so that the area of each bar is
proportional to the number of data.

Example 17
The following data are the results of a questionnaire to marijuana users
concerning the weekly consumption of marijuana.

g / week Frequency
[0, 3) 94

[3, 11) 269
[11, 18) 70
[18, 25) 48
[25, 32) 31
[32, 39) 10
[39, 46) 5
[46, 74) 2

> 74 0

Landrigan et al (1983). Paraquat and marijuana: epidemiologic risk assessment. Amer. J. Public Health, 73, 784-788
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We augment the table with relative frequencies and bar widths and heights.

g / week width ni fi height
[0, 3) 3 94 .178 .0592

[3, 11) 8 269 .509 .0636
[11, 18) 7 70 .132 .0189
[18, 25) 7 48 .091 .0130
[25, 32) 7 31 .059 .0084
[32, 39) 7 10 .019 .0027
[39, 46) 7 5 .009 .0014
[46, 74) 28 2 .004 .0001

> 74 0 0 0 0
Total 529 1

We use the formula

height = frequency/interval width
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The distribution is very skewed to the right.
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Other graphical methods

• the frequency polygon. A histogram is constructed and the bars are lines
are used to join each bar at the centre. Usually the histogram is then
removed. This simulates the probability density function.

• the cumulative frequency polygon. As above but using a cumulative
frequency histogram and joining at the end of each bar.

• the stem and leaf plot. This is like a histogram but retaining the original
numbers.
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Sample moments

For a sample, x1, . . . , xn of numerical data, then the sample mean is defined
as x̄ = 1

n

∑n
i=1 xi and the sample variance is s2 = 1

n−1

∑n
i=1(xi − x̄)2. The

sample standard deviation is s =
√

s2.

The sample mean may be interpreted as an estimator of the population mean.
It is easiest to see this if we consider grouped data say x1, . . . , xk where xj is

observed nj times in total and
∑k

i=1 ni = n. Then, the sample mean is

x̄ =
1
n

k∑
j=1

njxj =
k∑

j=1

fjxj

where fj is the proportion of times that xj was observed.

When n → ∞, then (using the frequency definition of probability), we know
that fj → P (X = xj) and so x̄ → µX, the true population mean.

Sometimes the sample variance is defined with a denominator of n instead of
n− 1. However, in this case, it is a biased estimator of σ2.
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Problems with outliers, the median and interquartile range

The mean and standard deviation are good estimators of location and spread
of the data if there are no outliers or if the sample is reasonably symmetric.
Otherwise, it is better to use the sample median and interquartile range.

Assume that the sample data are ordered so that x1 ≤ x2 ≤ . . . ≤ xn. Then
the sample median is defined to be

x̃ =

 xn+1
2

if n is odd
xn

2
+xn+2

2
2 if n is even.

For example, if we have a sample 1, 2, 6, 7, 8, 9, 11, the median is 7 and for
the sample 1, 2, 6, 7, 8, 9, 11, 12 then the median is 7.5. We can think of the
median as dividing the sample in two.
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We can also define the quartiles in a similar way. The lower quartile is
Q1 = xn+1

4
and the upper quartile may be defined as Q3 = x3(n+1)

4
where if the

fraction is not a whole number, the value should be derived by interpolation.
Thus, for the sample 1, 2, 6, 7, 8, 9, 11, then Q1 = 2 and Q3 = 9. For the
sample 1, 2, 6, 7, 8, 9, 11, 12, we have n+1

4 = 2.25 so that

Q1 = 2 + 0.25(6− 2) = 3

and 3(n+1)
4 = 6.75 so

Q3 = 9 + 0.75(11− 9) = 10.5.

A nice visual summary of a data sample using the median, quartiles and range
of the data is the so called box and whisker plot or boxplot.

http://en.wikipedia.org/wiki/Box_plot
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Correlation and regression

Often we are interested in modeling the extent of a linear relationship between
two data samples.

Example 18
In a study on the treatment of diabetes, the researchers measured patients
weight losses, y, and their initial weights on diagnosis, x to see if weight loss
was influenced by initial weight.

X 225 235 173 223 200 199 129 242

Y 15 44 31 39 6 16 21 44

X 140 156 146 195 155 185 150 149

Y 5 12 −3 19 10 24 −3 10

In order to assess the relationship, it is useful to plot these data as a scatter
plot.
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We can see that there is a positive relationship between initial weight and
weight loss.
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The sample covariance

In such cases, we can measure the extent of the relationship using the sample
correlation. Given a sample, (x1, y1), . . . , (xn, yn), then the sample covariance
is defined to be

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ).

In our example, we have

x̄ =
1
16

(225 + 235 + . . . + 149)

= 181.375

ȳ =
1
16

(15 + 44 + . . . + 10)

= 18.125

sxy =
1
16
{(225− 181.375)(15− 18.125)+

(235− 181.375)(44− 18.125) + . . . +

(149− 181.375)(10− 18.125)} ≈ 361.64
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The sample correlation

The sample correlation is

rxy =
sxy

sxsy

where sx and sy are the two standard deviations. This has properties similar
to the population correlation.

• −1 ≤ rxy ≤ 1.

• rxy = 1 if y = a + bx and rxy = −1 if y = a− bx for some b > 0.

• If there is no relationship between the two variables, then the correlation is
(approximately) zero.

In our example, we find that s2
x ≈ 1261.98 and s2

y ≈ 211.23 so that sx ≈ 35.52
and sy ≈ 14.53. which implies that rxy = 361.64

35.52×14.53 ≈ 0.70 indicating a
strong, positive relationship between the two variables.
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Correlation only measures linear relationships!

High or low correlations can often be misleading.

In both cases, the variables have strong, non-linear relationships. Thus,
whenever we are using correlation or building regression models, it is always
important to plot the data first.
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Spurious correlation

Correlation is often associated with causation. If X and Y are highly correlated,
it is often assumed that X causes Y or Y causes X.



Spurious correlation

Correlation is often associated with causation. If X and Y are highly correlated,
it is often assumed that X causes Y or Y causes X.
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Example 19
Springfield had just spent millions of dollars creating a highly sophisticated
”Bear Patrol” in response to the sighting of a single bear the week before.

Homer: Not a bear in sight. The ”Bear Patrol” is working like a a charm
Lisa: That’s specious reasoning, Dad.
Homer:[uncomprehendingly] Thanks, honey.
Lisa: By your logic, I could claim that this rock keeps tigers away.
Homer: Hmm. How does it work? Lisa:
It doesn’t work. (pause) It’s just a stupid rock!
Homer: Uh-huh.
Lisa: But I don’t see any tigers around, do you?
Homer: (pause) Lisa, I want to buy your rock.

Much Apu about nothing. The Simpsons series 7.
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Example 20
1988 US census data showed that numbers of churches in a city was highly
correlated with the number of violent crimes. Does this imply that having
more churches means that there will be more crimes or that having more crime
means that more churches are built?



Example 20
1988 US census data showed that numbers of churches in a city was highly
correlated with the number of violent crimes. Does this imply that having
more churches means that there will be more crimes or that having more crime
means that more churches are built?

Both variables are highly correlated to population. The correlation between
them is spurious.
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Regression

An model representing an approximately linear relation between x and y is

y = α + βx + ε

where ε is a prediction error.

In this formulation, y is the dependent variable whose value is modeled as
depending on the value of x, the independent variable .

How should we fit such a model to the data sample?
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Least squares

Gauss

We wish to find the line which best fits the sample data (x1, y1), . . . , (xn, yn).
In order to do this, we should choose the line, y = a + bx, which in some way
minimizes the prediction errors or residuals,

ei = yi − (a + bxi) for i = 1, . . . , n.
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A minimum criterion would be that
∑n

i=1 ei = 0. However, many lines satisfy
this, for example y = ȳ. Thus, we need a stronger constraint.

The standard way of doing this is to choose to minimize the sum of squared
errors, E(a, b) =

∑n
i=1 e2

i .

Theorem 7
For a sample (x1, y1), . . . , (xn, yn), the line of form y = a+bx which minimizes
the sum of squared errors, E[a, b] =

∑n
i=1(yi − a− bxi)2 is such that

b =
sxy

s2
x

a = ȳ − bx̄
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Proof Suppose that we fit the line y = a + bx. We want to minimize the
value of E(a, b). We can recall that at the minimum,

∂E

∂a
=

∂E

∂b
= 0.

Now, E =
∑n

i=1(yi − a− bxi)2 and therefore

∂E

∂a
= −2

n∑
i=1

(yi − a− bxi) and at the minimum

0 = −2
n∑

i=1

(yi − a− bxi)

= −2 (nȳ − na− nbx̄)

a = ȳ − bx̄
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∂E

∂b
= −2

n∑
i=1

xi(yi − a− bxi) and at the minimum,

0 = −2

(
n∑

i=1

xiyi −
n∑

i=1

xi(a + bxi)

)
n∑

i=1

xiyi =
n∑

i=1

xi(a + bxi)

=
n∑

i=1

xi(ȳ − bx̄ + bxi) substituting for a

= nx̄ȳ + b

(
n∑

i=1

x2
i − nx̄2

)

b =
∑n

i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx̄2

=
nsxy

ns2
x

=
sxy

s2
x
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We will fit the regression line to the data of our example on the weights of
diabetics. We have seen earlier that x̄ = 181.375, ȳ = 18.125 , sxy = 361.64,
s2

x = 1261.98 and s2
y = 211.23.

Thus, if we wish to predict the values of y (reduction in weight) in terms of x
(original weight), the least squares regression line is

y = a + bx

where

b =
361.64
1261.98

≈ 0.287

a = 18.125− 0.287× 181.375 ≈ −33.85

The following diagram shows the fitted regression line.
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We can use this line to predict the weight loss of a diabetic given their initial
weight. Thus, for a diabetic who weighed 220 pounds on diagnosis, we would
predict that their weight loss would be around

ŷ = −33.85 + 0.287× 220 = 29.29 lbs.

Note that we should be careful when making predictions outside the range of
the data. For example the linear predicted weight gain for a 100 lb patient
would be around 5 lbs but it is not clear that the linear relationship still holds
at such low values.
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Residual analysis

Los residuals or prediction errors are the differences ei = yi − (a + bxi). It is
useful to see whether the average prediction error is small or large. Thus, we
can define the residual variance

s2
e =

1
n− 1

n∑
i=1

e2
i

and the residual standard deviation, se =
√

s2
e.

In our example, we have e1 = 15−(−33.85+0.287×225), e2 = 44−(−33.85+
0.287× 235) etc. and after some calculation, the residual sum of squares can
be shown to be s2

e ≈ 123. Calculating the results this way is very slow. There
is a faster method.
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Theorem 8

ē = 0

s2
r = s2

y

(
1− r2

xy

)
Proof

ē =
1
n

n∑
i=1

(yi − (a + bxi))

=
1
n

n∑
i=1

(yi − (ȳ − bx̄ + bxi)) by definition of a

=
1
n

(
n∑

i=1

(yi − ȳ)− b
n∑

i=1

(xi − x̄)

)
= 0
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s2
e =

1
n− 1

n∑
i=1

(yi − (a + bxi))
2

=
1

n− 1
(yi − (ȳ − bx̄ + bxi))

2 by definition of a

=
1

n− 1
((yi − ȳ)− b(xi − x̄)))2

=
1

n− 1

(
n∑

i=1

(yi − ȳ)2 − 2b
n∑

i=1

(yi − ȳ)(xi − x̄) + b2
n∑

i=1

(xi − x̄)2
)

= s2
y − 2bsxy + b2s2

x = s2
y − 2

sxy

s2
x

sxy +
(

sxy

s2
x

)2

s2
x by definition of b

= s2
y −

s2
xy

s2
x

= s2
y

(
1−

s2
xy

s2
xs2

y

)

= s2
y

(
1−

(
sxy

sxsy

)2
)

= s2
y

(
1− r2

xy

)
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Interpretation

This result shows that
s2

r

s2
y

= (1− r2
xy).

Consider the problem of estimating y. If we only observe y, . . . , yn, then our
best estimate is ȳ and the variance of our data is s2

y.

Given the x data, then our best estimate is the regression line and the residual
variance is s2

r.

Thus, the percentage reduction in variance due to fitting the regression line is

R2 = (1− r2
xy)× 100%

In our example, rxy ≈ 0.7 so R2 = (1− 0.49)× 100% = 51%.
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Graphing the residuals

As we have seen earlier, the correlation between two variables can be high
when there is a strong non-linear relation.

Whenever we fit a linear regression model, it is important to use residual plots
in order to check the adequacy of the fit.

The regression line for the following five groups of data, from Basset et al
(1986) is the same, that is

y = 18.43 + 0.28x

Bassett, E. et al (1986). Statistics: Problems and Solutions. London: Edward Arnold
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• The first case is a standard regression.

• In the second case, we have a non-linear fit.

• In the third case, we can see the influence of an outlier.

• The fourth case is a regression but . . .

• In the final case, we see that one point is very influential.

Now we can observe the residuals.
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In case 4 we see the residuals increasing as y increases.
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Two regression lines

So far, we have used the least squares technique to fit the line y = a + bx
where a = ȳ − bx̄ and b = sxy

s2
x
.

We could also rewrite the linear equation in terms of x and try to fit x = c+dy.
Then, via least squares, we have that c = x̄− dȳ and d = sxy

s2
y
.

We might expect that these would be the same lines, but rewriting

y = a + bx ⇒ x = −a

b
+

1
b
y 6= c + dy

It is important to notice that the least squares technique minimizes the
prediction errors in one direction only.
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The following example shows data on the extension of a cable, y relative to
force applied, x and the fit of both regression lines.
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Regression and normality

Suppose that we have a statistical model

Y = α + βx + ε

where ε ∼ N (0, σ2). Then, if data come from this model, it can be shown that
the least squares fit method coincides with the maximum likelihood approach
to estimating the parameters.

You will study this in more detail in the course on Regression Models.
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