INTRODUCCIÓN A LA ES-TADÍSTICA

Profesor: Mike Wiper

Despacho: 10.1.33

Teléfono: 9852

Email: michael.wiper@uc3m.es

Objetivo

Introducción a los conceptos fundamentales del análisis de datos y de la probabilidad.

Es decir:

- Cómo (sacar y) resumir una muestra de datos.
- Cómo medir la incertidumbre sobre los posibles resultados de algún experimento.
- El uso de un software estadístico (*Stat-graphics*).

En el segundo curso, en **Estadística I**, se estudiara cómo hacer inferencia sobre las características de una población basado en los resultados de un experimento.

Bibliografia

El libro básico para la asignatura es:

Peña, D. y Romo, J. (1997). Introducción a la Estadística para las Ciencias Sociales. Madrid: McGraw Hill.

Otro libro útil pero algo más avanzado es:

Newbold, P. (1996). Estadística para los negocios y la economía. Madrid: Prentice Hall.

Un libro ilustrando el uso del software estadístico *Statgraphics* es:

■ Pérez López, C. (2001). Estadística práctica ca con Statgraphics. Madrid: Prentice Hall.

Se encuentra mucho más materia en la biblioteca (sección **519.2**) o en internet.

Criterios de evaluación

- Examen final.
- Análisis de un conjunto de datos reales.
- Entrega de ejercicios.
- Asistencia a clases de prácticas.

Programa

1. Estadística descriptiva

Cómo resumir las características de una muestra de datos

Tipos de variables. Distribuciones de frecuencias. Representaciones gráficas. Medidas de centralización. Medidas de dispersión. Medidas de asimetría y de apuntamiento. Transformaciones.

2. Descripción conjunta de varias variables

Cómo resumir una muestra de dos variables.

Distribuciones conjuntas de frecuencias. Distribuciones marginales y condicionadas. Representaciones gráficas de dos o más variables.

3. Correlación y regresión

Relación lineal entre dos variables.

La covarianza. El coeficiente de correlación y sus propiedades. La recta de regresión. Residuos y la desviación típica residual. Aplicaciones.

4. Series temporales y números índice

Variables que cambian en el tiempo.

Datos temporales y su análisis descriptivo. Tendencia y estacionalidad. Descomposición de series temporales. Números índice: los métodos de Laspeyres y de Paasche, el índice de precios al consumo (IPC).

5. Probabilidad

Cómo medir el incertidumbre.

El concepto de probabilidad y sus propiedades, probabilidad condicional, sucesos independientes, el teorema de Bayes.

6. Variables aleatorias

Variables discretas y continuas. Función de distribución. Función de densidad. Medidas características de centralización, dispersión, asimetría y apuntamiento. Transformaciones de variables aleatorias.

7. Modelos discretas

Variables de Bernouilli. Distribución binomial. Distribución geométrica. Distribución de Poisson.

8. Modelos continuos

Distribución exponencial. Distribuciones de duración de vida. Distribución normal. La distribución normal como aproximación a otras distribuciones. Distribución lognormal.

9. Introducción a distribuciones multivariantes

Distribución conjunta. Distribuciones marginales y condicionales. Independencia.