
6. Implementation of Bayesian inference

Objective

To introduce the main numerical methods that can be used to evaluate the
integrals necessary in many Bayesian problems. In particular, we concentrate
on MCMC and Gibbs sampling approaches.

Recommended reading

• Wiper, M.P. (2007). Introduction to Markov chain Monte Carlo simulation.
In Encyclopedia of Statistics in Quality and Reliability, Wiley, pp 1014–
1020.
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Introduction

We have seen that numerical procedures are often needed in Bayesian inference
for the computation of the posterior distribution

p(θ|x) =
f(x|θ)p(θ)∫
f(x|θ)p(θ) dθ

and for the computation of posterior moments, predictive distributions etc.
The different techniques which might be applied are as follows:

• Numerical integration,

• Gaussian approximations (considered in chapter 8),

• Monte Carlo approaches:

� direct methods,
� via Markov chains.
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Numerical integration

Many numerical integration techniques have been developed. See for example
Auśın (2007) or the Wikipedia

http://en.wikipedia.org/wiki/Numerical_integration

for fuller reviews.

One of the simplest approaches is Simpson’s rule. Supposing that we wish to
evaluate the (one dimensional) integral

I =
∫ b

a

g(x) dx,

in its most simple form, Simpson’s rule suggests approximating the integral
using

I ≈ b− a

6

[
g(a) + 4g

(
a + b

2

)
+ g(b)

]
.
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This approximation can be improved by subdividing the interval [a, b] into an
even number, say N , subintervals

[a, a + h) ∪ · · · ∪ [a + (N − 1)h, a + Nh = b].

Using Simpson’s rule in each subinterval [a + jh, a + (j + 2)h) leads to the
final estimate

I ≈ h

3
[g(a) + 4g(a + h) + 2g(a + 2h) + · · ·

+2g(a + (N − 2)h) + 4g(a + (N − 1)h)+

+g(a + Nh)] .

Example 47
Suppose that we wish to estimate the constant of a beta density, X ∼ B(7, 10),
with density function

π(x) ∝ x6(1− x)9 for 0 < x < 1.
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We shall try to estimate the beta function, B(7, 10) =
∫ 1

0
x6(1 − x)9dx,

using Simpson’s rule. Setting h = 0.1, we find the following table:

θ θ6(1− θ)9
∫ θ

0
φ6(1− φ)9 dφ

.0 0.00000E − 00 0.00000E − 00

.1 3.87420E − 07

.2 8.58994E − 06 3.37987E − 07

.3 2.94178E − 05

.4 4.12783E − 05 5.92263E − 06

.5 3.05176E − 05

.6 1.22306E − 05 1.17753E − 05

.7 2.31568E − 06

.8 1.34218E − 07 1.24962E − 05

.9 5.31441E − 10
1.0 0.00000E − 00 1.25007E − 05

The true value of the integral is B(7, 10) = 1.24875E − 05. Using Simpson’s
rule with h = 0.05 gives the result 1.24876E − 05.

Bayesian Statistics



An improvement on Simpson’s basic rule is the adaptive Simpson’s rule, which
does not fix the number of subintervals a priori, but instead, continues to
subdivide the intervals until the estimated error reaches a given tolerance.
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Alternative approaches and problems

Other rules have been designed which take into account the form of the
integrand. For example, Gaussian quadrature approaches use an approximation

I =
∫ b

a

g(x) dx ≈
N∑

i=1

wig(xi)

where the points xi are determined as the roots of a class of orthogonal
polynomials.

The main problem with numerical integration approaches is the curse of
dimensionality. As the dimension of the integral increases, the number of
function evaluations necessary to achieve a given tolerance increases very
rapidly. Thus, in general, such methods are not employed for higher than two
or three dimensional integrals.
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Monte Carlo approaches

We have seen the basic Monte Carlo method earlier in chapter 3. Suppose that
we have X ∼ π and that we wish to estimate the mean of some functional
E[g(X)]. Then given a sample, x, of size n from π, we can estimate

ḡ(x) =
1
N

N∑
i=1

g(xi) ≈ E[g(X)].

When E[g2(X)] exists, then we can estimate the sample variance using

V [g(X)] =
1
N

∫
(g(x)− E[g(X)])2 ≈ 1

N2

N∑
i=1

(g(xi)− ḡ(x))2.

In many cases however, there is no straightforward way of generating a sample
directly from π. In such cases, two main alternatives have been considered:
importance sampling and rejection sampling.
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Importance sampling

Suppose that sampling from π is complicated. Suppose instead that we can
easily sample from another density, say f . Now we can write the expected
value of g(X) (under π) as

Eπ[g(X)] =
∫

g(x)π(x) dx

=
∫

g(x)π(x)
f(x)

f(x) dx

= Ef [w(X)g(X)]

where w(X) = π(X)
f(X). Thus, we can approximate the expectation by generating

a sample of size N from f and using

Eπ[g(X)] ≈ 1
N

N∑
i=1

w(xi)g(xi) where w(xi) =
π(xi)
f(xi)

for i = 1, . . . , N .
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Furthermore, if the density π is known only up to an integration constant, C,
then we can extend the approximation to give

Eπ[g(X)] ≈
∑N

i=1 w(xi)g(xi)∑N
i=1 w(xi)

where the denominator (divided by N) is an approximation of C.

In general, the choice of importance function, f , will strongly influence the
efficiency of this algorithm. One should first note that the variance of the
importance sampling estimator of E[g(X)] is finite only when the expectation

Ef

[
w(X)2g(X)2

]
= Eπ

[
g(X)2w(X)

]
=
∫

g(x)2
π(x)2

f(x)
dx < ∞.

This implies that we cannot choose importance functions with lighter tails than
π. In the Bayesian context, where we often wish to estimate various posterior
expectations, then an efficient importance function will be similar to the true
posterior, but with heavier tails.
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Example 48
Consider Example 47 where we have X ∼ B(7, 10) so that π(x) ∝ x6(1− x)9,
and suppose that we wish to estimate the beta function B(7, 10) and the
posterior mean

E[X] =
1

B(7, 10)

∫ 1

0

x7(1− x)9 dx.

One possibility is to use importance sampling with a uniform importance
function. In this case, we have importance weights

w(x) =
π(x)

1
= x6(1− x)9

and given a uniform sample of size N , we can estimate
∑N

i=1 w(xi) ≈ B(7, 10)

and
∑N

i=1 xiw(xi)∑N
i=1 w(xi)

≈ E[X].

This is easily programmed in Matlab
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alpha=7; beta=10; n=1000;
x=rand(1,n);
w=(alpha-1)*log(x)+(beta-1)*log(1-x);
w=exp(w);
betafunctn=sum(w);
w=w/sum(w);
meanx=sum(w.*x);

Given an importance sample of size N = 1000, the beta function was estimated
to be 1.2779E− 005 (true value 1.24875E− 005) and the posterior mean was
estimated at 0.4044 (true mean 0.4118). In this example, sample sizes of over
100000 are needed to achieve more than 3 figure accuracy.
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Problems

One problem with this approach is that if the importance function is not similar
to π (or |g| × π) so that the centre of π (or |g| × π) is in the tail of the
importance function, then this can lead to many of the importance weights
being very small and thus, the integral estimates may be largely determined by
a very small number of data.

A second problem is that the importance sampling method does not provide a
sample from π. This can be remedied by using sampling importance resampling
(Rubin 1987).
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The SIR algorithm

One way of obtaining an approximate sample from π is by subsampling.

If the weights, w(xi) are normalized so that we define

wi =
w(xi)∑N
i=1 w(xi)

then we can generate an approximate sample, x̃, of size M < N from π by
setting x̃j = xi with probability wi for i = 1, . . . , N and j = 1, . . . ,M .

The following diagram shows the data simulated using a resample of size 1000
from an importance sample of size 10000.
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The sampled data well approximate the beta density.
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The rejection algorithm

As with standard Monte Carlo, we assume we wish to generate a sample from
π(x), which is known only up to a constant. Then the rejection approach
chooses to generate data from a proposal distribution, h(x), such that

π(x) < Mh(x)

for some given M > 0. The algorithm proceeds as follows.

For i = 1, . . . , N:

1. Generate x̃i ∼ h,

2. Generate ui ∼ U(0, 1),

3. If Muih(xi) < π(x̃i) set xi = x̃i.

4. Otherwise, repeat from step 1.
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Proof that this algorithm generates a sample from π

Consider P (X < c), where X is generated from this algorithm. We have:

P (X ≤ c) = P
(
X̃ ≤ c|U < π(X̃)/(Mh(X̃))

)
where X̃ ∼ h and U ∼ U(0, 1)

=
P
(
X̃ ≤ c, U < π(X̃)/(Mh(X̃))

)
P
(
U < π(X̃)/(Mh(X̃))

)
=

∫ c

−∞
∫ π(x̃)/(Mh(x̃))

0
h(x̃) du dx̃∫∞

−∞
∫ π(x̃)/(Mh(x̃))

0
h(x̃) du dx̃

=

∫ c

−∞
π(x̃)

Mh(x̃)h(x̃) dx̃∫∞
−∞

π(x̃)
Mh(x̃)h(x̃) dx̃

=

∫ c

−∞ π(x̃) dx∫∞
−∞ π(x̃) dx

= P (X < c) where X ∼ π.
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This algorithm clearly reduces to standard Monte Carlo sampling when h = π.
Otherwise, as with importance sampling, it is necessary that the tails of the
proposal distribution are thicker than those of π.

The main problem with this approach is finding a good proposal distribution so
that only a small number of candidates are rejected. Note that the probability
of accepting a draw (assuming that π is properly scaled to integrate to 1) is

P

(
U <

π(X̃)
Mh(X̃)

)
=

∫ ∞

−∞

∫ π(x̃)/(Mh(x̃))

0

h(x̃) du dx̃

=
∫ ∞

−∞

π(x̃)
Mh(x̃)

h(x̃) dx̃

=
1
M

so that we would like M to be as close to 1 as possible.
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Example 49
Suppose that we wish to simulate from a truncated normal distribution X ∼
T N (0, 1) where X > α > 0. One way to do this would be to sample directly
from the N (0, 1) density and simply reject those values that fall below α.
However, this method could be very inefficient if α is large. In this case, an
alternative is to use a shifted, exponential distribution

h(x) = λe−λ(x−α) for x > α

as an envelope function. (More sophisticated algorithms are proposed by
Geweke (1991) and Robert (1995).)
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Writing the normal density as π(x) = ce−
x2

2 , where 1
c =

√
2π (1− Φ(α)), then,

π(x)
h(x)

=
c

λ
exp

(
−x2

2
+ λ(x− α)

)
for x > α

≤ c

λ
exp

(
max
x>α

[
−x2

2
+ λ(x− α)

])
= M1(λ)I(λ > α) + M2(λ)I(λ ≤ α) where I is the indicator and

M1(λ) =
c

λ
exp

(
λ2

2
− αλ

)
M2(λ) =

c

λ
exp

(
−α2

2

)
To get the most efficient routine we should choose λ to minimize this function.
However, it is simpler to minimize only M2. This gives λ = α.
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In this case, the probability that a generated candidate, x̃ is accepted is

π(x̃)
h(x̃)M2(α)

= exp
(
−1

2
(x̃2 + α2) + αx̃

)
.

The following is the fitted distribution when α = 3. Only 86 out of 1000
proposed values were rejected. We can see that the fit is very good.
The probability of accepting a value generated from an untruncated normal
distribution is only 0.0013.
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Envelope methods

These are refinements of the basic algorithm based on bounding the target
density from above and below. Suppose that we can find a proposal density h
and a (non-negative) function g such that

g(x) ≤ π(x) ≤ Mh(x) for all x.

Then, the following algorithm generates a variable, X, with distribution π.

1. Generate X̃ ∼ h and U ∼ U(0, 1).

2. If U ≤ g(X̃)

Mh(X̃)
let X = X̃.

3. Otherwise, let X̃ = X if U ≤ π(X̃)

Mh(X̃)

4. Otherwise, repeat from step 1.
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The advantage of this algorithm is that the number of necessary evaluations
of π are reduced, and instead, we often only need to evaluate the (simpler)
densities, g and h. The probability that π does not have to be evaluated is
1
M

∫
g(x) dx which reflects the potential gain in using this approach.

One particular case that allows for the simple construction of bounding
functions is when the density, π, is log concave.

Definition 11
A density f(x) is said to be log concave if ∂2

∂x2f(x) < 0 ∀ x.

Most exponential family densities are log-concave. For example, if X|θ ∼
N (θ, 1), then ∂2

∂x2f(x|θ) = −1.
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Adaptive rejection sampling

This algorithm developed by Gilks (1992) and Gilks and Wild (1992) gives
a general method of constructing the bounding functions g and h when the
target density, π, is log concave.

Suppose that Sn is a set of points xi for i = 0, 1, . . . , n + 1 in the support of
π such that log π(xi) is known up to the same constant. As log π is concave,
then the line Li,i+1 going through (xi, log π(xi)) and (xi+1, log π(xi+1)) lies
below the graph of log π in (xi, xi+1] and lies above the graph outside
this interval. Thus, for the interval (xi, xi+1], we can define φ̄n(x) =
minLi−1,i(x), Li+1,i+2(x) and φ

n
(x) = Li,i+1(x) which bound log π. Defining

Hn(x) = exp(φ̄n(x)) and gn(x) = exp(φ
n
(x)), we have

gn(x) ≤ π(x) ≤ Hn(x) = Mnhn(x)say

where hn is a density function.

Bayesian Statistics



An advantage of this approach is that if a generated value is rejected, it can
then be added to the set Sn which improves the bounds on π at the next step.
This leads to the following generic algorithm.
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The ARS algorithm

1. Initialize n and Sn.

2. Generate X̃ ∼ hn and U ∼ U(0, 1).

3. If U < gn(X̃)/hn(X̃) then set X = X̃.

4. Otherwise, if U < π(X̃)/(Mnhn(X̃), set X = X̃.

5. Otherwise, set n = n + 1, Sn+1 = Sn ∪ X̃ and repeat from 2.

The big advantage of this algorithm is its universality. As long as π is known
to be log concave, it can always be used.
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MCMC methods

As simple Monte Carlo algorithms are not always straightforward to implement,
another alternative is to use algorithms which generate approximate Monte
Carlo samples. The most popular approach is Markov chain Monte Carlo or
MCMC which samples from a Markov chain whose limit distribution is the
distribution from which we wish to sample.
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Markov chains

Definition 12
A Markov chain, {Xt}, is defined to be a sequence of variables, X0, X1, X2, . . .,
such that the distribution of Xt given the previous values X0, . . . , Xt−1 only
depends on Xt−1, so that

P (Xt ∈ A|X0 = x0, X1 = x1, . . . , Xt−1 = xt−1) = P (Xt ∈ A|Xt−1 = xt−1)

for all A, x1, . . . , xt−1.

Most Markov chains that we deal with are time-homogeneous, that is

P (Xt+k ∈ A|Xt = x) = P (Xk ∈ A|X0 = x) for any k.

A simple example of a time-homogeneous Markov chain is a random walk

Xt = Xt−1 + εt where εt ∼ N
(
0, σ2

)
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It is clear that a time-homogeneous Markov chain is completely defined by the
initial state, X0, and by the transition kernel,

P (x, y) = P (Xt+1 = y|Xt = x).

For most problems of interest, the Markov chain will take values in a continuous,
multivariate state space. However, we shall assume initially that the state space
is finite and countable, so that we can assume that Xt ∈ {1, 2, . . . , k} for some
k.

In this case, we can define the t-step transition probabilities

pij(t) = P (Xt = j|X0 = i)

and then, we can consider the conditions under which these probabilities
converge, i.e. that

pij(t) → π(j) as t →∞.
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Definition 13
A Markov chain is said to be irreducible if for every i, j, there exists some t
such that pij(t) > 0.

Irreducibility implies that it is possible to visit every state in the chain starting
from any initial state.

Definition 14
A state, i, of a Markov chain is said to be recurrent if return to state i is
certain, that is if we define τi to be the number of steps needed to return to
state i, then P (τi < ∞) = 1. A recurrent state is further said to be positive
recurrent if the expected return time is finite, so that E[τi] < ∞.

Definition 15
The period of a state, i, is defined to be d(i) = gcd{t : pii(t) > 0}. A state
with period 1 is said to be aperiodic.

It can be shown that if any state of an irreducible chain is positive recurrent,
then all states are and also that all states in such a chain have the same period.
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The equilibrium distribution of a Markov chain

Theorem 28
For an irreducible, positive definite, aperiodic Markov chain with t step
transition density pij(t), then a unique equilibrium distribution π exists so that
for all i, j,

π(j) = lim
t→∞

pij(t).

Proof

It can be shown that a sufficient condition for the existence of a unique
stationary distribution is reversibility. A Markov chain with transition
probabilities pij = P (Xt+1 = j|Xt = i) is said to be reversible if there
exists a probability density π that satisfies detailed balance, so that for any
i, j, then

pijπ(i) = pjiπ(j).
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Markov chains with continuous state space

It is possible to extend the previous arguments to Markov chains with a
continuous state space, although the conditions for the equilibrium distribution
are slightly more technical, see e.g. Robert and Casella (2004). In this case,
given a transition kernel, P (x, y), then a stationary distribution π must satisfy

π(y) =
∫

P (x, y)π(x) dx.

From a Bayesian viewpoint, the objective of the MCMC approach is thus to
construct a Markov chain with a given stationary distribution π which is the
Bayesian posterior distribution.
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The Metropolis Hastings algorithm

Metropolis

This is a general algorithm for constructing a Markov chain and was introduced
by Metropolis et al (1953) and extended by Hastings (1970). The general
algorithm for generating a chain with equilibrium distribution π is as follows:
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The algorithm

1. Given the current value, Xt = x, generate a candidate value,
y, from a proposal density q(y|x).

2. Calculate the acceptance probability

α(x, y) = min
{

1,
π(y)q(x|y)
π(x)q(y|x)

}
.

3. With probability α(x, y) define Xt+1 = y and otherwise reject
the proposed value and set Xt+1 = x.

4. Repeat until convergence is judged and a sample of the desired
size is obtained.
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Why does this algorithm work?

The transition kernel of a move from x to y is

P (x, y) = α(x, y)q(y|x) +
(

1−
∫

α(x, y)q(y|x) dy

)
δx

where δx is the Dirac delta function at x.

Now, it is easy to show that

π(x)q(y|x)α(x, y) = π(y)q(x|y)α(y, x)

and that(
1−

∫
α(x, y)q(y|x) dy

)
δx =

(
1−

∫
α(y, x)q(x|y) dx

)
δy.
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This implies that we have detailed balance

π(x)P (x, y) = π(y)P (y, x)

so that π is a stationary distribution of the chain.

It is important to notice that the Metropolis Hastings acceptance probability
only depends on pi through the ratio π(y)/π(x). This is particularly useful
in the Bayesian context, when the form of the posterior distribution is usually
known up to the constant of integration.

Also note that when the proposal density q(y|x) = π(y), then the Metropolis
Hastings acceptance probability is exactly 1 and the algorithm is the same as
standard Monte Carlo sampling.

Bayesian Statistics



Choosing a proposal density

One might expect that the Metropolis Hastings algorithm would be more
efficient if α(x, y) was high. Unfortunately, this is not usually the case. In
Roberts et al (1997), it is recommended that for high dimensional models, the
acceptance rate for random-walk algorithms (see later) should be around 25%
whereas in models of dimension 1 or 2, this should be around 50%.

However, general results are not available and the efficiency of a Metropolis
Hastings algorithm is usually heavily dependent on the proposal density q(y|x).
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The independence and Metropolis samplers

The independence sampler defines a proposal density q(y|x) = q(y)
independent of x. This will often work well if the density q is similar to
π, although with somewhat heavier tails, similarly to the Monte Carlo rejection
sampler.

Another alternative is the Metropolis (1953), sampler which has the property
that q(x|y) = q(y|x). One small advantage of this approach is that the
acceptance probability simplifies down to the

α(x, y) =
π(y)
π(x)

.

A special case is the random walk Metropolis algorithm which assumes that
q(y|x) = q(|y − x|). For example, in univariate problems, one might consider
a normal proposal density q(y|x) = N

(
x, σ2

)
where the value of σ can be

adjusted to achieve an acceptable acceptance rate.
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Example

Example 50
Suppose that we observe a sample of size n from a Cauchy distribution,
X|θ ∼ C(θ, 1), that is

f(x|θ) =
1

π (1 + (x− θ)2)
for −∞ < x < ∞

Given a uniform prior for θ, then the posterior distribution is

p(θ|x) ∝
n∏

i=1

1
1 + (xi − θ)2

.

One way of sampling this distribution is to use a random walk Metropolis
algorithm. We could use a Cauchy proposal density, θ̃|θ ∼ C(θ, σ), so that

q(θ̃|θ) =
1

πσ

(
1 +

(
θ̃−θ

σ

)2
).
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The scale parameter, σ, can be adjusted to achieve the desired acceptance
rate.

In this case, the probability of accepting a proposed value, θ̃ given the current
value, θ, is

α(θ, θ̃) = min

{
1,

n∏
i=1

1 + (xi − θ)2

1 + (xi − θ̃)2

}
.

As an alternative, an independence sampler could be proposed. In this case, we
might assume a Cauchy proposal distribution, θ̃ ∼ C(m, τ), where the location
parameter, m, is the sample median. In this case, the acceptance probability is

min

1,
n∏

i=1

1 + (xi − θ)2

1 + (xi − θ̃)2

1 +
(

θ̃−m
τ

)2

1 +
(

θ−m
τ

)2
 .
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A sample of 10 data were generated from a Cauchy distribution, X ∼ C(1, 1),
with the following results:

x =
−5.1091 −0.7651 0.9261 1.0232 1.1669

1.2702 2.4846 2.5375 3.3476 3.6066

Both the random walk sampler (with σ = 0.3) and the independence sampler
(with τ = 0.5) were run for 10000 iterations, starting from the sample median.
For the random walk sampler, 66.7% of the proposed values were accepted
and for the independence sampler, around 52% of the proposals were accepted.
The samplers took a few seconds to run in each case.

Kernel density estimates of the posterior density of θ given a uniform prior are
given in the following diagram.
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The estimated density function is approximately the same in each case.
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Block Metropolis Hastings

When the dimension of X is large, then it can often be difficult to find a
reasonable proposal density. In this case, it is sensible to divide X into blocks,
say X = (X1, . . . , Xk) and construct a chain with these smaller blocks.

Suppose initially that X = (X1, X2) and define two proposal densities
q1(y1|x1, x2), q2(y2|x1, x2) to generate candidate values for each component.

Then, define the acceptance probabilities

α1(x1, y1|x2) = min
{

1,
π(y1|x2)q1(x1|y1, x2)
π(x1|x2)q1(y1|x1, x2)

}
α2(x2, y2|x1) = min

{
1,

π(y2|x1)q2(x2|x1, y2)
π(x2|x1)q2(y2|x1, x2)

}
where the densities π(x1|x2) and π(x2|x1) are the conditional densities and
π(x1|x2) ∝ π(x1, x2).

The algorithm now proceeds by successively sampling from each block in turn.
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The slice sampler

The slice sampler (Neal 2003) is an attractive approach when the state space
is relatively low dimensional. The general algorithm for sampling from π is

1. Given a current value, Xt, simulate Ut+1 ∼ U [0, π(Xt)].

2. Simulate Xt+1 ∼ U [At+1], where At+1 = {x : π(x) ≥ Ut+1}.

It is clearly unimportant whether the constant of integration is known or not.

Bayesian Statistics



Example

Example 51
Suppose that we wish to sample from an exponential density X ∼ E(λ). Then,
we know that π(x) ∝ e−λx and a slice sampler could proceed as follows.

1. Given Xt, generate Ut+1 ∼ U
[
0, e−λxt

]
.

2. Generate Xt+1 ∼ U
[
0,−1

λ log Ut+1

]
.

The following diagram illustrates the results of 10000 iterations when λ = 2.
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The final diagram illustrates how the chain moves.
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Gibbs sampling

We have seen Gibbs sampling previously in chapter 3. If we assume that X =
(X1, . . . ,Xk) has joint distribution π and that the conditional distributions
πi(Xi|X−i) are all available, where X−1 = (x1, . . . ,Xi−1,Xi+1, . . . ,Xk) then
the Gibbs sampler generates an (approximate) sample from π by successively
sampling from these conditional densities. Thus, assuming that the current
values are xt, then the algorithm is the following

1. Generate x1,t+1 ∼ π1(·|x−1,t).

2. Generate x2,t+1 ∼ π2(·|x1,t+1, x3,t, . . . , xk,t).

3. ...

4. Generate xk,t ∼ πk(·|x−k,t+1)
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We can note that Gibbs sampling is a particular version of block Metropolis
Hastings algorithm where the proposal distribution for Xi is exactly the
conditional distribution πi(Xi|X−1) so that the acceptance probability is
always equal to 1.

Gibbs sampling can be applied in a remarkably large number of problems.
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Example

Example 52
Suppose that the lifetime (in hours) of a machine, Y , has normal distribution so
that Y |X = x ∼ N (x, 1) and that we observe n machines during α hours. If,
at the end of this time, n1 machines have failed, with failure times y1, . . . , yn1

and n2 = n− n1 machines are still working, then the likelihood function is

l(x|y) ∝ exp
(
−n1

2
(x− ȳ1)2

)
(1− Φ (α− x))n2

where ȳ1 = 1
n1

∑n1
i=1 yi. Thus, an explicit form for the posterior of x (supposing

a uniform prior) is unavailable.

However, suppose that we knew the true values of the latent variables,
Yn1+1 = yn1+1, . . . , Yn = yn. Then it is clear that X|y ∼ N

(
ȳ, 1

n

)
where

ȳ = 1
n

∑n
i=1 yi.
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Also, for i = n1 + 1, . . . , n, we have Yi|X = x, Yi > α ∼ T N (x, 1) truncated
onto the region Yi > α. Therefore, we can set up a simple Gibbs sampling
algorithm to estimate the posterior density of x as follows.

1. Set t = 0 and fix an initial value x0.

2. For i = n1 + 1, . . . , n, generate yi,t ∼ T N (xt, 1).

3. Calculate ȳt = 1
n

(∑n1
i=1 yi +

∑n
i=n1+1 yi,t

)
.

4. Generate xt+1 ∼ N
(
ȳt,

1
n

)
.

5. t = t + 1. Go to 2.
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Wiper (2007) considers a sample of 20 normally distributed lifetimes with mean
µ and standard deviation 5, (Y |X = x ∼ N (x, 25)), where 14 data less than
5 are observed completely and have mean 0.94 and the remaining 6 data are
truncated so that it is only known that they take values greater than 5 and
a uniform prior distribution for x is assumed. The following diagram shows
a histogram of the values of x generated from 10000 iterations of the Gibbs
algorithm along with a fitted density.
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Universal implementation of Gibbs sampling algorithms

In many cases, the conditional distributions used in Gibbs samplers are log-
concave. In these cases, universal Gibbs samplers can be set up by using the
ARS to sample these conditional distributions.

For non log-concave distributions, the adaptive rejection Metropolis sampler
(ARMS) was introduced in Gilks et al (1995).

These algorithms form the basis of the Winbugs program.

A disadvantage of such universal algorithms is however that they are often
inefficient. It is generally preferable to implement specific algorithms tailored
to the particular problem.
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MCMC convergence assessment

When running an MCMC algorithm, it is important to assess when the sampled
values Xt have approximately converged to the stationary distribution π. This
will depend on how well the MCMC algorithm is able to explore the state space
also on the correlation between the Xt’s.

Secondly, we need to assess the convergence of MCMC averages, e.g.
1
T

∑T
t=1 Xt → E[Xt] and finally we need to be able to assess how close

a given sample is to being independent and identically distributed.

One possibility is to consider running the chain various times with different,
disperse starting values. Then, we could assess the convergence of the chain
by examining when sample means of the functions of interest generated from
each run have converged. Other, formal diagnostics are given in Gelman and
Rubin (1992).

The alternative is to use a single run of the chain.
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In this case, we can produce graphs of Xt against t to show the mixing of the
chain and any deviations from stationarity. The following diagram from Wiper
(2007) shows examples of badly mixing chains.
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Secondly, we can plot running means of the parameters of interest to see when
they have converged. The following diagram shows the estimates of E[X|y]
used from running 3 different algorithms for the problem of Example 52.
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It can be seen that the means appear to have converged after about 10000
iterations. Thus, one possibility is to run the sampler for longer, using these
initial iterations as a burn in period.
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thirdly, we can plot the autocorrelation functions of the generated values. In
general, as we are generating from a Markov chain, the successive values, Xt,
will be positively correlated. Thus, if we wish to estimate, for example, the
variance of X, then we must take this correlation into account. The following
diagram shows the ACF of the parameter α in the pump failure problem
analyzed in Chapter 10.

alpha
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    0.0
    0.5
    1.0

The autocorrelation has disappeared after about lag 5. One possibility is thus to
thin the sample, choosing just every 5th datum which are now, approximately
independent.
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Other algorithms

Reversible jump

This approach (Green 1995) is basically a Metropolis Hasting sampler, which
allows the chain to move over a variably dimensioned model space.

Perfect sampling

This method, developed by Propp and Wilson (1996), uses the idea of coupling
from the past in order to generate an exact MCMC sample from π, avoiding
the need for converegence diagnostics. See e.g.

http://dbwilson.com/exact/

Particle filtering

This is an alternative approach to MCMC based on importance sampling and
particularly suitable for sequential inference problems. See e.g. Doucet et al
(2000) or

http://en.wikipedia.org/wiki/Particle_filter
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Application III: Bayesian inference for
the dP lN distribution and the M/G/c/c

loss system
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The boxplots show the times spent (lhs) and times spent below 300 days (rhs)
of patients in a geriatric ward of a hospital.
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These data have been analyzed previously using Coxian, phase type distributions
by e.g. Auśın et al (2003). However, the data are long tailed and therefore, a
heavy tailed model should be more appropriate.

Typically, long tailed data are modeled using a Pareto distribution, or a mixture
of Pareto distributions (Raḿırez et al 2008a) but although such a model can
capture the tail behaviour, it does not capture the body of the distribution.

The double Pareto lognormal (dP lN) distribution has been recently introduced
as a model for heavy tailed data by Reid and Jorgersen (2004).
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The skewed Laplace and double Pareto lognormal distributions

It is easiest to define the dP lN distribution by starting from the skewed
Laplace distribution.

Definition 16
A random variable, Y is said to have a skewed Laplace distribution with
parameters µ, σ, α, β, that is Y ∼ SL(µ, σ, α, β), if

fY (y) =
αβ

α + β
φ

(
y − µ

σ

)
[R(ασ − (y − µ)/σ) + R(βσ + (y − µ)/σ)]

for y ≥ 0, where R(y) is Mills’ ratio, that is

R(y) =
1− Φ(y)

φ(y)
.
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If Y ∼ SL(µ, σ, α, β) is a skewed Laplace random variable, then we can write

Y = Z + W

where Z ∼ N
(
µ, σ2

)
, W = W1 −W2 and W1 ∼ E(α) and W2 ∼ E(β).

The conditional distributions of Z|Y = y and W1|Y = y, Z = z are:

fZ(z|y) = p

1
σφ
(

z−(µ−σ2β)
σ

)
Φc
(

y−(µ−σ2β)
σ

)Iz≥y + (1− p)
1
σφ
(

z−(µ+σ2α)
σ

)
Φc
(

y−(µ+σ2α)
σ

)Iz<y where

p =
R(βσ + (y − µ)/σ)

R(ασ − (y − µ)/σ) + R(βσ + (y − µ)/σ)
(1)

fW1(w1|w) =
(α + β)e−(α+β)e1

Iw<0 + e−(α+β)wIw≥0
for e1 > max{w, 0}. (2)
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Definition 17
Let Y ∼ SL(µ, σ, α, β). Then the distribution of S = exp(Y ) is the double
Pareto lognormal distribution and in particular, the mean of S is given by

E[S] =
αβ

(α− 1)(β + 1)
eµ+σ2

2

for α > 1.

The density of the dP lN distribution can be easily derived from the skewed
Laplace density formula.
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Bayesian inference for the dP lN distribution

Reid and Jorgesen (2004) consider classical inference for this model using the
EM algorithm. Bayesian inference is examined by Raḿırez et al (2008b).

Suppose that we have standard prior distributions:

µ|σ2 ∼ N
(

m,
σ2

k

)
1
σ2

∼ G
(

a

2
,
b

2

)
α ∼ G (cα, dα)

α ∼ G (cβ, dβ)
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Now, if we observe a sample x = (x1, . . . , xn) from the dP lN distribution,
we can transform the data to y = (y1, . . . , yn) where yi = log xi and
Y |µ, σ, α, β ∼ SL(µ, σ, α, β).

Clearly, the integration constant of the posterior density p(µ, σ, α, β|y) and
the marginal densities, p(µ|y), . . . , p(β|y) cannot be evaluated analytically.
However it is possible to set up a Gibbs sampling scheme by introducing latent
variables.

For i = 1, . . . , n, we can define zi, wi such that yi = zi + wi and Zi|yi, µ, σ2

is generated from the mixture of truncated normal distributions as in Equation
1. Also, we can define wi1, wi2 where wi = wi1 + wi2 and Wi1|wi, α, β has a
truncated exponential distribution as in Equation 2.

Conditional on the model parameters, both these distributions are easy to
sample.
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Conditional on z = (z1, . . . , zn), then inference for µ, σ2 is conjugate so that

µ|z, σ2 ∼ N
(

km + nz̄

k + n
,

σ2

k + n

)
1
σ2
|z ∼ G

(
a + n

2
,
b + (n− 1)s2

z + kn
k+n(m− z̄)2

2

)
.

Conditional on w1 = (w11, . . . , wn1) then

α|w1 ∼ G (cα + n, dα + nw̄1·)

and, conditional on w2 = (w21, . . . , w2n), then

β|w2 ∼ G (cβ + n, dβ + nw̄2·) .

Thus, we can set up a Gibbs sampling algorithm:
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Gibbs sampler

1. t = 0. Set initial values µ(0), σ(0), α0, β(0).

2. For i = 1, . . . , n

(a) Generate z
(t)
i from fZ(z|yi, µ(t−1), σ(t−1), αt−1, β(t−1)).

(b) Set w
(t)
i = yi − z

(t)
i

(c) Generate w
(t)
i1 from fW1

(w1|w(t)
i , α, β)

(d) Set w
(t)
2i = w

(t)
i + w

(t)
1i

3. Generate µ(t)|σ(t−1), z(t) from f(µ|σ(t−1), z(t)).

4. Generate σ(t) from f(σ|z(t)).

5. Generate α(t) from f(α|w(t)
1 ).

6. Generate β(t) from f(β|w(t)
2 ).

7. t = t + 1. Go to 2.
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Problems

What priors should be used?

The natural choice would be to use the standard, improper priors p(µ, τ) ∝ 1
τ ,

where τ = 1/σ2, p(α) ∝ 1
α and p(β) ∝ 1

β . However, in this case, it is easy
to show that the posterior distribution is improper, see e.g. Raḿırez et al
(2008b). In practice we use small but proper values of all parameters.

What initial values should we use?

A reasonable choice is to use the maximum likelihood estimates (assuming
these exist).

High autocorrelation

We are generating a lot of latent variables here. This leads to high
autocorrelation. It is useful to thin the sampled data. We take every
hundredth value generated.
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Fitted histogram for the hospital data

The diagram shows the predictive distribution of the logged hospital occupancy
times. The fit seems fairly reasonable.
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Are the data long tailed?

Recall that the mean of the dP lN distributions only exists if α > 1.
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The probability that α < 1 is virtually zero.
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Characteristics of the hospital queueing system

We assume that the hospital has a finite number of beds, c. Patients arrive at
the hospital according to a Poisson process with rate λ and are given a bed if
one is available and are otherwise lost to the system.

The number of patients in the hospital system can be modeled as a M/G/c
Erlang loss system, that is a M/G/c/c system with no queueing, see e.g.
Jagerman (1974).

For an Erlang loss system, then the offered load, θ, is defined to be the
expected number of arrivals in a service time, that is

θ = λE[S|µ, σ, α, β].
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The equilibrium distribution of the number of occupied beds is given by

P (Nb = n|θ) =
θn/n!∑c
j=0 θj/j!

and therefore, the blocking probability or probability that an arriving patient is
turned away is

B(c, θ) = P (Nb = c|θ) =
θc/c!∑c

j=0 θj/j!
and the expected number of occupied beds is

E[Nb|θ] = θ (1−B(c, θ)) .

Given λ, c and a Monte Carlo sample of service time parameters, the above
quantities can be estimated by Rao Blackwellization.
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Results for the hospital data

Following Auśın et al (2003), we shall suppose that the arrival rate is λ = 1.5.
The diagram shows the blocking probabilities for different numbers of beds.
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Optimizing the number of beds

Assume that the hospital accrues different costs for the total numbers of
occupied and unoccupied beds and the number of patients that are turned
away. The hospital gains profits for those patients treated. Assume then that
we have c beds when we shall suppose:

• Cost per occupied bed per time unit is rb so that the expected cost per
time unit due to occupation of beds is rbE[Nb|θ].

• Cost re per time unit for every empty bed so the expected cost per time
unit due to empty beds is re(c− E[Nb|θ]).

• Cost per patient turned away per time unit is rl when the expected cost per
time unit is rlB(c, θ).
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This leads to an expected loss per time unit

L(c|λ, θ) = rbE[Nb|θ] + re(c− E[Nb|θ]) + rlB(c, θ)

= (rb − re)θ + rec + {(re − rb)θ + rlλB(c, θ)}

Following Auśın et al (2003), we shall assume that re = 1, rl = 200 and here
we suppose that rb = 3.

Then, we can calculate the number of beds which minimize the expected loss.
This is the optimal number of beds from a Bayesian viewpoint.
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The optimal number of beds given this loss function is 47 The results are
slightly different to those in Auśın et al (2003) who found an optimal number
of c = 58 with a similar loss function and an alternative service model.
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Application IV: Weibull mixture models
for heterogeneous survival data

The Weibull distribution is one of the most popular parametric models for
survival and reliability. The density function and survival function of a Weibull
distributed variable, X ∼ W(θ, a), are:

fW (x|θ, a) = θaxa−1e−θxa

F̄ (x|θ, a) = e−θxa
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The likelihood function

Consider two possible cases:

i We observe n complete lifetimes x = x1, . . . , xn

ii We observe n complete lifetimes as earlier and m truncated lifetimes
xm+1, . . . , xm+n where it is supposed that the subjects are still living at
these times.

In case i. the likelihood function is

l(θ, a|x) ∝ θnan
n∏

i=1

xa
i e
−θ

∑n
i=1 xa

i

and in case ii, we have

l(θ, a|x) ∝ θnan
n∏

i=1

xa
i e
−θ

∑m+n
i=1 xa

i
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Prior and posterior distributions

Suppose that we set the following prior distributions

θ ∼ G(αθ, βθ)

a ∼ G(αa, βa)

then the conditional posterior distributions are

Case 1 Case 2

θ|a,x ∼ G (αθ + n, βθ +
∑n

i=1 xa
i ) G

(
αθ + n, βθ +

∑m+n
i=1 xa

i

)
f(a|θ,x) ∝ aαa+n

∏n
i=1 xa

i e
−(βaa+θ

∑n
i=1 xa

i ) aαa+n
∏n

i=1 xa
i e
−(βaa+θ

∑m+n
i=1 xa

i )
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Gibbs Sampling

It is easy to set up a Gibbs sampler as follows:

1) t = 0. Set initial value a(0).

2) Sample θ(t+1) from f
(
θ|x, a(t)

)
3) Sample a(t+1) from f

(
a|x, θ(t+1)

)
.

4) t = t + 1 Go to 2.

Clearly, step 2 is straightforward. For step 3, Tsionas (2002) uses a Metropolis
Hastings step and Maŕın et al (2005) consider a slice sampler:
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A slice sampler for sampling from f(a|x, θ)

2a) Simulate a uniform random variable; u ∼ U
[
0, g

(
a(t)|x, θ(t)

)]
where g is the density formula on the previous page

2b) Simulate a(t+1) from a uniform distribution with support S(u) =
{a : g(a) ≥ u}.

In practice, the only difficulty with this algorithm is in evaluating the support
S(u), although as indicated in Neal (2003), this is straightforward to do by
simply sampling from a uniform distribution over a slightly larger space and
then checking that the constraint in 2b) is verified.
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Mixtures of Weibull distributions

When the data are heterogeneous, it is more appropriate to consider a mixture
model

f(x|k,w,θ,a) =
k∑

j=1

wjfW (x|θj, aj).

In this case, a natural prior for the weights is w ∼ D(c, . . . , c︸ ︷︷ ︸
k

) and we can use

gamma priors for the remaining parameters as earlier.

However, given sample data, e.g. of type 1, then the likelihood becomes

l(w,θ,a|x) ∝
n∏

i=1

k∑
j=1

wjfW (xi|θj, aj)

which contains kn terms and for n relatively large, is intractable.
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Simplifying the likelihood with latent variables

Let Z be a random variable such that P (Z = z|k,w) = wz. Then, if X comes
from the mixture of Weibulls model, we can write

X|Z = z ∼ W(θj, aj).

Suppose now that for each observed datum, we know the values z = z1, . . . , zn.
Then, the likelihood function simplifies to

l(w,θ,a, z|x) ∝
n∏

i=1

fW (xi|θzi
, azi

).
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Posterior distributions

It is now easy to show that

P (Zi = z|x,w,θ,a) ∝ wzfW (xi|θz, az)

w|x,θ,a, z ∼ D(c + n1, c + n2, . . . , c + nz)

where nj are the number of data allocated to element j of the mixture.

The conditional posterior distributions for each θj and aj are as earlier but
only considering the sample data assigned to element j of the mixture.
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Gibbs sampler

1) t = 0. Set initial values w(0),θ(0),a(0).

2) For i = 1, . . . , n sample z
(t+1)
i from P

(
zi|x,w(t),θ(t),a(t)

)
.

3) Sample w(t+1) from f
(
w|x, z(t+1),θ(t),a(t)

)
.

4) For j = 1, . . . , k, sample θ
(t+1)
j from f

(
θj|x, z(t+1),w(t+1),a(t)

)
5) For j = 1, . . . , k, sample a

(t+1)
j from f

(
a|x, z(t+1),w(t+1),θ(t+1)

)
.

6) t = t + 1 Go to 2.
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Inference when k is unknown

In this case, we define a prior distribution for k, e.g. a truncated Poisson. Now,
the previous algorithm can be thought of as giving inference for the model
parameters conditional on k. We need to incorporate a step which allows for
the possibility of changing k and these parameters. There are two possibilities:
reversible jump (Richardson and Green 1997) or birth death MCMC (Stephens
2000). Here we use a birth death MCMC approach.
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Simulated example

Sample of size 150 with 10% censoring simulated from a mixture of 3 Weibull
distributions with weights w = (0.6, 0.3, 0.1) and parameters θ = (0.1, 0.3, 0.5)
and a = (0.5, 1, 2).

MCMC algorithm ran for 60000 iterations with 10000 to burn in.

The first graphs illustrate the convergence of the algorithm and the following
graph shows the posterior distribution of k. The final graph shows a Kaplan
Meier estimate of the survival curve as well as the fitted and true curves
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There is a high posterior probability of 3 components.
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The survival curve is better estimated by the predicted curve than by the KM
estimate.
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Real data example

Here we analyze data from 87 persons with lupus nephritis, see Abrahamowicz
et al. (1996). These patients were studied over a 15-year time period, during
which 35 deaths were recorded. In the original article, covariate information
was used to study the effects of disease duration prior to diagnosis on the risk
of mortality of patients, via a time dependent hazard rate model and suggest
that the usual proportional hazards model fits the data reasonably well.

Here, we do not use the covariate information and use the Weibull mixture
model to represent the possible inhomogeneity of the lifetime data.
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The first graph shows a KM estimate and the fitted survival curve and the
second graph shows the estimated hazard curve.
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