
1. Introduction and non-Bayesian
inference

Objective

Introduce the different objective and subjective interpretations of probability.
Examine the various non-Bayesian treatments of statistical inference and
comment on their associated problems.



Recommended reading

• Hájek, A. (2003). Interpretations of Probability. In Stanford Encyclopedia
of Philosophy.

http://plato.stanford.edu/entries/probability-interpret/

• The Wikipedia has a nice page on different interpretations of probability.

http://en.wikipedia.org/wiki/Probability_interpretations

• Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory, Chapter 2.

http://www.uv.es/bernardo/BT2.pdf



Probability

Kolmogorov

Probability theory developed from studies of games of chance by Fermat and
Pascal and may be thought of as the study of randomness. It was put on a
firm mathematical basis by Kolmogorov (1933).



The Kolmogorov axioms

For a random experiment with sample space Ω, then a probability measure P
is a function such that

1. for any event A ∈ Ω, P (A) ≥ 0.

2. P (Ω) = 1.

3. P (∪j∈JAj) =
∑

j∈J P (Aj) if {Aj : j ∈ J} is a countable set of
incompatible events.

The laws of probability can be derived as consequences of these axioms.
However, this is a purely mathematical theory and does not provide a useful
practical interpretation of probability.



Interpretations of probability

There are various different ways of interpreting probability.

• The classical interpretation.

• Logical probability.

• Frequentist probability.

• Propensities.

• Subjective probability.

For a full review, see e.g. Gillies (2000).



Classical probability

Bernoulli

This derives from the ideas of Jakob Bernoulli (1713) contained in the principle
of insufficient reason (or principle of indifference) developed by Laplace
(1814) which can be used to provide a way of assigning epistemic or subjective
probabilities.



The principle of insufficient reason

If we are ignorant of the ways an event can occur (and therefore have no
reason to believe that one way will occur preferentially compared to another),
the event will occur equally likely in any way.

Thus the probability of an event is the coefficient between the number of
favourable cases and the total number of possible cases.

This is a very limited definition and cannot be easily applied in infinite
dimensional or continuous sample spaces.

http://en.wikipedia.org/wiki/Principle_of_indifference



Logical probability

Keynes Carnap

This approach, which extends the classical concept of probability, was developed
by Keynes (1921) and Carnap (1950). The probability of a proposition H
given evidence E is interpreted as the (unique) degree to which E logically
entails H.



Logical probabilities are constructed using the idea of formal languages as
follows:

• Consider a language, L, with predicates H1,H2, . . . and a finite number of
constants e1, e2, . . . , en.

• Define a probability measure P (·) over sentences in L in a way that only
takes into account their syntactic structure.

• Then use the standard probability ratio formula to create conditional
probabilities over pairs of sentences in L.

Unfortunately, as noted by Bernardo and Smith (1994), “the logical view of
probability is entirely lacking in operational content”. Such probabilities are
assumed to exist and depend on the formal language in which they are defined.



Frequentist probability

Venn Von Mises

The idea comes from Venn (1876) and was expounded by von Mises (1919).

Given a repeatable experiment, the probability of an event is the limit of the
proportion of times that the event will occur when the number of repetitions
of the experiment tends to infinity.

This is a restricted definition of probability. It is impossible to assign
probabilities in non repeatable experiments.



Propensities

Popper

This theory was developed by Popper (1957).

Probability is an innate disposition or propensity for things to happen. In
particular, long run propensities seem to coincide with the frequentist definition
of probability whereas it is not clear what individual propensities are, or whether
they obey the probability calculus.



Subjective probability

Ramsey

The subjective concept of probability is as degrees of belief. A first attempt to
formalize this was made by Ramsey (1926).

In reality, most people are irrational in that their own degrees of belief do not
satisfy the probability axioms, see e.g. Kahneman et al (1982) and chapter 5 of
this course. Thus, in order to formalize the definition of subjective probability,
it is important to only consider rational agents, i.e. agents whose beliefs are
logically consistent.



Consistent degrees of belief are probabilities

Cox (1946) formalized the conditions for consistent reasoning by assuming
defining the necessary logical conditions. Firstly, relative beliefs in the truths
of different propositions are assumed to be transitive, i.e. if we believe that
A � B and B � C, for three events A,B, C, then we must believe that
A � C, where A � B means A is at least as likely as B to occur. This
assumption implies that we can represent degrees of belief by numbers, where
the higher the value, the higher the degree of belief.

Secondly, it is assumed that if we specify how much we believe an event A to
be true, then we also implicitly specify how much we believe it to be false.

Finally it is assumed that if we specify how much we believe A to be true and
how much we believe B to be true, given that A is true, then we are implicitly
implying our degree of belief that both A and B are true.

Given these axioms, Cox was able to demonstrate that logical consistency
could only be assured if the numbers used to represent degrees of belief are
probabilities.



Defining subjective probabilities

Cox’s method is non-constructive and does not give a method of defining a
probability for a given event. There are various ways of doing this, usually
based around the ideas of betting.

De Finetti (1937) defines la probability, PE(A|H), of an event A for an agent
E with information H to be the maximum quantity, or fair price, that E would
pay for a ticket in a lottery where they will obtain a (small) unit prize if and
only if A occurs.
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The expected gain in this lottery, is equal to

PE(A|H)× 1 + (1− PE(A|H))× 0 = PE(A|H).

A Dutch book is defined to be a series of bets, each acceptable to the agent,
which collectively imply that the agent is certain to lose money, however the
world turns out.

It can now be shown that in order to avoid a Dutch book, then the agent’s
probabilities must satisfy the usual probability calculus.

Note that the definition proposed by De Finetti depends on the assumption
that the utility of the agent for money is linear. A more general method of
defining probabilities and utilities is provided by Savage (1954). See also O’
Hagan (1988) chapters 1 to 3 for a definition based on betting and odds.



Statistical Inference

A number of different approaches to statistical inference have been developed
based on both the frequentist and subjective concepts of probability.

• Classical (frequentist) inference.

• Likelihood based approaches.

• Fiducial statistics and related methods.

• Bayesian inference.

For full comparisons of the different approaches see e.g. Barnett (1999).



Classical inference

Neyman Pearson

This approach was developed from the ideas of Neyman and Pearson (1933)
and Fisher (1925).



Characteristics of classical inference

• Frequentist interpretation of probability.

• Inference is based on the likelihood function l(θ|x) = f(x|θ).

• We can only quantify (a priori) the uncertainty about X. θ is fixed.

• Inferential procedures are based on asymptotic performance:

� An estimator t = t(X) is defined.
� The plausibility of a given value θ = θ0 is measured by the density

l(θ0|x) ∝ f(t(x)|θ0),

(assuming that t(·) is a sufficient statistic).
� If t does not lie in the tail of f(t|θ0) then θ0 is a plausible value of θ.



Classical estimation and hypothesis tests

Classical point estimation is based on choosing estimators with good asymptotic
properties (unbiasedness, minimum variance, efficiency etc.)

There are a number of possible methods of choosing an estimator, e.g. method
of moments, maximum likelihood, etc. Note that in particular, the maximum
likelihood estimator θ̂ is defined so that l(θ̂|x) > l(θ|x) for all θ 6= θ̂. The
MLE is asymptotically unbiased, efficient etc.

For interval estimation, an interval (l(x), u(x)) is chosen so that

P (l(X) < θ < u(X)|θ) = 1− α

for some fixed probability level α.

Finally, hypothesis testing is based on rejecting θ0 at level α if

P (t(X) > t(x)|θ0) < α.



Principles justifying classical inference

The principle of sufficiency

Definition 1
A statistic t = t(x) is said to be sufficient for θ if

f(x|t,θ) = f(x|t).

The sufficiency principle (Fisher 1922) is as follows.

If a sufficient statistic, t, exists, then for any two samples x1, x2 of the same
size such that t(x1) = t(x2) then the conclusions given x1 and x2 should be
the same.

All standard methods of inference satisfy this principle.



The Fisher-Neyman factorization theorem

This gives a useful characterization of a sufficient statistic which we shall use
in Chapter 3.

Theorem 1
A statistic t is sufficient for θ if and only if there exist functions g and h such
that

l(θ|x) = g(t,θ)h(x).

Proof See e.g. Bernardo and Smith (1994).



The principle of repeated sampling

The inference that we draw from x should be based on an analysis of how
the conclusions change with variations in the data samples, which would be
obtained through hypothetical repetitions, under exactly the same conditions,
of the experiment which generated the data x in the first place.

This principle follows directly from the frequentist definition of probability and
is much more controversial. It implies that measures of uncertainty are just
hypothetical asymptotic frequencies. Thus, it is impossible to measure the
uncertainty about θ a posteriori, given x.



Criticisms of classical inference

Global criticisms

As noted earlier, the frequentist definition of probability restricts the number
of problems which can be reasonably analyzed. Furthermore, classical
inference appears to be a form of cookbook containing many seemingly ad-hoc
procedures.

Specific criticisms

We can also criticize many specific aspects of the classical approach.

Firstly, there are often problems with estimation. An optimal method of
choosing an estimator is not generally available and some typically used
approaches may provide very bad estimators.



One possibility is to attempt to use an unbiased estimator.

Example 1
Let X be an observation from a Poisson distribution: P(λ) and assume that
we wish to estimate φ = e−2λ. Then only one unbiased estimator of φ exists
and takes the value φ̃ = (−1)X = ±1. However 0 < φ ≤ 1 for all λ.

An alternative is to use the method of moments. However, this approach is
not always available.

Example 2
Suppose that we wish to estimate the location parameter θ of a Cauchy
distribution. Then no simple method of moments estimator exists.

Also, method of moments of estimators, when they do exist do not have the
optimality properties of e.g. maximum likelihood estimators.



It is more common to use maximum likelihood estimators. These are justified
asymptotically but can have very bad properties in small samples.

Example 3
Let X ∼ DU [1, θ]. Then given a sample of size 1, the MLE of θ is θ̂ = X.
The bias of the MLE is

E[X]− θ =
θ + 1

2
− θ =

1− θ

2
,

which can be enormous if θ is large.

Whatever the sample size, the MLE is always underestimates the true value in
this experiment.



Example 4
Suppose that Y ∼ N

(
θ, σ2I

)
where dim(θ) = n, and that we wish to estimate

θ given Y = y. Then clearly, the maximum likelihood estimator is θ̂ = y.

However, if n ≥ 3 then this estimator is inadmissible as the James-Stein

estimator θ̂JS =
(
1− (m−2)σ2

‖y‖2

)
y has lower mean squared error.

We will return to this example in Chapter 10.



A more important problem is interpretation.

Example 5
Suppose that we carry out an experiment and find that a 95% confidence
interval for θ based on the sample data is equal to (1, 3). How do we interpret
this?

This means that if we repeated the same experiment and procedure by which
we constructed the interval many times, 95% of the constructed intervals
would contain the true value of θ.

It does not mean that the probability that θ lies in the interval (1, 3) is 95%.



There are often problems in dealing with nuisance parameters in classical
inference.

Example 6
Let Yi,j ∼ N

(
φi, σ

2
)

for i = 1, . . . , n and j = 1, 2.

Suppose that the parameter of interest is the variance, σ2 and that φ =
(φ1, . . . , φn) are nuisance parameters.

The likelihood is l
(
σ2,φ|y

)
∝

σ−2n exp

(
− 1

2σ2

n∑
i=1

(yi,1 − φi)2 + (yi,2 − φi)2
)

.

and now, the most natural way of estimating σ2 is to maximize the profile
likelihood. This is calculated as follows.



Supposing σ2 known, we first maximize the likelihood with respect to φ.

lP (σ
2|y) = sup

φ
l
(

σ
2
, φ|y

)

= σ
−2n

exp

(
−

1

2σ2

n∑
i=1

(yi,1 − ȳi)
2
+ (yi,2 − ȳi)

2

)

= σ
−2n

exp

(
−

1

4σ2

n∑
i=1

(yi,1 − yi,2)
2

)

Secondly, we maximize the profile likelihood with respect to σ2, which implies
that

σ̂2 =
1
2n

n∑
i=1

(yi,1 − yi,2)2.

However,

E
[
σ̂2
]

=
σ2

2
for any value of n and this estimator is inconsistent.



It is also not entirely clear how predictions should be carried out.

Example 7
Let X|θ ∼ f(·|θ). Then typically, the predictive distribution is estimated,
given the sample data, by substituting θ by its MLE, leading to the estimated
predictive density f(x|θ̂). However this procedure clearly underestimates the
predictive uncertainty due to the fact that θ is unknown.



Likelihood based inference

Barnard

This approach is based totally on the likelihood function and derives from
Barnard (1949) and Barnard et al (1962). Firstly, the likelihood principle is
assumed.



The likelihood principle

This principle is originally due to Barnard (1949). Edwards (1992) defines the
likelihood principle as follows.

Within the framework of a statistical model, all the information which the
data provide concerning the relative merits of two hypotheses is contained in
the likelihood ratio of those hypotheses on the data. ...For a continuum of
hypotheses, this principle asserts that the likelihood function contains all the
necessary information.

This is equivalent to supposing that if we have experiments, Ei of the same
size with sample data xi and sampling distributions fi(·|θ) for i = 1, 2, then
the two experiments provide the same evidence (EV) and hence the same
inference about θ if f1(x1|θ, E1) ∝ f2(x2|θ, E2), that is

l(θ|E2,x2) = cl(θ|E1,x1) for some c ⇒ EV [E1,x1] = EV [E2,x2].



A second assumption of likelihood inference is that the likelihood ratio for
l(θ1|x)/l(θ2|x), for any two values θ1 and θ2 is a measure of the evidence
supplied by the data in favour of θ1 relative to θ2.

This is much harder to apply in practice, in particular in the presence of
nuisance parameters. For example, how can we marginalize the likelihood
function?



Stopping rules

Stopping rules are often used in classical statistics (e.g. clinical trials) to make
it possible to stop early if the results are sufficiently favourable or unfavourable.

Frequentist statisticians must choose the stopping rule before the experiment
begins and must stick to it exactly (otherwise the good frequentist properties
of the test are lost).

Example 8
Assume we are interested in testing whether a coin is biased in favour of heads.
Then we may consider various different stopping rules, e.g.

• toss the coin a fixed number, n times.

• toss the coin until the first tail is seen.

• toss the coin until the r’th tail is seen.



The stopping rule principle

The stopping rule principle is the following.

In a sequential experiment, the evidence provided by the experiment about the
value of the unknown parameters θ should not depend on the stopping rule.

This is clearly a consequence of the likelihood principle as the likelihood
function is independent of the stopping rule. However ...



Classical hypothesis tests do not satisfy the stopping rule principle

Example 9
Suppose that θ = P (head). We wish to test H0 : θ = 1/2 against the
alternative H1 : θ > 1/2 at a 5% significance level.

Suppose that we observe 9 heads and 3 tails. This information is not sufficient
for us to write down the likelihood function. We need to know the sampling
scheme or stopping rule.



Suppose that we fix the number of tosses of the coin to be 12. Then

X = # heads|θ ∼ BI(12, θ) and l(θ|x = 9) =
(

12
9

)
θ9(1− θ)3.

Thus, the p-value is

p1 =
1
2

12 [( 12
9

)
+ · · ·+

(
12
12

)]
≈ .075

and we do not reject the null hypothesis.



Suppose now that we decided to calculate the number of heads X until the
third tail occurs. Thus, X|θ ∼ NB(3, θ) and

l(θ|x) =
(

11
9

)
θ9(1− θ)3 and the p-value is

p2 =
(

11
9

)
θ9(1− θ)3 +

(
12
10

)
θ10(1− θ)3 + · · ·

= .0325 and we reject the null hypothesis.



The reason is that in order to carry out a hypothesis test, then we must specify
the sample space or stopping rule. This is different in the two cases that we
have seen:

1. Ω = {(u, d) : u + d = 12}

2. Ω = {(u, d) : d = 3}



The conditionality principle

Suppose that we have the possibility of carrying out two experiments E1 and
E2 in order to make inference about θ and that we choose the experiment to
carry out by tossing an unbiased coin. Then our inference for θ should only
depend on the selected experiment.

To formalize this, note that the experiment Ei may be characterized as
Ei = (Xi,θ, fi) which means that in this experiment, the variable Xi is
generated from fi(Xi|θ).

Now define the composite experiment E? which consists of generating a
random variable K where P (K = 1) = P (K = 2) = 1

2 and then performing
experiment K so that E? = ((K,XK)︸ ︷︷ ︸

X

,θ, 1
2fK(XK)). Then conditionality

implies that EV [E?,x] =
{

EV [E1,x1] if K = 1 so x = (1,x1)
EV [E2,x2] if K = 2 so x = (1,x2)



Birnbaum (1962) demonstrates the following theorem which relates the
sufficiency, likelihood and conditionality principles.

Theorem 2
The likelihood principle is equivalent to the sufficiency principle and the
conditionality principle.

We shall demonstrate that sufficiency plus conditionality ⇒ likelihood. See
Birnbaum (1962) for a full proof.



Proof of the theorem

Proof Let E1, E2 and x1 and x2 be the two experiments and data samples
figuring in the statement of the likelihood principle so that

l(θ|E1,x1) = cl(θ|E2,x2)

for some constant c and define the composite experiment E? = E1 as in the
conditionality principle.

Define the statistic t by

t = t(x) =
{

(1,x1) if K = 2
x otherwise



Now note that if t 6= (1,x1) then

f(x|t,θ) =
{

1 if t = t(x)
0 otherwise

whereas if t = x = (1,x1), then

f(x|t,θ) =
1
2f1(x1|θ)

1
2f1(x1|θ) + 1

2f2(x2|θ)
=

c

1 + c

and if t = (1,x1) but x = (2,x2) then

f(x|t,θ) =
1
2f2(x2|θ)

1
2f1(x1|θ) + 1

2f2(x2|θ)
=

1
1 + c

so f(x|t,θ) = f(x|t) and t is a sufficient statistic.



It follows from the sufficiency principle that

EV [E?, (1,x1)] = EV [E?, (2,x2)]

and then the conditionality principle ensures that

EV [E?,x1] = EV [E1, (1,xi)] = EV [E?, (2,x2)] = EV [E2,x2]

which is the likelihood principle.

In the same way, it can be demonstrated that likelihood + sufficiency ⇒
conditionality or that likelihood + conditionality ⇒ sufficiency.



Fiducial inference and related methods

Fisher

Fiducial inference has the objective of defining a posterior measure of
uncertainty for θ without the necessity of defining a prior measure. This
approach was introduced by Fisher (1930).



Example 10
Let X|µ, σ2 ∼ N (µ, σ2). Suppose that we wish to carry out inference for µ.

We know that T = (X̄−µ)
√

n
S ∼ tn−1. Then for any t, P (T > t) = p(t) where

p(t) is known. Fisher’s idea is to write

p(t) = P (T > t)

= P

(
(X̄ − µ)

√
n

S
> t

)
= P

(
µ < X̄ − St√

n

)

and then define p(t) = P
(
µ < x̄− st√

n

)
to be the fiducial probability that µ

is less than x̄− st√
n
.



Problems with the fiducial approach

• The probability measure is transferred from the sample space to the
parameter space. What is the justification for this?

• What happens if no pivotal statistic exists?

• It is unclear how to apply the fiducial approach in multidimensional problems.

In many cases, fiducial probability intervals coincide with Bayesian credible
intervals given specific non informative prior distributions. In particular,
structural inference, see Fraser (1968) corresponds to Bayesian inference using
so called Haar prior distributions. However we will see that the Bayesian
justification for such intervals is more coherent.
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