
11. Time series and dynamic linear
models

Objective

To introduce the Bayesian approach to the modeling and forecasting of time
series.

Recommended reading

• West, M. and Harrison, J. (1997). Bayesian forecasting and dynamic
models, (2’nd ed.). Springer.

• Pole, A.,West, M. and Harrison, J. (1994). Applied Bayesian forecasting
and time series analysis. Chapman and Hall.

• Bauwens, L., Lubrano, M. and Richard, J.F. (2000). Bayesian inference in
dynamic econometric models. Oxford University Press.
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Dynamic linear models

West

The first Bayesian approach to forecasting stems from Harrison and Stevens
(1976) and is based on the dynamic linear model. For a full discussion, see
West and Harrison (1997).
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The general DLM

Definition 29
The general (univariate) dynamic linear model is

Yt = FT
t θt + νt

θt = Gtθt−1 + ωt

where νt and ωt are zero mean measurement errors and state innovations.

These models are linear state space models, where xt = FT
t θt represents the

signal, θt is the state vector, Ft is a regression vector and Gt is a state
matrix. The usual features of a time series such as trend and seasonality can
be modeled within this format.

In some cases, F and G are supposed independent of t. Then the model is
a time series DLM. If V and W are also time independent then the DLM is
constant.
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Examples

Example 80
A slowly varying level model is

yt = θt + νt

θt = θt−1 + ωt

The observations fluctuate around a mean which varies according to a random
walk.

Example 81
A dynamic linear regression model is given by

yt = FT
t θt + νt

θt = θt−1 + ωt
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Bayesian analysis of DLM’s

If the error terms, νt and ωt are normally distributed, with known variances,
e.g. νt ∼ N (0, Vt), ωt ∼ N (0,Wt), then a straightforward Bayesian analysis
can be carried out.

Example 82
In Example 80, suppose that at time t−1, the current accumulated information
is Dt−1 = {y1, y2, . . . , yt−1} and assume that the distribution for θt−1 is
θt−1|Dt−1 ∼ N (mt−1, Ct−1). and that the error distributions are νt ∼
N (0, Vt) and ωt ∼ N (0,Wt). Then, we have:

1. The prior distribution for θt is:

θt|Dt−1 ∼ N (mt−1, Rt) where

Rt = Ct−1 + Wt
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2. The one step ahead predictive distribution for yt is:

yt|Dt−1 ∼ N (mt−1, Qt) where

Qt = Rt + Vt

3. The joint distribution of θt and yt is

θt

yt

∣∣∣∣ Dt−1 ∼ N
(

mt−1

mt−1
,

(
Rt Rt

rt Qt

))
4. The posterior distribution for θt given Dt = {Dt−1, yt} is

θt|Dt ∼ N (mt, Ct) where

mt = mt−1 + Atet

At = Rt/Qt

et = yt −mt−1

Ct = Rt −A2
tQt.
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Proof and observations

Proof The first three steps of the proof are straightforward just by going
through the observation and system equations. The posterior distribution
follows from property iv) of the multivariate normal distribution as given in
Definition 22.

In the formula for the posterior mean, et is simply a prediction error term.
This formula could also be rewritten as a weighted average in the usual way
for normal models:

mt = (1−At)mt−1 + Atyt.
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The following diagram illustrates the one step ahead predictions for the sales
data from Pole et al (1994) assuming a model with constant observation and
state error variances and a non-informative prior.

An interesting feature to note is that the predictive variance approaches a fixed
constant for this model as the number of observed data increases. See West
and Harrison (1997) for more details.

Bayesian Statistics



Example 83
In Example 81, suppose that we have νt ∼ N (0, Vt) and ωt ∼ N (0,Wt) with
distribution θt|Dt−1 ∼ N (mt−1,Ct−1). Then:

1. The prior distribution for θt is:

θt|Dt−1 ∼ N (mt−1,Rt) where

Rt = Ct−1 + Wt.

2. The one step ahead predictive distribution for yt is:

yt|Dt−1 ∼ N (ft, Qt) where

ft = FT
t mt−1

Qt = FT
t RtFt + Vt
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3. The joint distribution of θt and yt is

θt

yt

∣∣∣∣ Dt−1 ∼ N
(

mt−1

ft
,

(
Rt FT

t Rt

RtFt Qt

))

4. The posterior distribution for θt given Dt = {Dt−1, yt} is

θt|Dt ∼ N (mt,Ct) where

mt = mt−1 + Atet

Ct = Rt −AtAT
t Qt

At = RtFtQ
−1
t

et = yt − ft.

Proof Exercise.
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The following plot shows sales against price.

Thus, a dynamic, simple linear regression model would seem appropriate.
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The following diagram, assuming a constant variance model as earlier illustrates
the improved fit of this model.
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The general theorem for DLM’s

Theorem 43
For the general, univariate DLM,

Yt = FT
t θt + νt

θt = Gtθt−1 + ωt

where νt ∼ N (0, Vt) and ωt ∼ N (0,Wt), assuming the prior distribution
θt−1|Dt−1 ∼ N (mt−1,Ct−1), we have

1. Prior distribution for θt:

θt|Dt−1 ∼ N (at,Rt) where

at = Gtmt−1

Rt = GtCt−1GT
t + Wt
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2. One step ahead prediction:

yt|Dt−1 ∼ N (ft, Qt) where

ft = FT
t at

Qt = FT
t RtFt + Vt.

3. Posterior distribution for θt|Dt:

θt|Dt ∼ N (mt,Ct) where

mt = at + Atet

Ct = RtRT
t Qt

At = RtFtQ
−1
t

et = yt − ft.

Proof Exercise.
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DLM’s and the Kalman filter

The updating equations in the general theorem are essentially those used in
the Kalman filter developed in Kalman (1960) and Kalman and Bucy (1961).
For more details, see

http://en.wikipedia.org/wiki/Kalman_filter
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Superposition of models

Many time series exhibit various different components. For example, as well
as the regression component we have already fitted, it may well be that the
sales series exhibits a seasonal component. In such cases, we may often wish
to combine these components in a single model. In such cases, we may write

yt = y1t + . . . + ykt + νt where

yjt = FT
jtθjt and

θjt = Gjtθj,t−1 + ωjt for j = 1, . . . , k.

This leads to a combined model

yt = FT
t θ + νt

θt = Gtθt−1 + ωt where

Ft =

 F1t
...

Fkt

 , Gt =

 G1t 0 0
0 . . . 0
0 0 Gkt

 .
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Discount factors

Thus far, we have not considered how to model the uncertainty in the unknown
variances. It is possible to model the uncertainty in the observation variances
analytically in the usual way (via inverse gamma priors). However, the
treatment of the system variances is more complex. In this case, discount
factors can be used.

The idea is based on information discounting. As information ages, it becomes
less useful and so its value should diminish. Thus, in our problem, with system
equation

θt = Gtθt−1 + ωt, ωt ∼ N (0,Wt)
then given that V [θt−1|Dt−1] = Ct−1, we have

Rt = V [θt|Dt−1] = Pt + Wt

where

Pt = V [Gtθt−1|Dt−1] = GtCt−1GT
t and Wt = Rt −Pt.
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If we define δ such that Rt = Pt/δ, then we can interpret δ as the percentage
of information that passes from time t− 1 to time t and in this case,

Wt = Pt

(
δ−1 − 1

)
.

Typical values for systems without abrupt changes are usually around δ = 0.9.
Small values of δ (below 0.8) imply large levels of uncertainty and lead to
predictions with very wide bounds.

High values represent more smoothly changing systems, and in the limit, when
δ = 1, we have a static system with no information loss.

The following diagrams show the effects of fitting a trend model with discount
factors 0.8, 0.9 and 1 to the sales data. We can see that the higher the
discount factor, the higher the degree of smoothing.
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The forward filtering backward sampling algorithm

This algorithm, developed in Carter and Kohn (1994) and Frühwirth-Schnatter
(1994) allows for the implementation of an MCMC approach to DLM’s.

The forward filtering step is the standard normal linear analysis to give p(θt|Dt)
at each t, for t = 1, . . . , n.

The backward sampling step uses the Markov property and samples θ?
n from

p(θn|Dn) and then, for t = 1, . . . , n − 1, samples θ?
t from p(θt|Dt,θ

?
t+1).

Thus, a sample from the posterior parameter structure is generated.
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Example: the AR(p) model with time varying coefficients

Example 84
The AR(p) model with time varying coefficients takes the form

yt = θ0t + θ1t + . . . + θptyt−p + νt

θit = θi,t−1 + ωit

where we shall assume that the error terms are independent normals:

νit ∼ N (0, V ) and ωit ∼ N (0, λiV ).

Then this model can be expressed in state space form by setting

θt = (θ0t, . . . , θpt)T

F = (1, yt−1, . . . , yt−p)T

G = Ip+1

W = V diag(λ)
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Here diag(λ) represents a diagonal matrix with ii’th entry equal to λi, for
i = 1, . . . , p + 1.

Now, given gamma priors for V and for λ−1
i and a normal prior for θ0, then it

is clear that the relevant posterior distributions are all conditionally conjugate.

Koop (2003) examines data on the annual percentage change in UK industrial
production from 1701 to 1992.
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Koop (2003) assumes a time varying coefficient AR(1) model and uses proper
but relatively uninformative prior distributions. The posterior distributions of
λ0 and λ1 estimated from running the Gibbs sampler are as follows.

The posterior means and deviations of both λ0 and λ1 suggest that there is
quite high stochastic variation in both θ0t and θ1t.

Bayesian Statistics



Software for fitting DLM’s

Two general software packages are available.

• BATS. Pole et al (1994). This (somewhat out of date) package can be used
to perform basic analyses and is available from:

http://www.stat.duke.edu/~mw/bats.html

• dlm. Petris (2006). This is a recently produced R package for fitting
DLM’s, including ARMA models etc. available from

http://cran.r-project.org/src/contrib/Descriptions/dlm.html
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Other work in time series

• ARMA and ARIMA models. Marriot and Newbold (1998).

• Non linear and non normal state space models. Carlin et al (1992).

• Latent structure models. Aguilar et al (1998).

• Stochastic volatility models. Jacquier et al (1994).

• GARCH and other econometric models. Bauwens et al (2000).

• Wavelets. Nason and Sapatinas (2002).
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