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Chapter 6. Nonlinear Time Series Modelling. 
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GRADING 

 

 

 Final exam (70%). 

 Class participation and empirical project (30%). 
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WEB RESOURCES 

 Global Insight. 

 Time series data library.  

http://datamarket.com/data/list/?q=provider:tsdl 

 Macroeconomic time series 

http://www.fgn.unisg.ch/eurmacro/macrodata/index.html 

 Instituto Nacional de Estadística 

http://www.ine.es 

 Eurostats 

http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ 
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MOTIVATION 

 Time series: sequence of observations taken at 

regular intervals of time 

 Data in bussines, engineering, enviroment, 

medicine, etc. 
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MOTIVATION. 
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SUICIDES IN SPAIN, TOTAL NUMBER 

 

Source: INE 
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CO2  EMISSIONS IN THE USA 

 

Source: World Databank 
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INDUSTRIAL PRODUCTION INDEX (SPAIN) 

 

Source: ine 
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MOTIVATION. 
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OVERNIGHT STAYS IN SPANISH HOTELS 

 

Source: ine 
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CONSUMER PRICE INDEX IN GERMANY AND SPAIN 

 

Source: Eurostats 
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CONSUMER PRICE INDEX FOR FOOD AND NON-ALCOHOLIC 

BEVERAGES IN GERMANY AND SPAIN 

 

Source: Eurostats 
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Source: Instituto Flores de Lemus 
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Source: Instituto Flores de Lemus 
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MOTIVATION. 
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MOTIVATION. 

 

 Knowledge of the dynamic structure will help to 

produce accurate forecasts of future observations 

and design optimal control schemes. 
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MOTIVATION 

Main objectives 
 

Understanding the dynamic structure of the 

observations in a single series. 

Ascertain the leading, lagging and feedback 

relationships  among several variables. 

Analyzing the impact of other variables that 

can be used for policy decisions. 

What to do when there are breaks in the 

evolution of the series. 
19 
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Chapter 1  

 

Univariate ARIMA Models 
 

 

 

 

 

Recommended readings: chapters 1 to 3 of Peña et al. (2000) 
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CHAPTER 1. CONTENTS. 

1.1.  Introduction.  

  Definitions, examples,  

1.2.  Properties of univariate ARMA. 

  ARMA weights. 

    Stationarity and covariance structure. 

        Autocorrelation function. 

        Partial autocorrelación function.        

1.3.  Model especification. 

1.4.  Examples. 
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INTRODUCTION 

22 

In
tro

d
u
ctio

n
 to

 tim
e series (2

0
1
3
 ) 

 Stochastic Process. Real-valued random 

variable 𝑍𝑡  that follows a distribution 𝑓𝑡(𝑍𝑡) .   

     

 The  T-dimensional variable 𝑍𝑡1
, 𝑍𝑡2

, … , 𝑍𝑡𝑇   

will have a joint distribution that depends on 

𝑡1, … , 𝑡𝑇 . 
 



INTRODUCTION 
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 Time series 𝑧𝑡1
, 𝑧𝑡2

, … , 𝑧𝑡𝑇   will denote a 

particular realization of the stochastic process. 

 

 To simplify notation 𝑧1 , 𝑧2 , … , 𝑧𝑇 . 
 



INTRODUCTION 

24 

In
tro

d
u
ctio

n
 to

 tim
e series (2

0
1
3
 ) 

Assumptions  

 

1. The process is stationary.  

 

2. The joint distribution of 𝑧1 , 𝑧2 , … , 𝑧𝑇  is a 

multivariate normal distribution.  
 



INTRODUCTION 

Implications of stationarity 

 

 The joint distribution remains constant over time 

 

 It is then true that 
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INTRODUCTION 

 

 Stationarity implies a constant mean and bounded 

deviations from it. 

 

 Strong requirement, few actual economic series will 

satisfy it. 
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INTRODUCTION 
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INTRODUCTION 

 

Transformations to achieve stationarity 

 

 Constant variance: log/level plus outlier correction. 

 

 Stationary in mean: differencing. 
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INTRODUCTION 

Differencing 

 Let B be the backward operator 

 

 

 We shall use the operators: 

 

 Regular difference 

 Seasonal difference 
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If   𝑧𝑡  is a deterministic trend (𝑧𝑡 = 𝑎 + 𝑏𝑡) 

∇𝑧𝑡 = 𝑏 

∇2𝑧𝑡 = 0 

 

where  

∇2𝑧𝑡 = ∇(∇𝑧𝑡) 

 

 In general, ∇d   will reduce a polynomial of degree d 

to a constant. 
 



INTRODUCTION 
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 Example:    for a quarterly series 𝑧𝑡 ,  ∇4𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−4 

will cancel a constant, but it will also cancel other 

deterministic periodic functions. 
 



INTRODUCTION 
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 Homogeneous difference equation  

∇4𝑧𝑡 = (1 − 𝐵4)𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−4 

 Characteristic equation:  𝑟4 − 1 = 0 

 Solution is given by 𝑟 =  1
4

  (four roots on the unit 

circle) 

𝑟1 = 1, 𝑟2 = −1, 𝑟3 = 𝑖, 𝑟4 = −𝑖 

 Two real roots and two complex conjugates with 

modulus 1 and frequency 𝜔 = 𝜋/2. 
 



INTRODUCTION 

Therefore, 

 

 

1. One  in the zero frequency (trend) 

2. One in the twice-a-year seasonality 

3. Associated with once-a-year seasonality 
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To see this just recall that the complementary function to 

the difference equation 𝑧𝑡 = 𝑏𝑧𝑡−1 + 𝑐𝑧𝑡−2 will eventually be 

of the form: 

𝑧𝑡 =  𝑟𝑡  𝐴 cos 𝜃𝑡 + 𝐵 sin 𝜃𝑡  

where 𝑟 is a positive constant and 𝜃 is an angle measured 

in radians. 𝐴 and 𝐵 are arbitrary constants to enable the 

solution to satisfy any starting point of 𝑧𝑡 . 

 

Hence, when the two solutions of the characteristic 

equations are 𝑖 and – 𝑖, sin 𝜃 = 1 and 𝜃 =
𝜋

2
. 

 



UNIVARIATE ARMA MODELS 

“Building block” is the white noise process 

 

 

Implications: 
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General ARMA(p,q) processes: 

𝜙 𝐵 𝑧𝑡 = 𝑐 + 𝜃(𝐵)𝑎𝑡  

 

 𝑧𝑡  is the observable time series. 

 𝑎𝑡  is sequence of white noise.  

 𝑐 is the constant term. 
 



INTRODUCTION 

 Autoregressive polynomial 

 

 

 Moving-average polynomial 

 

 

 The AR and MA polynomials are assumed to have no 

common factor 
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 Stationarity implies that all zeros of 𝜙 𝐵  are 

restricted to lie outside the unit circle and in this case:  

𝑐 =  1 − 𝜙1 − ⋯− 𝜙𝑝 𝜇 

where 𝜇 is the mean of the series. 

    

 Overall behavior of the series remains the same 

over time. 
 



INTRODUCTION 
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 Overall behavior of the series remains the same 

over time. 

 In real world, however, time series data often 

exhibits a drifting behavior. Nonstationarity can be 

modeled allowing some of the zeroes in 𝜙 𝐵  to be 

equal to one. Thus, 

𝜙 𝐵 (1 − 𝐵𝑑)𝑧𝑡 = 𝑐 + 𝜃(𝐵)𝑎𝑡  

 

 This is known as the ARIMA (p,d,q) model. 
 



INTRODUCTION 

 Some special cases of ARIMA(p,d,q): 

 

 AR(1) 

 MA(1) 

 ARMA(1,1) 

 IMA(1,1) 

 ARIMA(0,1,1)(0,1,1) 
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 AR(1) to MA(∞) by recursive substitution. 

 

𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝑎𝑡  

𝑧𝑡 = 𝜙 𝜙𝑧𝑡−2 + 𝑎𝑡−1 + 𝑎𝑡 = 𝜙2𝑧𝑡−2 + 𝜙𝑎𝑡−1 + 𝑎𝑡  

𝑧𝑡 = 𝜙𝑘𝑧𝑡−𝑘 + 𝜙𝑘−1𝑎𝑡−𝑘+1 + ⋯ + 𝜙2𝑎𝑡−2 + 𝜙𝑎𝑡−1 + 𝑎𝑡  
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 If  𝜙 < 1, then  

𝑧𝑡 =  𝜙𝑗𝑎𝑡−𝑗

∞

𝑗 =0

 

 

which is a MA(∞) 
 



INTRODUCTION 

 Some considerations: 

 

 ARMA models are not unique (variety of possible 

representations. 

 Parsimony is always a desirable property. 

 AR representations are easiest to estimate (OLS) and 

to be interpretated. 
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PROPERTIES 

 For simplicity, we will assume zero mean and a 
starting point m. The ARIMA (p,d,q) 

 

 

 Can be rewritten as: 

 

 

 

where,  

 

 

 

                      are r=max(p,q) initial values. 
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PROPERTIES 

 ARMA weights 

 

 

 

Where, 
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PROPERTIES 

 The     -weights can be obtained by equating 

coefficients of powers of B from the relations:  

 

 

where  
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PROPERTIES 

 The ARIMA (p,d,q) model can then be rewritten in the 

MA form as: 
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PROPERTIES 

 In the same way, 

 

 

 

 Where, 
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PROPERTIES 

 With 

 

 

 The AR form of the  model is then, 
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PROPERTIES 

 These two expressions are of fundamental 
importance in understanding the nature of the model. 

 

 The MA form with the      weights, shows how the 
observation        is affected by current and past 
shocks or innovations. 

 

 The AR form with the       weigths, indicates how the 
observation is related to its own past values. 
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PROPERTIES 

Examples : AR(1) model 

 

 MA representation: 

 

 

 AR representation: 
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PROPERTIES 

Examples : MA(1) model 

 

 MA representation: 

 

 

 AR representation: 
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PROPERTIES 

Examples : IMA(1,1) model 

 

 MA representation: 

 

 

 AR representation: 
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STATIONARITY CONDITION 

 Consider, 

 

 

 Since the innovations are assumed normally 

distributed, it follows that the observations are also 

normally distributed.  

 It is seen that, if in the  characteristic equation: 
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STATIONARITY CONDITION 

 (Where the A’s denote polinomials in k and the r’s are 

the distinct zeroes of           ) 

 

 

 Then as                     we have that  
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STATIONARITY CONDITION 

 So that      will be stationary in this asymptotic sense.  

 

 This is the stationarity condition  of an ARMA model, 

and is equivalent to require that the zeroes of           

are lying outside the unit circle. 
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LAG K AUTOCOVARIANCE 

 Let us denote, 

 

 

 

 For an alternative expressions of the autocovariance 

function in terms of the ARMA parameters, 
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LAG K AUTOCOVARIANCE 

 By taking expectations on both sides and using the 

MA form, we obtain, for   

 

 

 

 

 

 Where, 
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AUTOCORRELATION FUNCTION 

 The autocorrelation function is defined as 

 

 

 

 By substitution of           ,  we obtain that 
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AUTOCORRELATION FUNCTION 

 When                  , in a MA(q) model, then, 

 

 

 

 

 That is, the autocorrelation function cuts off after lag 

q. 
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PARTIAL AUTOCORRELATION FUNCTION 

 Intuition  

 

 AR(1): 

 

 

 AR(2): 
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PARTIAL AUTOCORRELATION FUNCTION 

 The autocorrelation function only takes into account 

that      and           are related in both cases. 

 

 But if we want to measure the direct relationship 

(without the intermediate        ), we found that it is 

zero for the AR(1) and different from zero for the 

AR(2) model  
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PARTIAL AUTOCORRELATION FUNCTION 

 

 

 The partial autocorrelation function  is, therefore, a 

measure of the linear relation among observations k-

periods apart, independently of the intermediate 

values. 
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PARTIAL AUTOCORRELATION FUNCTION 

 Consider first an stationary AR(p) model. The 

autoregressive coefficients are related to the 

autocorrelations by the Yule-Walker equations, 

 

 

 

 

 where,      is the            matrix,  
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PARTIAL AUTOCORRELATION FUNCTION 
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PARTIAL AUTOCORRELATION FUNCTION 

 Regarding this as system of p equations and p 

unknowns (the     coefficients), the solution is, for p>1, 

the ratio of two determinants 
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PARTIAL AUTOCORRELATION FUNCTION 
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PARTIAL AUTOCORRELATION FUNCTION 

 

 

 

73 

In
tro

d
u
ctio

n
 to

 tim
e series (2

0
1
3
 ) 

•A pxp matrix, and                    for p=1. This 

leads to define, for any stationary model 

 

 

 

•Which is known as the Partial Autocorrelation 

Function. 
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PARTIAL AUTOCORRELATION FUNCTION 
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It has the property that, for a stationary AR(p) 

model, 

 

 

In other words,       vanishes for k>p when the 

model is AR(p). 
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PROPERTIES 
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    SAF       PAF 

AR(P)  slow decay 

towards zero 

 p different 

from zero 

MA(q)  q different 

from zero 

slow decay 

towards zero 

ARMA(p,q) Slow decay 

towards zero 

Slow decay 

towards zero 



EXAMPLES 

 AR(1) model 

 

 Model: 

 

 Variance: 
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EXAMPLES 

 Autocovariance function: 
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EXAMPLES 

 Autocorrelation function: 

 

 

 

 

 

 Partial autocorrelation: 
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EXAMPLES 

 AR(2) model 

 

 Model: 

 

 

 Variance: 
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EXAMPLES 

 Autocorrelation function: 
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EXAMPLES 

 MA(1) model 

 

 Model: 

 

 

 Variance: 
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EXAMPLES 

 Autocovariance function: 
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EXAMPLES 

 Autocorrelation function: 
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SPECIFICATION 

 

 

 The class of ARMA(p,q) models is extensive.  

 Guidelines are needed in selecting a member of the 

class to represent the time series data at hand 
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SPECIFICATION 

 Box and Jenkins (1976) proposed an iterative model 

building strategy. 

 

 Tentative specification or identification of a model. 

 Efficient estimation of model parameters. 

 Diagnostic checking of fitted model for further 

improvement. 
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SPECIFICATION 

 Tentative specification.  The aim is to employ statistics 

that: 

 

 1. Can be readily calculated from the 

data. 

 2. Allow the user to tentatively select a 

model . 
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SPECIFICATION 

 Three methods: 

 

 The Sample Autocorrelation Function 

(SAF) 

 The Sample Partial Autocorrelation 

Function (SPAF) 

 Use of diagnostic tools (AIC,BIC) to 

find the best model (TRAMO-

automatic). 
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SPECIFICATION 

 Sample Autocorrelation Function. The SACF of        
are defined as 

 

 

 

with                                            

 

 and      the sample mean of the n available 
observations 
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SPECIFICATION 

 Properties: 

 

 1.For stationary models, 

 

 

 2. When there exists a unit root in the AR polynomial  
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SPECIFICATION 

 

 If the SACF of the original series is persistently close 

to 1 as k increases, one forms the first difference ,        

, and studies its SACF to determine whether further 

differencing is called for. 
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SPECIFICATION 

 

 

 Once stationary is achieved, a cutting off pattern after, 

say a lag “q”, in the SACF will then lead to tentative 

specification of a MA(q) model.  
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SPECIFICATION 

 The Sample Partial Autocorrelation Function: 

  

 

 Are obtained by replacing the       in 

 

 

 

 

  by their sample estimates  

 

 

 

 

 

92 

In
tro

d
u
ctio

n
 to

 tim
e series (2

0
1
3
 ) 

,...2,1ˆ kk

k













1/

1)(

kGH

kk

kk

k




k̂



SPECIFICATION 

Properties: 

 1.For stationary models, 

 

 

 2. The         are asymptotically normally distributed 

 3. For a stationary AR(p) model 

 

 

 

 

93 

In
tro

d
u
ctio

n
 to

 tim
e series (2

0
1
3
 ) 

 nkk ̂

k̂

pknVar k  1)ˆ(



SPECIFICATION 

 

 Properties 1, 2 and 3 make SPACF a convenient tool 

for specifying the order or a stationary AR model  

(cutting off pattern after lag p) 

 

 Not valid for non-stationary models. 
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SPECIFICATION 

Weakness of the SACF and SPACF. 

 

1. Subjective judgment is often required to decide on 

the order of differencing. 

2. For stationary ARMA models, both SACF and 

SPACF tend to exhibit a gradual “tapering off” 

behavior, making the specification very difficult. 
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SPECIFICATION 

Diagnostic Tools 

 

 The program (TRAMO), in an automatic way, 

specifies a set of possible models, estimate them and 

select the best one based on AIC and BIC criteria. 

 

 However an accurate jugment is always necessary to 

interprect the output of TRAMO. 
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