
Some Basic Techniques in Data Mining

Distances and similarities

• The concept of distance is basic to human experience. In everyday life it usually means some degree

of closeness of two physical objects or ideas, while the term metric is often used as a standard for a

measurement.

• The mathematical meaning of distance is an abstraction of measurement.

• Distances and similarities are the most important concept that underlies upon many statistical proce-

dures.

• We can consider distances between observations or distances between quantitative or qualitative vari-

ables.

• Basically, it is subjective to choose a similarity measure between observations or variables, because it

depends of the scales of observations and variables.
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Definition of Distance:

Let it be two vectors xi, xj in Rk, a distance is a function d with the following properties:

1. d : Rk × Rk → R+, namely d(xi,xj) ≥ 0

2. d(xi,xi) = 0 ∀i

3. d(xi,xj) = d(xj,xi), distance is symmetrical.

4. d(xi,xj) ≤ d(xi,xp) + d(xp,xj), namely the triangular property.

These properties, which are true for distances in the familiar Euclidean geometry, are taken as the defini-

tional characteristics (axioms) of the notion of distance.

One can check whether any given function that assigns a numerical value to pairs of points (or to any pair

of objects) possesses these three properties.

1



Euclidean Distance

In Statistics, the typical approach to measure distances among observations is to use the Euclidean

distance. It generates a Metric Space.

• Given two objects I1 and I2 where we consider two quantitative variables x1 and x2, the Euclidean

distance is defined as:

dI1I2 =
√

(x11 − x21)2 + (x12 − x22)2.

• If we consider more than two variables, then

dI1I2 =

√√√√ p∑
k=1

(x1k − x2k)2

By using vectorial notation,

d2IiIj = (xi − xj)t(xi − xj).

• The whole distance for n objects i, j ∈ {1, . . . , n} is

d =
n∑

i=1

n∑
j=1

(
p∑

k=1

(xik − xjk)2
)1/2

.
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• Minkowski Distance

dIiIj =

[∑
k

|xik − xjk|p
]1/p

where p ∈ N.

If p = 1, we have the absolute value distance. If p→∞, the Chebyshev distance.

• Mahalanobis Distance

d2IiIj = (xi − xj)tW−1(xi − xj)

where W is the covariance matrix between the variables.

• In this way, the variables are weighted in terms of the relationship that exits between them (in terms of

the covariation). If the covariance is 0 and the variables are standardized it is obtained the Euclidean

distance.
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Matching types

• We consider dichotomic variables with 0 or 1 values, presence – absence.

• Example: Consider two observations where there are 5 dichotomic variables (yes / no).

Let Yes = 1 and No = 0

items or variables x1 x2 x3 x4 x5

A 1 1 0 0 1

B 0 1 0 1 0

• One possible similarity coefficient is m/N where m = number of common variables in the two elements

and M is the total number of variables. In this example it is 2/5.
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We can define

XAj = value of observation A in the variable j-th ∈ {1, 0}.

XBj = value of observation B in the variable j-th ∈ {1, 0}.

V =
∑
j

XAj

(
1−XBj

)
number of attributes where A is 1 and B is 0

R =
∑
j

XAj
XBj

number of attributes where A and B are 1

S =
∑
j

(
1−XAj

) (
1−XBj

)
number of attributes where A and B are 0

T =
∑
j

(
1−XAj

)
XBj

number of attributes where A is 0 and B is 1

U = R + S + T + V total number of attributes
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Example of Matching types

• In the example,

V = 1(1− 0) + 1(1− 1) + 0(1− 0) + 0(1− 1) + 1(1− 0) = 2

R = 1

S = 1

T = 1

U = 5

• In this way we can define different indexes of similarity:
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• Index of Russel-Rao

C =
R

U

In the example: 1/5.

• Index of Kendall

C = 1− V + T

U

In the example: 2/5.
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• Index of Jaccard

C =
R

R + T + V

In the example: 1/4.

• Index of Dice–Sorensen

C =
2R

2R + T + V

In the example: 2/5.

• The most common indexes are Jaccard and Dice–Sorensen.
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Gower’s Similarity Coefficient

• It is applied for mixed data types, namely, databases with continuous, ordinal or categorical variables

at the same time.

• Gower’s General Similarity Coefficient Sij compares two cases i and j and is defined as follows

Sij =

n∑
k

wijkSijk

n∑
k

wijk

• where:

Sijk denotes the contribution provided by the k−th variable, and

wijk is usually 1 or 0 depending if the comparison is valid for the k−th variable.
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Ordinal and Continuous Variables

Gower similarity defines the value of Sijk for ordinal and continuous variables as follows:

Sijk = 1− |xik − xjk|
rk

where rk is the range of values for the k−th variable.

Nominal Variables

The value of Sijk for nominal variables is 1 if xik = xjk or 0 if xik 6= xjk. Thus Sijk = 1 if cases i and j have

the same state for attribute k, or 0 if they have different states, and wijk = 1 if both cases have observed

states for attribute k.
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Binary Variables

For a binary variable (or dichotomous character), the Gower similarity defines the components of similarity

and the weight according to the table,

Value of

attribute k

Case i + + − −

Case j + − + −

Sijk 1 0 0 0

wijk 1 1 1 0

where + denotes that attribute k is present and - denotes that attribute k is absent.

If all variables are binary, then Gower’s similarity coefficient is equivalent to the Jaccard’s similarity coeffi-

cient.
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Distances between variables

• Correlation Coefficient of Pearson

It is defined as

r =
Sxy

SxSy

where Sxy is the sample covariance between x and y, Sx and Sy are the standard deviations of x and y.

• Correlation Coefficient of Kendall

• With the Kendall tau coefficient (τ ) two different rankings are compared and it has the following proper-

ties:

• If the agreement between the two rankings is perfect (i.e., the two rankings are the same) the coefficient

has value 1.
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• If the disagreement between the two rankings is perfect (i.e., one ranking is the reverse of the other)

the coefficient has value −1.

• For all other arrangements the value lies between −1 and 1, and increasing values imply increasing

agreement between the rankings. If the rankings are completely independent, the coefficient has value

0 on average.

• The coefficient can be defined as,

τ =
nc − nd

n(n−1)
2

• where nc is the number of concordant pairs, and nd is the number of discordant pairs in the data set.

The denominator in the definition of τ can be interpreted as the total number of pairs of items. So, a

high value in the numerator means that most pairs are concordant, indicating that the two rankings are

consistent.
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Correlation Coefficient of Spearman

• The Spearman correlation coefficient is often thought of as being the Pearson correlation coefficient

between the ranked variables.

• The n raw scores (x1, y1), (x2, y2), · · · , (xn, yn) are converted to ranks (rx1 , ry1), (rx2 , ry2), · · · , (rxn , ryn),

and the differences di = (rxi
− ryi), between the ranks of each observation on the two variables are

calculated.

x1 y1 rx1 ry1

x2 y2 rx2
ry2

...
...

...
...

xn yn rxn ryn

• Then, the coefficient is defined as

rs = 1−
6

n∑
i=1

d2i

n(n2 − 1)
.
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Tree Models

• They represent a compromise between linear models and a completely nonparametric approach. The

methodology has roots in both the statistics and computer science literature.

• A precursor to the current methodology was CHAID developed by Morgan and Sonquist (1963), and

Breiman et al. (1984) introduced the main ideas to statistics.

• Tree-based methods, or decision tree methods are especially popular in data mining, and they may be

used for problem-classification and regression.

• They may be appropriate when there are extensive data, and there is uncertainty about the form in

which explanatory variables ought to enter into the model.

• The methodology makes weak assumptions about the form of the regression model.
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• In small data sets, it is unlikely to reveal data structure. Its strength is that, in large data sets, it has

the potential to reflect relatively complex forms of structure, of a kind that may be hard to detect with

conventional regression modeling.

• It is well-suited for using with big data sets.

• PROBLEMS FOR WHICH TREE-BASED REGRESSION MAY BE USED

1. Regression with a continuous outcome variable.

2. Binary regression.

3. Ordered classification problems where there are more than two outcomes,

4. Unordered classification problems.
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STRENGTHS of tree-based regression:

1. Results are invariant to a monotone re-expression of explanatory variables.

2. The methodology is readily adapted to handle missing values, without omission of complete observa-

tions.

3. Tree-based regression is adapted at capturing non-additive behaviour. Interactions are automatically

included.

4. It handles regression and, in addition, with unordered and ordered classification.

5. Results are in an immediately useful form for classification or diagnosis.
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WEAKNESSES:

1. The overall tree may not be optimal. The methodology assures only that each split will be optimal.

2. Continuous predictor variables are treated, inefficiently, as discrete categories.

3. Low order interaction effects do not take precedence over higher order interactions.

4. Limited notions of what to look for may result in failure to find useful structure.

5. It may obscure insights that are obvious from parametric modeling.

6. Large trees make poor intuitive sense: their predictions must be used as black boxes.
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Recursive partitioning regression algorithm

1. Consider the partition of an independent variable by choosing a point along the range of that variable

to make the split. For each partition, we take the mean of the observations in that partition (for the

corresponding elements of the leaves) and compute the residual sum of squares (RSS):

RSS(partition) = RSS(part1) +RSS(part2)

We then choose the partition that minimizes the residual sum of squares (RSS).

2. We now subpartition the partitions in a recursive manner. We only allow partitions within existing

partitions and not across them. Partitioning can be represented using a tree and there is no restriction

about splitting the same variables consecutively.

For categorical predictors, it is possible to split on the levels of the factor. For an ordered factor with L

levels, there are only L− 1 possible splits.
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EXAMPLE:

4601 email items, of which 1813 items were identified as spam (see DAAG library of R).

The explanatory variables are

• crl.tot, total length of words that are in capitals,

• dollar, the frequency of the $ symbol, as a percentage of all characters,

• bang, the frequency of the ! symbol, as a percentage of all characters,

• money, frequency of the word money, as a percentage of all words,

• n000, frequency of the text string 000, as a percentage of all words,

• make, frequency of the word make, as a percentage of all words.

The outcome is the variable yesno, which is n for non-spam and y for spam.
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We can consider a tree-based regression, using the 6 variables as predictors.

library(DAAG)

library(rpart)

data(spam7)

attach(spam7)

head(spam7)

spam.tree <- rpart(formula = yesno ∼ crl.tot + dollar + bang + money +

n000 + make, method="class", data=spam7)

plot(spam.tree)

text(spam.tree)

options(digits=5)

printcp(spam.tree)
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• Reading the tree is done as follows: If the condition that is specified at a node is satisfied, then we

take the branch to the left. Thus, dollar ($) < 0.0555 and bang (!) < 0.0915 leads to the prediction that

the email is not spam.

• In classical regression, the inclusion of too many explanatory variables may lead to a loss of predictive

power, relative to a more parsimonious model.

• With tree-based regression, the more important issue is the number of splits, rather than the number

of explanatory variables.

• Key concerns are to find an optimum tree size, and to get an unbiased assessment of predictive accu-

racy.

• It is necessary to define a measure that balances the lack of fit against the tree complexity.
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• In the library rpart, it is defined a complexity parameter cp. It plays a similar role to a smoothing

parameter. A high value for cp leads to a small tree. The choice of cp is thus a proxy for the number of

splits.

• It is taken the tree to be optimal for the given value of cp. The optimal tree size increases as cp

decreases.

• Each choice of cp thus determines an optimal tree size. Splitting continues until the tree size is reached

that is optimal for this value of cp.

• Given any tree, we can thus identify a sequence of prunings from the constructed tree back to the root,

such that

– at each pruning the complexity reduces,

– each tree has the smallest number of nodes possible for that complexity, given the previous tree.
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spam7a.tree <- rpart(formula = yesno ∼ crl.tot + dollar + bang +

money + n000 + make, method="class", data=spam7, cp=0.001)

plotcp(spam7a.tree)

printcp(spam7a.tree)
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• We can select the size of the tree by minimizing the value of the cross-validated error (xerror) and

selecting the corresponding value of cp

(see help(xpred.rpart)).

• The process of cross-validation is based in this scheme:

1. Decide on the number of folds you want (k).

2. Subdivide your dataset into k folds.

3. Use k − 1 folds for a training set to build a tree, and 1 to test the tree.

4. Use the testing set to estimate statistics about the error in your tree.

5. Save your results for later.

6. Repeat steps 3-5 for k times leaving out a different fold for your test set.

7. Average the errors across your iterations to predict the overall error.
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• The cross-validated error rate estimates the expected error rate for use of the prediction tree with new

data that are sampled in the same way as the original.

• We consider the prune of the optimal tree. Examination of the cross-validated error rate suggests that

five splits may be marginally better than four splits.

spam7b.tree <- prune(spam7a.tree,

cp=spam7a.tree$cptable[which.min(spam7a.tree$cptable[,"xerror"]), "CP"])

plot(spam7b.tree, uniform=TRUE)

text(spam7b.tree, cex=0.7, col="red")
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ADDENDA. See

http://maya.cs.depaul.edu/˜classes/ect584/WEKA/

http://maya.cs.depaul.edu/˜classes/ect584/WEKA/classify.html

# Trees with WEKA (by means of R)

library(RWeka)

tree <- make_Weka_classifier("weka/classifiers/trees/J48", c("bar", "Weka_tree"))

print(tree)

WOW(tree)

fm <- tree(yesno ∼ crl.tot + dollar + bang + money + n000 + make, data=spam7,

control=Weka_control(M=150))

fm

table(observed=spam7$yesno, predicted=fitted(fm))

summary(fm)

plot(fm)
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K means clustering

• The k-means clustering technique seeks to partition a set of data into a specified number of groups, k,

by minimizing some numerical criterion.

• The most commonly used approach, for example, is to try to find the partition of the n individuals into k

groups, which minimizes the within-group sum of squares over all variables.

• The problem is to consider every possible partition of the n individuals into k groups, and select the one

with the lowest within-group sum of squares.

• The problem in practice is not so straightforward. The numbers involved are so vast that complete

enumeration of every possible partition remains impossible even with the fastest computer. To illustrate

the scale of the problem:
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n k Number of possible partitions

15 3 2375101

20 4 45232115901

25 8 690223721118368580

100 5 1068

• The impracticability of examining every possible partition has led to the development of algorithms

designed to search for the minimum values of the clustering criterion by rearranging existing partitions

and keeping the new one only if it provides an improvement.

• Such algorithms do not guarantee finding the global minimum of the criterion.
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• The essential steps in these algorithms are as follows:

1. Find some initial partition of the individuals into the required number of groups.

2. Calculate the change in the clustering criterion produced by moving each individual from its own

to another cluster.

3. Make the change that leads to the greatest improvement in the value of the clustering criterion.

4. Repeat steps (2) and (3) until no move of an individual causes the clustering criterion to improve.

• The k-means approach can be used to partition the states into a pre specified number of clusters set

by the investigator.

• In practice, solutions for a range of values for number of groups are found, but the question remains as

to the optimal number of clusters for the data.
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Consider the following data: the chemical composition of 48 objects of Romano-British pottery, deter-

mined by atomic absorption spectrophotometry, for nine oxides.

AL2O3 FE2O3 MGO CAO NA2O K2O TIO2 MNO BAO

1 1.76 1.11 0.30 0.46 0.50 1.02 1.29 0.48 1.07

2 1.58 0.85 0.25 0.49 0.50 0.97 1.27 0.41 1.29

3 1.70 0.89 0.27 0.45 0.50 0.98 1.26 0.54 1.00

4 1.58 0.85 0.23 0.44 0.50 0.97 1.28 0.39 1.36

5 1.66 0.84 0.27 0.53 0.54 0.99 1.19 0.38 1.36

6 1.76 0.87 0.31 0.51 0.31 1.04 1.26 0.44 1.21

7 1.54 0.82 0.27 1.01 0.41 1.02 1.22 0.41 1.36

8 1.68 0.86 0.31 0.58 0.35 1.07 1.23 0.44 1.21

9 1.48 0.83 0.24 0.41 0.48 1.04 1.19 0.38 1.21

10 1.36 0.80 0.25 0.44 0.41 0.97 1.17 0.34 0.86

11 1.28 0.68 0.22 0.38 0.16 0.72 0.96 0.21 0.86

12 1.36 0.79 0.24 0.86 0.25 0.96 1.12 0.34 1.14

13 1.38 0.82 0.24 0.84 0.30 0.96 1.10 0.49 1.14

14 1.60 0.91 0.30 0.48 0.58 1.00 1.19 0.56 1.43

15 1.57 0.91 0.28 0.49 0.58 0.93 1.21 0.58 1.43

16 1.48 0.89 0.29 0.47 1.04 1.06 1.23 0.69 1.36

17 1.74 0.91 0.35 0.51 0.48 1.01 1.26 0.50 1.29

18 1.58 0.92 0.27 0.76 0.66 0.98 1.22 0.57 1.64

19 1.77 0.88 0.31 0.48 0.16 1.05 1.26 0.44 1.07

20 1.68 0.87 0.29 0.40 0.15 1.00 1.19 0.22 1.21

... ... ... ... ... ... ... ... ... ...
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• The variables are on very different scales they will need to be standardized before applying k-means

clustering.

• we divide each variable’s values by the range of the variable (max – min).

# pots <- read.table("pots.txt",header=T)

rge <- apply(pots,2,max)-apply(pots,2,min)

pots <- sweep(pots,2,rge,FUN="/")

• The k-means approach can be used to partition the states into a pre specified number of clusters set

by the investigator.

• In practice, solutions for a range of values for number of groups are found.

• The question remains as to the optimal number of clusters for the data.
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• A possibility is to examine the value of the within-group sum of squares associated with solutions for a

range of values of k, the number of groups.

• As k increases this value will necessarily decrease but some sharp change may be indicative of the

best solution.

# We seek for an optimal number of groups

n <- length(pots[,1])

# Compute the sum of squares within groups

# Compute the sum of squares within groups (1 only group)

scd1 <- (n-1)*sum(apply(pots,2,var))

# Compute the sum of squares within 2 to 6 groups

scd <- numeric(0)

for(i in 2:6) {

W <- sum(kmeans(pots,i)$withinss)

scd <- c(scd,W) }
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# Append results of squares

scd <- c(scd1,scd)

# Plot squares within groups and number of groups

plot(1:6,scd,type="l",xlab="Number of groups",

ylab="Sum of squares within groups",lwd=2)

# Best result is with 2 or 3 groups

pots.kmedia <- kmeans(pots,3)

pots.kmedia

# Actual non standardized results

lapply(1:3,function(eso){apply(pots[pots.kmedia$cluster==eso,],2,mean)})
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The means of each of the nine variables for each of the three clusters show that:

• Cluster three is characterized by a high aluminium oxide value and low iron oxide and calcium oxide

values.

• Cluster two has a very high manganese oxide value and a high potassium oxide value.

• Cluster one has high calcium oxide value.

• In addition to the chemical composition of the pots, an archaeologist might be interested in assessing

whether there is any association between the site and the distinct compositional groups found by the

cluster analysis.
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ADDENDA.

See

pots <- read.table("pots.txt",header=T)

rge <- apply(pots,2,max)-apply(pots,2,min)

pots <- sweep(pots,2,rge,FUN="/")

library(RWeka)

pakmean <- make_Weka_clusterer("weka/clusterers/SimpleKMeans")

print(pakmean)

WOW(pakmean)

feoK <- pakmean(pots, control=Weka_control(N=3,V=TRUE))

feoK
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Overview of Multidimensional Scaling

• Multidimensional scaling (MDS) is a set of data analysis techniques that display the structure of

distance-like data as a geometrical picture.

• MDS has its origins in Psychometrics, where it was proposed to help understand people’s judgments

of the similarity of members of a set of objects.

• MDS has now become a general data analysis technique used in a wide variety of fields like marketing,

sociology, physics, political science and biology.

• MDS pictures the structure of a set of objects from data that approximate the distances between pairs

of the objects. The data, which are called similarities, dissimilarities, distances or proximities, must

reflect the amount of dissimilarity between pairs of observations.
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• Data can be objective similarity measures (the driving time between pairs of cities) or an index calcu-

lated from multivariate data (the proportion of agreement in the votes cast by pairs of electors).

• Each object or event is represented by a point in a multidimensional space. The points are arranged

in this space so that the distances between pairs of points have the strongest possible relation to the

similarities among the pairs of objects.

• Two similar objects are represented by two points that are close together, and two dissimilar objects are

represented by two points that are far apart. The space is usually a two- or three-dimensional Euclidean

space, but may be non-Euclidean and may have more dimensions.

loc <- cmdscale(eurodist)

x <- loc[, 1]

y <- -loc[, 2] # reflect so North is at the top

plot(x, y, type="n", xlab="", ylab="", asp=1, axes=FALSE, main="Cities of Europe")

text(x, y, rownames(loc), cex=0.6)
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SOM (Kohonen Nets)

• The self organizing map (SOM) is an algorithm developed by Kohonen (1982-1995). It has a vague

biological motivation, and it can be seen as a specific type of clustering algorithm.

• In the k-means method we saw that an observation was assigned to the cluster whose representative

mj is nearest to it.

• This is precisely what happens in SOM, but the training algorithm attempts to assign some structure to

the representatives mj.

• A large number of representatives are chosen, and arranged on a regular grid in one or two dimensions

(both square and hexagonal grids are used).

• The idea is that the representatives (called weights by Kohonen) are spatially correlated, so that repre-

sentatives at nearby points on the grid are more similar that those which are widely separated.
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• This process is conceptually similar to multidimensional scaling that maps similar examples to nearby

points in a q-dimensional space.

• If we were to discretize the 2-dimensional space, for example by dividing it into a grid of square bins,

we would have a mapping from the space of possible examples into a discrete space that provides a

clustering.

• Further, we could average the examples which are mapped to each bin to provide a representative for

each non-empty bin, and the representatives in nearby bins would be similar.

• This is precisely the spirit of SOM, and it is often used to provide a crude version of multidimensional

scaling.

• I just wanted an algorithm that would effectively map similar patterns (pattern vectors close to each

other in the input signal space) onto contiguous locations in the output space. (Kohonen, 1995, p. VI.)
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Example

The wine data set contains information on a set of 177 Italian wine samples from three different grape

cultivars; thirteen variables (such as concentrations of alcohol and flavonoids, but also color hue) have been

measured.

library(kohonen)

data(wines)

set.seed(7)

wines.sc <- scale(wines)

wine.som <- som(data=wines.sc, grid=somgrid(5, 4, "hexagonal"))

names(wine.som)

summary(wine.som)

wine.som$unit.classif

wine.som$codes

plot(wine.som, main="Wine data")
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The codebook vectors are visualized in a segments plot. High alcohol levels, for example, are associated

with wine samples projected in the bottom right corner of the map, while color intensity is largest in the bottom

left corner.
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Supervised SOM

In supervised SOM there is a available dependent variable (categorical or continuous)

library(kohonen)

data(wines)

set.seed(7)

kohmap <- xyf(scale(wines), classvec2classmat(wine.classes),

grid = somgrid(5, 5, "hexagonal"))

par(mfrow=c(2,1))

plot(kohmap, type="codes", main=c("Codes X", "Codes Classes"))

plot(kohmap, type="counts")

plot(kohmap, type="mapping",labels=wine.classes, col=wine.classes+1,

main="Mapping Plot")
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The background color of a unit corresponds to the number of samples mapped to that particular unit; they

are reasonably spread out over the map. One of the units is empty (depicted in gray ): no samples have been

mapped to it.
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The three classes of the dependent variable (the categorical class variable) are shown.
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