
Cluster Sampling

• A cluster sample is a probability sample in which each sampling unit is a collection or a group of

elements.

• It is useful when:

(i) A list of elements of the population is not available but it is easy to obtain a list of clusters.

(ii) The cost of obtaining observations increases as the distance that separates the elements.

• If only a sample of elements is taken from each selected cluster, the method is known as two-stage

sampling.

• Often a hierarchy of clusters is used: First some large clusters are selected, next some smaller clusters

are drawn within the selected large clusters, and so on until finally elements are selected within the

final-stage clusters.
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• EXAMPLE: In a survey of students from a city, we first select a sample of schools, then we select a

sample of classrooms within the selected schools, and finally we select a sample of students within the

selected classes.

• This general method is known as multistage sampling, although it is also sometimes loosely described

as cluster sampling.

• Although strata and clusters are both groupings of elements, they serve for entirely different sampling

purposes.

• Since strata are all represented in the sample, it is advantageous if they are internally homogeneous

in the survey variables.

• As only a sample of clusters are sampled, the ones selected need to represent the ones unselected;

this is best done when the clusters are as internally heterogeneous in the survey variables as possible.
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• Except in special circumstances, cluster sampling leads to a loss in precision compared with an SRS

of the same size but it can be justified by a better economy .

We can use the following notations:

N the number of clusters in the population.

n the number of clusters selected in a simple random sample.

mi the number of elements in cluster i, i = 1, . . . , N .

m̄ = 1
n

n∑
i=1

mi the estimated average cluster size for the sample.

M =
N∑
i=1

mi the number of elements in the population.

M̄ = M/N the average cluster size for the population.

yi the total of all observations in the i-th cluster.
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• The estimator of the population mean µ is the sample mean ȳ, given by

ȳ =

∑n
i=1 yi∑n
i=1mi

• The estimator has the form of a ratio estimator , therefore the estimated variance of ȳ is

V̂ ar(ȳ) =

(
N − n
NnM

2

)∑n
i=1 (yi − ȳmi)

2

n− 1

where the average cluster size for the population (M ) can be estimated by m̄ if M (the number of

elements in the population) is unknown.

• The estimated variance is biased , except if the cluster sizes mi are equal.

Anyway, it is a good estimator of V ar(ȳ) if n ≥ 20.
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Example:

A firm is interested in estimating the average per capita income in a certain city. There is not an available

list of resident adults. The city is marked off into rectangular blocks, except for two industrial areas and three

parks which contain a few houses. The researchers decide that each of the city blocks will be considered a

cluster, the two industrial areas will be considered a cluster and, finally, the three parks will be considered a

cluster.

The clusters are numbered from 1 to 60 and there is budget for sampling n = 20 clusters and to interview

every household within each cluster.

Number of 55 60 63 58 71 78 69 58 52 71

Residents mi 73 64 69 58 63 75 78 51 67 70

Total Income 2210 2390 2430 2380 2760 3110 2780 2370 1990 2810

per cluster yi 2930 2470 2830 2370 2390 2870 3210 2430 2730 2880
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function to cluster sampling programmed in R:

cluster.mu <- function(N, m.vec, y, total=T, M=NA) {

# N = number of clusters in population

# M = number of elements in the population

# m.vec = vector of the cluster sizes in the sample

# y = either a vector of totals per cluster, or a list of

# the observations per cluster (this is set by total)

n <- length(m.vec)

# If M is unknown, m.bar is estimated with the mean of m.vec

if(is.na(M)) {mbar <- mean(m.vec)}

else {mbar <- M/N}

# If there are not totals of observations they are computed

if(total==F) {y <- unlist(lapply(y,sum))}
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mu.hat <- sum(y)/sum(m.vec)

s2.c <- sum((y-(mu.hat*m.vec))ˆ2)/(n-1)

var.mu.hat <- ((N-n)/(N*n*mbarˆ2))*s2.c

B <- 2*sqrt(var.mu.hat)

cbind(mu.hat,s2.c,var.mu.hat,B)

}

# Example

m <- c(55,60,63,58,71,78,69,58,52,71,

73,64,69,58,63,75,78,51,67,70)

y <- c(2210,2390,2430,2380,2760,3110,2780,

2370,1990,2810,2930,2470,2830,2370,

2390,2870,3210,2430,2730,2880)

cluster.mu(60,m.vec=m,y,total=T,M=NA)
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• Cluster sampling is an ideal situation to use pps sampling (sampling with probabilities proportional to

size), since the number of elements in a cluster mi forms a natural measure of the size of the cluster

and it is convenient to sample with probabilities proportional to mi.

• In this case, πi =
mi

M
and the estimator of the population mean µ is

µ̂pps =
1

n

n∑
i=1

ȳi

where ȳi is the mean for the i-th cluster, and the estimated variance of µ̂pps is

V̂ ar(µ̂pps) =
1

n(n− 1)

n∑
i=1

(ȳi − µ̂pps)
2
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Example: An auditor wishes to estimate the average number of days sick leave per employee over the past

quarter. The firm has eight divisions, which varying numbers of employees per division. Since the number of

days of sick leave used within each division should be highly correlated with the number of employees, the

auditor decides to sample n = 3 divisions with probabilities proportional to number of employees.

Division 1 2 3 4 5 6 7 8 Total

N of employees 1200 450 2100 860 2840 1910 390 3200 12950

To select a sample with size 3 we can use this command from R:

sample(c("1","2","3","4","5","6","7","8"),3, replace=FALSE,

c(1200,450,2100,860,2840,1910,390,3200))
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Assume that the sample elements are divisions 3, 6 and 8 where the total number of sick days are

respectively

yi = 4320 y2 = 4160 y3 = 5790

In this case,

ȳi = 4320
2100

= 2.06 ȳ2 = 4160
1910

= 2.18 ȳ3 = 5790
3200

= 1.81

hence,

µ̂pps =
1

3

3∑
i=1

ȳi = 2.02

• The estimated variance of µ̂pps is

V̂ ar(µ̂pps) =
1

3 · 2

3∑
i=1

(ȳi − µ̂pps)
2 = 0.012

• And the interval with a 95% of confidence is

2.02± 1.96 ·
√

0.012⇒ [1.8053; 2.2347]
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Cluster Sampling with Stratification

• Cluster sampling can be combined with stratified sampling, because a population can be divided in L

strata and a cluster sample can be selected from each stratum.

• As in the case of ratio estimators we can consider separate estimators and combined estimators.

• Usually the total number of elements in each cluster is not known and we cannot calculate weights.

Then, the usual estimators in cluster sampling are the combined estimators.
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Analysis of a real population

California requires that all students in public schools to be tested each year.

The State Department of Education then puts together the annual Academic Performance Index (API),

which rates how a school is doing overall in terms of the test scores. Data contains API ratings and demo-

graphic information on 6194 schools in 757 school districts.

In this example we will use school districts as the cluster or primary sampling units. We will take a random

sample of 189 school districts and look at all of the schools in each one.

Data, in Stata format, can be downloaded from

http://www.ats.ucla.edu/stat/stata/seminars/svy_stata_intro/oscs1
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Program in Stata:

* use http://www.ats.ucla.edu/stat/stata/seminars/svy_stata_intro/oscs1, clear

use C:\QM\Eje1Cluster.dta, clear

count

* fpc=757 (total: 757 school districts)

* pw=757/189 (sample of 189 districts)

* dnum: Identification number of each district

svyset dnum [pweight=pw], fpc(fpc)

svydes

svy: mean api00

svy: total stype
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* Compute the average proportion of English language learners

* and students eligible for subsidized school meals for elementary,

* middle, and high schools

svy: mean ell meals, over(stype)

* Regression models show that these socioeconomic variables

* predict API score and whether the school achieved

* its API target

svy: reg api00 ell meals
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Program in R:

# Import data from Stata format

library(foreign)

thing <- read.dta("C:/QM/Eje1Cluster.dta")

library(survey)

dclus1 <- svydesign(ids=∼dnum, weight=∼pw, data=thing, fpc=∼fpc)

summary(dclus1)

svymean(∼api00, dclus1)

svyquantile(∼api00, dclus1, quantile=c(0.25,0.5,0.75), ci=TRUE)

svytotal(∼stype, dclus1)
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# Compute the average proportion of English language learners

# and students eligible for subsidized school meals for elementary,

# middle, and high schools

svyby(∼ell+meals, ∼stype, design=dclus1, svymean)

# Regression models show that these socioeconomic variables

# predict API score and whether the school achieved

# its API target

regmodel <- svyglm(api00 ∼ ell + meals, design=dclus1)

summary(regmodel)
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Observations:

• With cluster sampling, the smaller the size of the clusters the better is. When there is a hierarchy of

clusters, the smallest ones will generally be the preferred choice.

• For example, in a High School example, the students could be grouped by grade levels or classes;

here grade levels are too large to serve as clusters for sampling purposes, and classes are the obvious

choice.

• The problem with cluster sampling is that, because clusters usually comprise existing groupings that

were formed for other purposes, the lowest level of clustering still often yields clusters that are too large

to be used efficiently in cluster sampling.

• The solution to this problem is to divide the clusters into sub-clusters for sampling purposes; essentially

this is what is done in multistage sampling.
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Two-Stage Cluster Sampling

• A two-stage cluster sample is obtained by first selecting a sample of clusters, and then selecting a

sample of elements from each sampled cluster.

• There are two desirable conditions for selecting appropriate clusters:

– Geographic proximity of the elements within a cluster

– Cluster sizes that are convenient to handle.

• Example: Consider an university student opinion poll.

– If the students in an university hold similar opinions but differ widely from university to university,

the sample should contain few representatives from many different universities.

– If the students in an university vary greatly, the sample should contain many representatives from

each of a few universities.
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• In two-stage cluster sampling, the sample of elements is obtained as a result of two stages of sampling.

• The population elements are first grouped into disjoint subpopulations, called primary sampling units

(PSU). Then, in a first-stage sampling, a sample of PSU is drawn.

• In the second-stage sampling units (SSU) may be clusters of elements, for each PSU in the first-stage

sample.

• A sample of SSU is drawn (second-stage sampling) from each PSU in the first-stage sample. When

the SSU are clusters, every element in the selected SSU is surveyed.
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Example of cluster sampling

The Swedish Board of Education take annual surveys in Sweden to measure drug use among youngster

students. Data on drug use is collected through anonymous questionnaires from every student in a sample

of ninth-grade classes. The sampling frame consists of a list of all ninth-grade classes.

Example of two-stage cluster sampling, with schools as PSU and with classes as SSU:

(i) A sample of schools is drawn from a frame containing all the schools in the country.

(ii) From every selected school, a sample of ninth-grade classes is drawn and all students in the selected

classes are surveyed.

20



We use the following notation:

• N the number of clusters in the population.

• n the number of clusters selected in a simple random sample.

• Mi the number of elements in cluster i.

• mi the number of elements selected in a simple random sample from cluster i.

• M =
N∑
i=1

Mi the number of elements in the population.

• M̄ = M/N the average cluster size for the population.

• yij the j-th observation in the sample from the i-th cluster.

• ȳi =
1

mi

mi∑
j=1

yij the sample mean for the i-th cluster.
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The estimator of the population mean µ is

µ̂ =

(
N

M

) n∑
i=1

Miȳi

n

assuming simple random sampling in each stage.

The estimated variance of µ̂ is

V̂ ar(µ̂) =

(
N − n
N

)
1

nM̄2
s2b +

1

nNM̄2

n∑
i=1

M2
i

(
Mi −mi

Mi

)
s2i
mi

where

s2b =

n∑
i=1

(
Miȳi − M̄µ̂

)2
n− 1

s2i =

mi∑
j=1

(yij − ȳi)2

mi − 1
, i = 1, 2, . . . , n

22



When the total number of elements in the population M is not known it is estimated by

M̂ = N ·

n∑
i=1

Mi

n

that is, the average cluster size multiplied by the number of clusters in the population.

In this case, the estimator of the population mean µ is

µ̂ =

n∑
i=1

Miȳi

n∑
i=1

Mi

The estimated variance of µ̂ is the same as before, but substituting s2b by s2r:

s2r =

n∑
i=1

M2
i (ȳi − µ̂)2

n− 1
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Example:

The entertainment spent is important to the businesses of a town with a residence for students. A firm

is interested in estimating the average monthly amount spent on entertainment per student. The sampling

procedure that they use is to locate randomly selected rooms and to sample a subset of students in those

rooms. The number of rooms is 112 with a total number of 306 students. Data are shown in the table:

Mi 3 2 4 3 6 3 5 4 6 3

mi 2 2 2 2 2 2 2 2 3 2

yi 23, 27 18, 3 37, 12 22, 21 18, 62 21, 25 3, 12 7, 36 2, 12, 51 18, 17

See a function to make a two-stage cluster sampling programmed in R:

24



two.stage.cluster <- function(N,n,y,M=NA,Mi,mi) {

# N = number of clusters in population

# n = number of clusters sampled

# y = a list of the observations from sampled clusters

# M = number of elements in population, often unknown

# Mi = number of elements in each of the selected clusters

# mi = number of elements sampled in each selected cluster

yi.bar <- unlist(lapply(y,mean))

s2i <- unlist(lapply(y,var))

if(is.na(M)) { # case where M is unknown

M.bar <- mean(Mi)

mu.hat <- sum(Mi*yi.bar)/(n*M.bar)

s2.r <- sum((Miˆ2)*(yi.bar-mu.hat)ˆ2)/(n-1)

thing.1 <- ((N-n)/N)*(1/(n*M.barˆ2))*s2.r

thing.2 <- (1/(n*N*(M.barˆ2)))*sum(Miˆ2*((Mi-mi)/Mi)*(s2i/mi))

var.mu <- thing.1 + thing.2
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B <- 2*sqrt(var.mu)

cat(" mu.hat =",mu.hat,"\n", " var.mu =",var.mu,"\n",

" B =",B,"\n", " yi.bar =",yi.bar,"\n", " s2i =",s2i,"\n",

" s2.r =",s2.r,"\n")

} else { # case where M is known

M.bar <- M/N

mu.hat <- (1/M.bar)*(sum(Mi*yi.bar)/n)

s2.b <- sum((Mi*yi.bar-M.bar*mu.hat)ˆ2)/(n-1)

thing.1 <- ((N-n)/N)*(1/(n*M.barˆ2))*s2.b

thing.2 <- (1/(N*n*(M.barˆ2)))*sum(Miˆ2*((Mi-mi)/Mi)*(s2i/mi))

var.mu <- thing.1 + thing.2

B <- 2*sqrt(var.mu)

cat(" mu.hat =",mu.hat,"\n", " var.mu =",var.mu,"\n"," B =",B,"\n",

" yi.bar =",yi.bar,"\n", " s2i =",s2i,"\n"," s2.b =",s2.b,"\n")

}

}
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N <- 112

n <- 10

M <- 306

Mi <- c(3,2,4,3,6,3,5,4,6,3)

mi <- c(2,2,2,2,2,2,2,2,3,2)

y <- list(y1=c(23,27),y2=c(18,3),y3=c(37,12),y4=c(22,21),y5=c(18,62),

y6=c(21,25),y7=c(3,12),y8=c(7,36),y9=c(2,12,51),y10=c(18,17))

two.stage.cluster(N,n,y,M,Mi,mi)
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STEPS FOR PERFORMING A DESIGN-BASED ANALYSIS

1. Identify the following elements of the sample design:

• Stratification.

• Clustering variables used.

• Population sizes required for determination of finite population corrections.

2. On the basis of above information, determine the sampling weight for each sample subject.

3. Determine for each sample unit a final sampling weight that takes into consideration any non-response

and post-stratification adjustments that are desired.

4. Ensure that all stratification, clustering and population size data required for an appropriate design-

based analysis are identified on each sample unit.

5. Interpret results and findings.
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Analysis of a real population

• We take a stratified two-stage cluster sample. The sampling for each stratum is done independently

with respect to other strata. Clusters are sampled, and then elements within each of the selected

clusters are also sampled.

• We take a SRS of school districts (clusters), and then we take a SRS of schools (elements).

• We first stratify schools based on their mean api99score. Next, we randomly select 25% of the school

districts from each strata. Finally, we randomly select three schools from each selected district.

Data, in Stata format, can be downloaded from

http://www.ats.ucla.edu/stat/stata/seminars/svy_stata_intro/strataboth
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Program in Stata:

* use http://www.ats.ucla.edu/stat/stata/seminars/svy_stata_intro/strataboth, clear

use C:\QM\Eje2Cluster.dta, clear

count

* dnum: Identification number of each district

svyset dnum [pweight=pwt], fpc(fpc) strata(strata)

svydes

svy: mean api00 growth

svy: total yr_rnd
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* Compute the average proportion of English language learners and

* of students eligible for subsidized school meals for each stratum

svy: mean ell meals, over(strata)

* Regression models show that these socioeconomic variables

* predict API score and whether the school achieved

* its API target

svy: reg api00 awards meals
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Program in R:

# Import data from Stata format

library(foreign)

thing <- read.dta("C:/QM/Eje2Cluster.dta")

library(survey)

# Stratified 2-level Cluster Sampling design

dclus2 <- svydesign(ids=∼dnum+∼snum, strata=∼strata, data=thing, weight=∼pwt, fpc=∼fpc+N)

summary(dclus2)

eso <- svymean(∼api00, dclus2)

supe <- eso[[1]] + qt(0.975,187)*sqrt(attr(eso,"var"))

infe <- eso[[1]] - qt(0.975,187)*sqrt(attr(eso,"var"))
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print(eso)

cat("Confidence Interval for api00: [",infe,";",supe,"]","\n")

# Normal approximation

confint(eso)

eso <- svymean(∼growth, dclus2)

supe <- eso[[1]] + qt(0.975,187)*sqrt(attr(eso,"var"))

infe <- eso[[1]] - qt(0.975,187)*sqrt(attr(eso,"var"))

print(eso)

cat("Confidence Interval for growth: [",infe,";",supe,"]","\n")

# Normal approximation

confint(eso)
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eso <- svytotal(∼yr_rnd, dclus2)

supe <- eso[[1]] + qt(0.975,187)*sqrt(attr(eso,"var"))

infe <- eso[[1]]- qt(0.975,187)*sqrt(attr(eso,"var"))

print(eso)

cat("Confidence Interval for yr_rnd: [",infe,";",supe,"]","\n")

# Normal approximation

confint(eso)

# Compute the average proportion of English language learners and

# students eligible for subsidized school meals for elementary,

# middle, and high schools

svyby(∼ell+meals, ∼strata, design=dclus2, svymean, vartype="ci")
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# Regression models show that these socioeconomic variables

# predict API score and whether the school achieved

# its API target

regmodel <- svyglm(api00 ∼ awards + meals, design=dclus2)

summary(regmodel)

X11()

svyboxplot(∼api00 ∼ factor(strata), dclus2, col="peachpuff")
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