Introduction to Ratio and Regression Estimation

Introduction to Ratio Estimation

- Ratio estimation is a technique that uses available *auxiliary information* which is correlated with the variable of interest.

- Suppose that a variable X is correlated with a variable of interest Y, and we have a paired random sample of n observations (x_i, y_i) for $i = 1, \ldots, n$.

Then, we define the ratio

$$R \equiv \frac{\tau_y}{\tau_x} = \frac{\mu_y}{\mu_x}$$

and the corresponding estimator is:

$$r \equiv \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} = \frac{\bar{y}}{\bar{x}}.$$
• Both, the numerator and the denominator are random quantities.

• The estimated sampling variance of r is

$$
\hat{\text{Var}}(r) = \left(1 - \frac{n}{N}\right) \frac{1}{\mu_x^2} \sum_{i=1}^{n} (y_i - r x_i)^2 \frac{1}{n(n - 1)}
$$

• The estimated variance can be written also in terms of the coefficient of correlation ρ:

$$
\hat{\text{Var}}(r) = \left(1 - \frac{n}{N}\right) \frac{1}{\mu_x^2} \frac{1}{n} \left(s_y^2 + r^2 s_x^2 - 2 r \hat{\rho} s_x s_y\right)
$$

• Note that we can substitute μ_x^2 by its estimator \overline{x}^2 in both cases.
Ratio Estimate Examples

$X \equiv$ Family Size

$Y \equiv$ Food Consumption $\implies R \equiv$ Food Consumption per Capita

$X \equiv$ Labor Force Size

$Y \equiv$ Number Unemployed $\implies R \equiv$ Unemployment Rate

$X \equiv$ Cell Phones: 2000

$Y \equiv$ Cell Phones: 2005 $\implies R \equiv$ Increase Rate

$X \equiv$ Person – hours

$Y \equiv$ Number of Items Processed $\implies R \equiv$ Productivity Rate
Example:

It is interesting to know the relative change over a two-year period in the assessed value of homes in a given community. We take a simple survey sampling of $n = 20$ homes from the $N = 1000$ total homes in the community. We obtain the values for this year (y) and the corresponding values from two years ago (x) for each of the $n = 20$ homes included in the sample.

We want to estimate the relative change (R) in the assessed values for the $N = 1000$ homes (see the original example in Scheaffer et al. (1990))

Data are collected in two vectors:

\[
x = c(6.7, 8.2, 7.9, 6.4, 8.3, 7.2, 6.0, 7.4, 8.1, 9.3, 8.2, 6.8, 7.4, 7.5, 8.3, 9.1, 8.6, 7.9, 6.3, 8.9)
\]

\[
y = c(7.1, 8.4, 8.2, 6.9, 8.4, 7.9, 6.5, 7.6, 8.9, 9.9, 9.1, 7.3, 7.8, 8.3, 8.9, 9.6, 8.7, 8.8, 7.0, 9.4)
\]
N = 1000

n = length(x)

plot(x,y)

n = length(x)

r = sum(y)/sum(x)

r

var.r = (1-(n/N))*(1/mean(x)^2)*sum((y-r*x)^2)/(n*(n-1))

var.r

down = r - qnorm(0.975)*sqrt(var.r)

up = r + qnorm(0.975)*sqrt(var.r)

cat("Confidence Interval: ", "[", down, ";", up, "]", "\n")
• The ratio technique can be used to estimate a population total τ_y when we do not know N. In this case we must know the total of the *auxiliary variable* x, namely, τ_x.

\[
\hat{\tau}_y = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} \cdot \tau_x = r \tau_x
\]

• The estimated variance of $\hat{\tau}_y$ is:

\[
\hat{\text{Var}}(\hat{\tau}_y) = \hat{\tau}_x^2 \left(1 - \frac{n}{N}\right) \frac{1}{\mu_x^2} \frac{\sum_{i=1}^{n} (y_i - rx_i)^2}{n(n - 1)}
\]

• In the same way, it can be estimated a population mean μ_y, when we do not know N:

\[
\hat{\mu}_y = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} \cdot \mu_x = r \mu_x
\]

• The estimated variance of $\hat{\mu}_y$ is:

\[
\hat{\text{Var}}(\hat{\mu}_y) = \mu_x^2 \hat{\text{Var}}(r) = \left(1 - \frac{n}{N}\right) \frac{\sum_{i=1}^{n} (y_i - rx_i)^2}{n(n - 1)}
\]
We can substitute μ_x^2 by its estimator \overline{x}^2.

See a **function** to calculate **ratio estimators** programmed in \texttt{R}.

```r
ratio.srs <- function(x, y, opt="Ratio", tauX=NA, N=NA) {
  # opt = "Tau" for the total of Y
  # opt = "Mu" for the mean of Y
  n <- length(x)
  if(is.na(N)) {fpc <- 1} else {fpc <- 1-(n/N)}
  ratio <- sum(y)/sum(x)
  if(is.na(tauX) & is.na(N)) {meanX <- mean(x)} else {meanX <- tauX/N}
  var.r <- fpc*(1/meanX^2)*(sum((y-ratio*x)^2)/n*(n-1))
}
```
switch(opt,

 "Ratio" = {theta <- ratio

 var.theta <- var.r},

 "Tau" = {theta <- ratio*tauX

 var.theta <- var.r*tauX^2},

 "Mu" = {theta <- ratio*meanX

 var.theta <- var.r*meanX^2}

)

B <- 2*sqrt(var.theta)

 cat("Parameter",theta,"

 cat("Variance Parameter",var.theta,"

 cat("Confidence Interval: ","[",theta-B,";",theta+B,"]","\n
)}
We can consider an example about the ratio of prizes between a couple of years (1994 and 1996).

```r
price.94 <- c(48.2, 30.236, 0.919, 1.109, 1.043, 0.768, 1.892, 0.899, 0.917, 1.457, 0.789, 0.505, 0.440, 1.604, 1.674, 2.530, 0.506)
price.96 <- c(49.231, 31.438, 1.121, 1.318, 1.260, 0.875, 1.848, 1.002, 1.308, 1.652, 0.886, 0.593, 0.481, 1.210, 1.735, 3.307, 0.622)
ratio.srs(x=price.94, y=price.96, opt="Ratio")
```
Alternative for ratio estimators using **weighted regression**:

We use the variables of the data from example of *Synthetic Data* (p. 15).

```r
fit <- lm(formula = rent ~ -1 + income,  # the ’-1’ removes the intercept
data = srs, weights = 1/income)  # the weight is specified as 1/X

# Standard error formula of the ratio estimator which
# includes the finite population correction (fpc) factor n/N
ratio.se <- function(mux, s.diff, n, N) {
  sqrt((1/mux^2)*((s.diff^2)/n)*(1-(n/N)))
}
```
Derive the correct fpc corrected Standard Error of the ratio

```r
define the correct fpc corrected Standard Error of the ratio

reg.ratio.se <- ratio.se(
  mux = mean(srs$income),
  s.diff = sd(fit$resid),  # We use the model residuals
  n = nrow(srs),
  N = N
)

cat( "Estimated ratio: ", round(fit$coeff, 3), "\n", ’ (SE = ’, round(reg.ratio.se, 5), ’)’,
    sep="", "\n" )
```
Ratio Estimation in Stratified Random Sampling

- There are two different methods to construct estimators of a ratio in stratified sampling.

- **Separate Ratio Estimator**: Estimate the ratio of μ_y to μ_x within each stratum and then form a weighted average of the separated estimates.

- **Combined Ratio Estimator**: Compute the usual \bar{y}_{st} and \bar{x}_{st}, then use their quotient as an estimator of $\frac{\mu_y}{\mu_x}$.

- If the stratum sample sizes are large (more than 20) it is better to use separate ratio estimators. Otherwise, if the sample sizes are small or the within-stratum ratios are approximately equal, it is better to use combined ratio estimators.
Introduction to Regression Estimation

• When the auxiliary variable X is a predetermined (non-random) variable, we can obtain an alternative estimator to the ratio estimator.

• It is based on the concept of least squared method and it is known as regression estimation.

• Assuming there is a linear relationship between X and Y

$$
\hat{y}_i = a + bx_i = \bar{y} + b(x_i - \bar{x})
$$

with paired observations (x_i, y_i) for $i = 1, \ldots n$. Then the estimator of a population mean μ_y is

$$
\hat{\mu}_y = \bar{y} + b(\mu_x - \bar{x})
$$

where

$$
b = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
$$
• The estimated variance of \(\hat{\mu}_{yL} \) is

\[
\hat{\text{Var}}(\hat{\mu}_{yL}) = \left(\frac{N - n}{Nn} \right) \left(\frac{1}{n - 2} \right) \left[\sum_{i=1}^{n} (y_i - \bar{y})^2 - b^2 \sum_{i=1}^{n} (x_i - \bar{x})^2 \right] = \\
= \left(\frac{N - n}{Nn} \right) \cdot MSE
\]

where \(MSE \) is the mean square error from the standard simple linear regression.

• In general, the ratio estimator is most appropriate when the relationship between \(x \) and \(y \) is linear through the origin. Otherwise, in general, it is better to use regression estimators.
Example of ratio and regression estimators with the library `survey` of R:

```r
# SYNTHETIC DATA
mydata <- rbind(matrix(rep("nc",165),165,1,byrow=TRUE),
                matrix(rep("sc",70),70,1,byrow=TRUE))
myx <- 100*runif(235)
myy <- myx*1.2+rnorm(235)
mydata <- cbind.data.frame(mydata,c(rep(1,100),rep(2,50),rep(3,15),
                                   rep(1,30),rep(2,40)),myx,myy)
names(mydata) <- c("state","region","income","rent")
N <- dim(mydata)[[1]]
n <- 50

# Selection of a sample
srs_rows <- sample(N,n)
srs <- mydata[srs_rows,
```
Export data to Stata format

```r
library(foreign)
write.dta(srs,"C:/QM/mydataratio.dta")
```

```r
library(survey)
srs$popsize <- N
dsrs <- svydesign(id=~1, fpc=~popsize, data=srs)
summary(dsrs)
```

```r
svyratio(~rent, ~income, design=dsrs)
```

```r
eso <- svyglm(rent~income, design=dsrs)
svyplot(rent~income, design=dsrs,style="bubble" ,xlab="Income",ylab="Rent")
```

```r
summary(eso)
plot(eso)
```
Example of ratio and regression estimators with **Stata**:

```
use C:\QM\mydataratio.dta, clear

count

* Compute **weights** and the **factor** of population correction

gen pw = 235/50

gen fpc = 235

* Set the sampling design

svyset [pweight=pw], fpc(fpc)

* Ratio estimator

svy: ratio rent/income

* Regression estimator

svy: regress rent income
```