
Introduction to Ratio and Regression Estimation

Introduction to Ratio Estimation

• Ratio estimation is a technique that uses available auxiliary information which is correlated with the

variable of interest.

• Suppose that a variable X is correlated with a variable of interest Y , and we have a paired random

sample of n observations (xi, yi) for i = 1, . . . , n.

Then, we define the ratio

R ≡ τy
τx

=
µy

µx

and the corresponding estimator is:

r ≡
∑n

i=1 yi∑n
i=1 xi

=
ȳ

x̄
.
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• Both, the numerator and the denominator are random quantities.

• The estimated sampling variance of r is

V̂ ar(r) =
(

1− n

N

) 1

µ2
x

∑n
i=1 (yi − rxi)2

n(n− 1)

• The estimated variance can be written also in terms of the coefficient of correlation ρ:

V̂ ar(r) =
(

1− n

N

) 1

µ2
x

1

n

(
s2y + r2s2x − 2rρ̂sxsy

)
• Note that we can substitute µ2

x by its estimator x2 in both cases.
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Ratio Estimate Examples

X ≡ Family Size

Y ≡ Food Consumption =⇒ R ≡ Food Consumption per Capita

X ≡ Labor Force Size

Y ≡ Number Unemployed =⇒ R ≡ Unemployment Rate

X ≡ Cell Phones: 2000

Y ≡ Cell Phones: 2005 =⇒ R ≡ Increase Rate

X ≡ Person – hours

Y ≡ Number of Items Processed =⇒ R ≡ Productivity Rate
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EXAMPLE:

It is interesting to know the relative change over a two-year period in the assessed value of homes in a

given community. We take a simple survey sampling of n = 20 homes from the N = 1000 total homes in the

community. We obtain the values for this year (y) and the corresponding values from two years ago (x) for

each of the n = 20 homes included in the sample.

We want to estimate the relative change (R) in the assessed values for the N = 1000 homes (see the

original example in Scheaffer et al. (1990))

Data are collected in two vectors:

x = c(6.7,8.2,7.9,6.4,8.3,7.2,6.0,7.4,8.1,9.3,8.2,6.8,7.4,7.5,8.3,9.1,8.6,7.9,6.3,8.9)

y = c(7.1,8.4,8.2,6.9,8.4,7.9,6.5,7.6,8.9,9.9,9.1,7.3,7.8,8.3,8.9,9.6,8.7,8.8,7.0,9.4)
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N = 1000

n = length(x)

plot(x,y)

n = length(x)

r = sum(y)/sum(x)

r

var.r = (1-(n/N))*(1/mean(x)ˆ2)*sum((y-r*x)ˆ2)/(n*(n-1))

var.r

down = r - qnorm(0.975)*sqrt(var.r)

up = r + qnorm(0.975)*sqrt(var.r)

cat("Confidence Interval: ", "[", down, ";", up, "]", "\n")
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• The ratio technique can be used to estimate a population total τy when we do not know N . In this case

we must know the total of the auxiliary variable x, namely, τx.

τ̂y =

∑n
i=1 yi∑n
i=1 xi

· τx = rτx

• The estimated variance of τ̂y is:

V̂ ar(τ̂y) = τ̂ 2x

(
1− n

N

) 1

µ2
x

∑n
i=1 (yi − rxi)2

n(n− 1)

• In the same way, it can be estimated a population mean µy, when we do not know N :

µ̂y =

∑n
i=1 yi∑n
i=1 xi

· µx = rµx

• The estimated variance of µ̂y is:

V̂ ar(µ̂y) = µ2
xV̂ ar(r) =

(
1− n

N

) ∑n
i=1 (yi − rxi)2

n(n− 1)
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We can substitute µ2
x by its estimator x2.

See a function to calculate ratio estimators programmed in R.

ratio.srs <- function(x, y, opt="Ratio", tauX=NA, N=NA) {

# opt = "Tau" for the total of Y

# opt = "Mu" for the mean of Y

n <- length(x)

if(is.na(N)) {fpc <- 1} else {fpc <- 1-(n/N)}

ratio <- sum(y)/sum(x)

if(is.na(tauX) & is.na(N)) {meanX <- mean(x)} else {meanX <- tauX/N}

var.r <- fpc*(1/meanXˆ2)*(sum((y-ratio*x)ˆ2)/n*(n-1))
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switch(opt,

"Ratio" = {theta <- ratio

var.theta <- var.r},

"Tau" = {theta <- ratio*tauX

var.theta <- var.r*tauXˆ2},

"Mu" = {theta <- ratio*meanX

var.theta <- var.r*meanXˆ2}

)

B <- 2*sqrt(var.theta)

cat("Parameter",theta,"\n")

cat("Variance Parameter",var.theta,"\n")

cat("Confidence Interval: ","[",theta-B,";",theta+B,"]","\n")

}
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We can consider an example about the ratio of prizes between a couple of years

(1994 and 1996).

price.94 <- c(48.2,30.236,0.919,1.109,1.043,0.768,1.892,0.899,

0.917,1.457,0.789,0.505,0.440,1.604,1.674,2.530,0.506)

price.96 <- c(49.231,31.438,1.121,1.318,1.260,0.875,1.848,1.002,

1.308,1.652,0.886,0.593,0.481,1.210,1.735,3.307,0.622)

ratio.srs(x=price.94,y=price.96,opt="Ratio")
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Alternative for ratio estimators using weighted regression:

We use the variables of the data from example of Synthetic Data (p. 15).

fit <- lm(formula = rent ∼ -1 + income, # the ’-1’ removes the intercept

data = srs, weights = 1/income # the weight is specified as 1/X

)

# Standard error formula of the ratio estimator which

# includes the finite population correction (fpc) factor n/N

ratio.se <- function(mux, s.diff, n, N) {

sqrt((1/muxˆ2)*((s.diffˆ2)/n)*(1-(n/N)))

}
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# Derive the correct fpc corrected Standard Error of the ratio

reg.ratio.se <- ratio.se(

mux = mean(srs$income),

s.diff = sd(fit$resid), # We use the model residuals

n = nrow(srs),

N = N

)

cat( "Estimated ratio: ", round(fit$coeff, 3), "\n", ’ (SE = ’, round(reg.ratio.se, 5), ’)’,

sep="", "\n" )
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Ratio Estimation in Stratified Random Sampling

• There are two different methods to construct estimators of a ratio in stratified sampling.

• Separate Ratio Estimator : Estimate the ratio of µy to µx within each stratum and then form a weighted

average of the separated estimates.

• Combined Ratio Estimator : Compute the usual yst and xst, then use their quotient as an estimator of

µy

µx

.

• If the stratum sample sizes are large (more than 20) it is better to use separate ratio estimators. Oth-

erwise, if the sample sizes are small or the within-stratum ratios are approximately equal, it is better to

use combined ratio estimators.
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Introduction to Regression Estimation

• When the auxiliary variable X is a predetermined (non-random) variable, we can obtain an alternative

estimator to the ratio estimator.

• It is based on the concept of least squared method and it is known as regression estimation.

• Assuming there is a linear relationship between X and Y

ŷi = a+ bxi = y + b(xi − x)

with paired observations (xi, yi) for i = 1, . . . n. Then the estimator of a population mean µy is

µ̂yL = y + b(µx − x)

where

b =

n∑
i=1

(yi − y)(xi − x)

n∑
i=1

(xi − x)2
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• The estimated variance of µ̂yL is

V̂ ar(µ̂yL) =

(
N − n
Nn

)(
1

n− 2

)[ n∑
i=1

(yi − y)2 − b2
n∑

i=1

(xi − x)2

]
=

=

(
N − n
Nn

)
·MSE

where MSE is the mean square error from the standard simple linear regression.

• In general, the ratio estimator is most appropriate when the relationship between x and y is linear

through the origin. Otherwise, in general, it is better to use regression estimators.
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Example of ratio and regression estimators with the library survey of R:

# SYNTHETIC DATA

mydata <- rbind(matrix(rep("nc",165),165,1,byrow=TRUE),

matrix(rep("sc",70),70,1,byrow=TRUE))

myx <- 100*runif(235)

myy <- myx*1.2+rnorm(235)

mydata <- cbind.data.frame(mydata,c(rep(1,100),rep(2,50),rep(3,15),

rep(1,30),rep(2,40)),myx,myy)

names(mydata) <- c("state","region","income","rent")

N <- dim(mydata)[[1]]

n <- 50

# Selection of a sample

srs_rows <- sample(N,n)

srs <- mydata[srs_rows,]
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# Export data to Stata format

library(foreign)

write.dta(srs,"C:/QM/mydataratio.dta")

library(survey)

srs$popsize <- N

dsrs <- svydesign(id=∼1, fpc=∼popsize, data=srs)

summary(dsrs)

svyratio(∼rent, ∼income, design=dsrs)

eso <- svyglm(rent∼income, design=dsrs)

svyplot(rent∼income, design=dsrs,style="bubble" ,xlab="Income",ylab="Rent")

summary(eso)

plot(eso)
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Example of ratio and regression estimators with Stata:

use C:\QM\mydataratio.dta, clear

count

* Compute weights and the factor of population correction

gen pw = 235/50

gen fpc = 235

* Set the sampling design

svyset [pweight=pw], fpc(fpc)

* Ratio estimator

svy: ratio rent/income

* Regression estimator

svy: regress rent income
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