SIMPLE TUTORIAL in R

R download from
http://www.r-project.org

partially based in
http://www.ats.ucla.edu/stat/r/notes

# INTRODUCTION

# R is accused of being slow, memory-hungry, and able
# to handle only small data sets. This is completely true.

Fortunately, computers are fast and have lots of memory. Data

#
# sets with a few tens of thousands of observations can be handled
# 1In 256Mb of memory, and quite large data sets with 2Gb of memory.

# BASICS
# Lines with comments in R begin with sign #

help(solve) # information on any specific named function
?solve # alternative

help.search('plot'™) # for help pages related to "plot”
apropos(''thing'™) # for functions whose names contain "plot"

# We can search any function in http://www.r-project.org

# OBJECTS and BASICS

# We can store data in an "object':
N <- 1000

N = 1000 # alternative

y <- ¢(3.1,10.5,14,30,15,19)
x <- c(4,12,12,20,16,22)

strata <- c(""Madrid","Barcelona","Lisboa™) # character values
ok.set <- c(T,T,F,T,F) # logical values

1sO # display the names of the objects in the workspace
# 1T you type the "object name' you see what is stored in the object
N
y
X

# To see what objects have been created
objects()



# To remove an object
rm(x)
rm(y,z)

# Other ways to enter/create data

z <- seq(1,10)

# a sequence of values
z <- c(rep(3,4),rep(5,2)) # i

join sequences of values

majors <- c(rep(“Forestry",3),rep("’Fisheries”,5),rep("'Math™,2),
"Education”,rep(*'Business™,2))

setwd("'C:/kk™) # set to wherever your data directory is located
getwd() # check that you are in the correct directory

# Run an ascii program written in R
source(*'c:/.../program.R"™)

# READ in DATA from a DATA FILE

# The easiest format in a file has variable names in the first row:
# case id gender deg yrdeg field startyr year rank admin
# 1 1 F Other 92 Other 95 95 Assist 0
# 2 2 M Other 91 Other 94 94 Assist 0
# 3 2 M Other 91 Other 94 95 Assist 0
# 4 4 M PhD 96 Other 95 95 Assist 0

# and fields separated by spaces.
salary <- read.table('c:/.../salary.txt"”, header=TRUE)

# Data from the file salary.txt are stored into the data frame
# object "salary".

HINTS:

Many statistical packages (SAS, SPSS) can save data as an EXCEL file.
Import any type of data into R by using EXCEL and saving there

the data file into a comma delimited (*.csv) format.

Once the comma delimited file is created using the "Save As"™ feature
in EXCEL you can import it into R using either the read.table() or the
read.csv() function.

HHEHFHFHHHH

thing <- read.table("c:/.../myfile_csv", "header=T", sep=",")

# Alternatively, you can use read.csv()
thing <-read.csv('c:/.../myfile_csv", " header=T"")

# Alternatively, tou can use the clipboard:

# Open the *.xls file in EXCEL

# Select and copy the relevant cells in Windows

thing <- read.table(file="clipboard”,sep="\t",6header=T)

# The file "clipboard" instructs read.table to read the file from the Windows
# clipboard, and the separator option of "\t" notifies read.table that elements



# are separated by tabs.

# The same way form R to EXCEL:
# Going to EXCEL and issuing the "paste'" command will put the matrix
# Into the EXCEL worksheet.

write._table(mymatrix,file="clipboard",sep="\t",col _.names=NA)

# Files for read.table can also "live® on the web
12000 <- read.table("http://faculty.washington.edu/tlumley/
data/FLvote.dat", header=TRUE)

Another type of commonly used ASCII data format is fixed format.
In this format data are placed in a fixed column for each observation.
It requires a codebook to specify which collumn corresponds to which variable.

#

#

#

# Example:

# data are in file "datfix.txt:
# 195 094951
# 26386161941
# 38780081841
# 479700 870
# 56878163690
# 66487182960
# 786 069 O
# 88194193921
# 98979090781
# 107868180801
#

# variable name column number
# id 1-2

# al 3-4

# tl 5-6

# gender 7

# a2 8-9

# t2 10-11

# tgender 12

To read these data we use the read.fwf() function on fixed format data
instead of the read.table() function.

Here, we use the width argument which indicates the width of

each variable instead of using the sep argument to indicate the start
of each variable.

HHHFHHR

fixed <- read.fwf("schdat_fix.txt", width = c(2, 2, 2, 1, 2, 2, 1))
names(fixed) <- c('id", "al", "tl", '‘gender™, "a2", '"t2", 'tgender')

fixed # check the data

# Sometimes we read data from other packages, such as Stata or SPSS.
library(foreign) # library to read foreign datasets

# read.dta: read Stata (.dta) data files

# read.spss: read SPSS (.sav) data files



# SIMPLE ARITHMETIC OPERATIONS

x+1 # add a 1 to all values in x

X+y # add x and y

5*x # multiply all values in x by 5

XN2 # take the square of all values in x
sqrt(x) # take the square root of each value in x
log(x) # take the natural log of each value in x

# Example: a sequence of arithmetic operations instead of one step
xbar <- mean(x)

diffs <- (x - xbar) # subtract mean of x from each value
diffs.sq <- diffs"2 # square all the differences
ssx <- sum(diffs.sq) # this is Sum of Squares of X

ssx <- sum((x-mean(x))”"2) # can be done In one step

# LISTS and DATA.FRAMES

# Examples of lists

w <- list(stratl=c(3,2,3),strat2=c(8,10,12,15))
X <- list(people=c(''Zoe","Rapunzel',"lgor'),
state=c("AK","AL","AK'") ,age=c(20,28,98))

# Example:

# One way to make side-by-side boxplots: make a list of

# the values with each component in the list corresponding to
# a different sample

y <- list(samplel=c(18,12,9,7,15,20),sample2=c(18,11,12,22,23,30),
sample3=c(35,42,32,37,41,41,38,39))
boxplot(y)

# OPERATIONS with lists
x <- list(one=c(18:36),two=c(""AK","AL","AZ""),
three=c(T,T,F,T),four=matrix(1:12,3,4))

# Access to components
X[[111 # by order
x$one # by name

# Access to elements within components

x[[111[3:6]

x$one[3:6]
unlist(Q) # convert a list to a vector
unlist(x) # handy for printing out returned values from function

# List version of apply is lapply(Q
# (see next item of matrices)

lapply(x, length)

# DATA FRAMES: a special kind of list object; number of elements must
# be the same for all components

muscle <- rnorm(n=10,mean=3,sd=1)

sex <- factor(rep(c("'M","F'"),c(6,4)))
speed <- rep(0,10)

speed[1:6] <- rnorm(6,30-2*muscle[1:6],2)



speed[7:10] <- rnorm(4,40-2*muscle[7:10],2)
mydata <- data.frame(y=speed,xl=muscle,x2=sex)
mydata

# Dealing with variables

Commands:

rbind: combines rows of data

merge: match merges two data frames

dimnames: lists or assigns names of data frames

cbind: combines columns of data

sapply: applies a function to elements of a list

factor: creates a categorical variable with value labels if desired
table: creates frequency table

HHEHFHHHHH

# Keeping and Dropping Variables

hsl <- read.table(’http://www.ats.ucla.edu/stat/R/notes/hsl.csv', header=T,
Sep:ll , ll)

attach(hsl)

# Keeping only the observations where the reading score is 60 or higher.
hsl.read.well <- hsl[read >= 60, ]

# Comparing means of read in the original hsl data frame and the
# new smaller hsl.read.well data frame.

mean(hsl.read.well$read)

mean(hsl$read)

# Keeping only the variables id, female, read and write from the
# hsl.read.well data frame.

names(hsl.read.well)

hsl.kept <- hsl.read.well[ , c(1, 2, 7, 8)]

names(hsl.kept)

# Dropping the variables ses and prog from the hsl.read.well data frame
names(hsl.read.well)

hsi.drop <- hsl.read.well[ , -c(4, 12)]

names(hsl.drop)

detach()

# Consider two files:

# hsmale.txt with the information for the males

# hsfemale.txt with the information for the females
# Combine these two files

hsfemale <- read.table("http://www.ats.ucla.edu/stat/R/notes/hsfemale._txt",
header=T, sep=",")

hsmale <- read.table("http://www.ats.ucla.edu/stat/R/notes/hsmale.txt",
header=T, sep=",")

table(hsfemale$female)

table(hsmale$female)

# Use the rbind function when we stack data because we combine rows of data
hsmasters <- rbind(hsfemale, hsmale)

table(hsmasters$female)

detach()

# Merge two data frames on a variable (or a list of variables).
# We use variable id which has the same name in both data sets.
# Specifying T in the all argument indicates that we want to keep



# all the observations from each data set rather than only keeping
# the observations that came from both data sets.

hsdem <- read.table("http://www.ats.ucla.edu/stat/R/notes/hsdem.txt",
header=T, sep=",")

hstest <- read.table("http://www.ats._ucla.edu/stat/R/notes/hstest._txt",
header=T, sep=",")

hsdem

hstest

hsdiss <- merge(hstest, hsdem, by="id", all=T)
hsdiss

IT the variable that we were merging on had different names in each
data frame then we could use the by.x and by.y arguments.

was in the data frame listed first in the merge function
(in this case in hstest) and in the by.y argument we would name the
# variable(s) that was in the data frame listed second (in this case hsdem).

#
#
# In the by.x argument we would list the name of the variable(s) that
#
#

hsdiss.1l <- merge(hstest, hsdem, by.x="id", by.y="id", all=T)
hsdiss.1

# Other option by creating an indicator of which data set the observations
# came from

from <- data.frame(rep(1l, length(hsdem$id)))
dimnames(from)[[2]] <- "from"

hsdem.1 <- cbind(hsdem, from)

hsdem.1

from <- data.frame(rep(1, length(hstest$id)))
dimnames(from)[[2]] <- "from"

hstest.1l <- cbind(hstest, from)

hstest.1

hsdiss.2 <- merge(hstest.1l, hsdem.1l, by.x="id", by.y="id", all=T,
suffix=c("test", "dem'™))

attach(hsdiss.?2)

hsdiss.2$both[!is.na(fromtest) & !'is.na(fromdem)] <- "both"
hsdiss.2$both[is.na(fromtest)] <- "dem"
hsdiss.2$both[is.na(fromdem)] <- "test"

hsdiss.?2

# Factor variables

hsO <- read.table('http://www.ats.ucla.edu/stat/R/notes/hs0.csv', header=T,
Sep:" , ll)

attach(hs0)

# Check if any of the variables in the hsO data frame are factor variables.
sapply(hs0, is.factor)

# Creating a factor (categorical) variable called schtyp.f for

# schtyp with value labels.

schtyp.f <- factor(schtyp, levels=c(1, 2), labels=c("public™, "private'))
search()

detach()

attach(hs0)



# Checking the factor variable schtyp.f in a frequency table.
table(schtyp.f)
schtyp.f

# Creating a factor variable called female from gender with value labels.
female <- factor(gender, levels=c(0, 1), labels=c('male™, "female'™))
detach()

attach(hs0)

# Checking the factor variable female in a frequency table.
table(female)

table(race)

race[race==5] <- NA

detach()

attach(hs0)

table(race)

# Creating a variable called total = read + write + socst
total <- read+write+socst

detach()

attach(hs0)

mean(total)

# Creating a variable called grade based on total
grade <- 0

grade[total >= 80 & total < 110] <- 1

grade[total >= 110 & total < 140] <- 2
grade[total >= 140 & total < 170] <- 3
grade[total >= 170] <- 4

detach()

attach(hs0)

table(grade)

# Creating a factor variable called grade.f based on grade

grade.f <- factor(grade, levels=0:4, labels=c('F", "D, "C", "B, "A™))
detach()

attach(hs0)

is.factor(grade.f)

table(grade.f)

# Labels are nice when looking at frequency tables.
table(schtyp, gender) # without labels
table(schtyp.f, female) # with labels

detach()

# OPERATIONS with VECTORS

# Examples of vectors with different types of "elements”

w <- ¢(3,2,1) # numeric valued

x <- c(T,T,F,F) # logical valued

y <- c("Jane","Jill","Jeff","Matt') # character valued

z <- matrix(c(3,3,2,4,2,1),nrow=3,ncol=2) # numeric valued matrix

H*

Accessing elements of a vector in 1 of 4 ways
<- c¢(18,32,15,-7,12,19)

<

# Position in vector as positive integer



y[3:5]

# Excluding elements, position as negative integers
y[-c(1,5,6)]

# By element name
names(y) <- c("Joe","Bill","Karen","Helen",""Ray"","Paul™)
yc('Helen",""Ray')]

# By logical conditions
yLy<15]

# Merging vectors

# cbind() combines vectors by columns
cl <- ¢(10,20,30,40)

c2 <- ¢(5,10,15,20)

X <- cbind(cl,c2)

X

# rbind() combines vectors by rows

X <- rbind(cl,c2)

X

B o o e e e e e e e e e e e e e e e e e e e e e e e am e e
#  OPERATIONS with MATRICES

y <- c¢(18,32,15,-7,12,19)
X <- matrix(data=y,nrow=2,ncol=3) # Fill by columns first: it is the default

X <- matrix(data=y,nrow=2,ncol=3,byrow=T) # Till rows first
dimnames(x) <- list(c(C'r1","r2"),c(a","b","c"))

apply(x,1,sum) # sum across the 1st dimension, namely rows
apply(x,2,sum) # sum across the 2nd dimension, columns

apply(x,1,min)

# Examples:
A <- matrix(c(1, -2, 3,

4, -5, -6,
7, 8, 9,
0, 0, 10),
4, 3, byrow=TRUE)
A
t(A) # transpose a matrix
diag(A) # diagonal matrix

sum(diag(A)) # trace of a matrix

B <- matrix(c(-5, 1, 3,

2, 2, 6,
7, 3, -4),
3, 3, byrow=TRUE)
A+B
A-B
-A

# Product of matrices
A %*% B



B %*% A

# Inverse of a matrix: solve(Q)

# Example:

A <- matrix(c(2, 5, 1, 3), 2, 2, byrow=TRUE)
solve(A)

# Check the result:
A %*% solve(A)
solve(A) %*% A

det(A) # determinant of a matrix
eigen(A) # eigenvalues and eigenvectors

B e o e e e e e e e e e e e e e e e e e e e e e e e e e e
# CONDITIONS AND LOOPS

# 1F (...condition....) {

# ...code 1...

#

# else {

# ...code 2...

# %

# while (...condition....)

# {...code...}

# for(rank of indices)
# {...code...}

# Example 1
X <- 10
y <=2
if (v >1){
X <- 2*X
y <- 2%y
} else{
X <- 38
X <=2*X
}
X
Yy
# Example 2

cunt <- ¢(0,0,0,0)

n <- c(2,4,6,4)

for(i in 1:length(n)){
cunt <- c(cunt,rep(i,n[i]))
}

cunt

# Example 3

for (i in 1:10) print(i)

n <- 10

while (n > 0) {

cat(n,"is greater than 0 \n')
n<-n-1

}



# USEFUL FUNCTIONS

X <- c¢(10.1, 9.9, 11.2, 4.15, 2.3)

prod(x) # Product of vector elements
cumsum(x) # Cumulative sums products
diff(x) # Lagged differences

round(x, 1) # Rounding of numbers

sort(x) # Sorting or ordering vectors
rev(1:12) # Reverse elements

rank(x) # Sample ranks

# Example: find a minimum of a function
X <- seq(0,5,0.001)

X <- x"3-8*x-20

m <- order(fx)

x[m[1]1]

x[m[11]

# Samples

# To take a sample of a specified size from the elements of X
# using either with or without replacement

# sample(x, size, replace, prob)

# Example
X <- 1:12

sample(X) # a random permutation
sample(x, replace=TRUE) # bootstrap sampling (for length(x) > 1)

B o o e e e e e e e e e e e e e e e e e e e e e e e e e e e a e e
# EXTEND THE LANGUAGE BY WRITING YOUR OWN FUNCTIONS

# namefunction <- function(args)

# {

# ... code ...

# 3}

# Examples of functions:

y <- ¢(3.1,10.5,14,30,15,19)

X <- c(4,12,12,20,16,22)

z <- cbind(x,y)

sd <- function(x) sqgrt(var(x))
sd(x)

circle.area <- function(radius) {
area <- pi*radius”2
return(area)

}

circle.area(4)

mystudy <- function(x){
par(mfrow=c(3,1))
hist(xX[,11)
hist(X[,2])
plot(x[,1]1.x[.21)
par(mfrow=c(1,1))

10



apply(x,2,summary)

}

mystudy(z)

B o e e e e e e e e e e e e e e e e e e e e e e e e e e a e
# SIMPLE STATISTICS, SUMMARIES, and PLOTS

# Typical R functions:

#

# head: display first n observations

# sapply: applies a function to elements in a list

# colMeans: column means

# colSums: column sums

# rowSums: row sums

# median: calculates the median

# length: calculates the count

# var: calculates the variance

# sd: calculates the standard deviation

# tapply: applies a function to each cell of a ragged array
# cbind: combining columns

# summary: generic function provides a synopsis of an object
# hist: histogram plot

# histogram: trellis histogram plot(s)

# boxplot: box plot

# bwplot: trellis box plot(s)

# stem: stem-and-leaf plot

# barplot: bar plot

# table: frequency table

# cor: calculates correlations

# Im: fits a linear model

# plot: generic plot function

# abline: adds a line to an existing plot

# Example

hsO <- read.table('http://www.ats.ucla.edu/stat/R/notes/hs0O.csv', header=T,
sep=",")

attach(hs0)

hsO[1:20, ]

names(hs0)

vars <- hsO[ , 7:10] # shorthand way of referring to read, write, math, science
head(vars, n=10)

# The na.rm=T argument for the mean function is used to remove missing
# observations from the computation of the means.

sapply(hs0O, mean, na.rm=T)
sapply(vars, length) # count

# the count for science is wrong,
# the nonmissing cases of science

we create a new variable with only
and then use the length function

science.good <- na.omit(science)
length(science.good)

sapply(vars, median, na.rm=T) # median
sapply(vars, var, na.rm=T) # variance
sapply(vars, sd, na.rm=T) # standard deviation
sapply(vars, min, na.rm=T)

11



sapply(vars, max, na.rm=T)

Tukey®"s five number summary
- the maximum value

- the 75th percentile

- the 50th percentile

- the 25th percentile

- the minimum value
sapply(vars, fivenum, na.rm=T)

HFHHFHHH

# We can also use the colMeans function to obtain the mean.

# We can specify the variables by their numbers as in the sapply
# or as variable names using cbhind.

colMeans(vars, na.rm=T)

# Descriptive statistics can also be computed for a subset of the data frame:

# we are looking at the summary statistics for only those students
# who had a reading score of 60 or higher.

sapply(vars[read >= 60, ], mean, na.rm=T)

sapply(vars[read >= 60, ], median, na.rm=T)

# Obtaining the means of the variables write and science broken down by prgtype.
# Science is the only variable with missing observations and thus

# we use the na.rm to remove the missing observation.

tapply(write, prgtype, mean)

tapply(science, prgtype, mean, na.rm=T)

tapply(write, prgtype, length) # count
tapply(write, prgtype, var) # variance
tapply(write, prgtype, sd) # standard deviation
tapply(write, prgtype, median) # median

# Descriptive statistics for write by prgtyp in a much nicer display.

m <- tapply(write, prgtype, mean)

v  <- tapply(write, prgtype, var)

med <- tapply(write, prgtype, median)

n <- tapply(write, prgtype, length)

sd <- tapply(write, prgtype, sd)

cbind(mean=m, var=v, std.dev=sd, median=med, n=n)

# More descriptive statistics including quantiles can be obtained by
# using the summary function.

summary(science)

# EXPLORING THE DATA THROUGH GRAPHS

library(lattice) # load trellis graphics
hist(write)

# trellis graphs
histogram(~write, hsO, type="count™)
histogram(~write | gender, hsO, type="count'™) # histogram of write by gender

# Note: In R it is possible to change the number of bins by

# using the breaks argument in the hist function.
hist(write, breaks=15)

12



# Put several plots on one image
par(mfrow=c(2,1))

hist(write, breaks=15)
hist(write)

# boxplot of the variable write
boxplot(write)

# trellis graph of write by ses
bwplot(ses ~ write, hs0)

# trellis graph of boxplots of write by ses for each level of gender
bwplot(ses ~ write] gender, hs0)

# The graph shows ses by gender where the levels of ses are stacked
# on top of another
barplot(table(ses,gender), legend=c('low","medium™,"high'™), ylim=c(0,135))

barplot(table(ses,gender), beside=T, legend=c("'low","medium",""high™),
ylim=c(0,60))

# FREQUENCY TABLES
table(ses)

# The table of write shows that it is generally undesirable to
# obtain frequencies of continuous variables.
table(write)

table.vars <- hsO[ , c¢(1,5,6)] # shorthand way of referring to gender, schtyp
and prgtype
sapply(table.vars, table)

# Crosstabulation of gender and ses.
tabl <- table(gender,ses)
tabl

# Compute the row and column proportions and frequencies
# and a chisquare test of independence for the two-way table.

prop.table(tabl,1) # row proportions
prop.table(tabl,2) # column proportions
rowSums(tabl) # row frequencies

colSums(tabl) # column frequencies
summary(tabl) # chi-square test of independence

# Correlations of write, read, math and science with listwise deletion
# of missing values.
# The correlations will not be calculated if there are missing values

cor(vars, use="complete.obs'™)

13



# ANALYZING DATA

hsl <- read.table("http://www.ats.ucla.edu/stat/R/notes/hsl.csv",
header=T, sep=",")

attach(hsl)

# t.test: t-tests, including one sample, two sample and paired
# tapply: applies a function to each cell of a ragged array

# var: calculates the variance

# Im: fits a linear model (regression)

# anova: extracts the anova table from a Im object

# summary: generic function provides a synopsis of an object
# fitted: extracts the fitted values from a Im object

# resid: extracts the residuals from a Im object

# abline: generic function which adds a line to an existing plot
# glm: logistic regression

# dropl: compares model by dropping terms one at a time

# wilcox.test: non-parametric analyses

# kruskal.test: non-parametric analyses

# t-tests

# one-sample t-test, testing whether the sample of writing scores
# was drawn from a population with a mean of 50.

t.test(write, mu=50)

paired t-test, testing whether or not the mean of write
equals the mean of read.
.test(write, read, paired=TRUE)

~+ H 3

# two-sample independent t-test.

# use the tapply function to look at the variances of the variable
# write for each group of female.

tapply(write, female, var)

t.test(write~female, var.equal=TRUE) # assuming equal variances
t.test(write~female, var.equal=FALSE) # assuming unequal variances

# ANOVA

In R you can use either the aov function or the anova function
combined with the Im function.

The anova function extracts the anova table from the linear model
fitted by the Im function.

The aov function only fits an anova model and we use the summary
function to see all the output.

HHHFHHHR

anova(Im(write~factor(prog)))
# is equivalent to
summary(aov(write~factor(prog)))

# two factors with iInteractions
anova(Im(write~factor(prog)*female))
summary(aov(write~factor(prog)*female))

# Analysis of covariance (ANCOVA)
# here, prog is the categorical predictor and read is the continuous covariate

anova(Im(write~factor(prog) + read))
summary(aov(write~factor(prog) + read))

14



# REGRESSION
summary(Im(write~female+read))

# plot function will produce multiple diagnostic plots when applied

# to an Im object. These plots include residual versus fitted plots,

# qgplots of the residuals as well as scatter plots with the regression
# line overlaid

Im2 <- Im(write~read+socst)
summary(Im2)
plot(Im2) # plotting diagnostic plots of Im2

# Plotting all in one figure
par(mfrow=c(2,2))
plot(Im2)

15



