
 1

SIMPLE TUTORIAL in R

R download from
http://www.r-project.org

partially based in
http://www.ats.ucla.edu/stat/r/notes

INTRODUCTION

R is accused of being slow, memory-hungry, and able
to handle only small data sets. This is completely true.

Fortunately, computers are fast and have lots of memory. Data
sets with a few tens of thousands of observations can be handled
in 256Mb of memory, and quite large data sets with 2Gb of memory.

#...

BASICS

Lines with comments in R begin with sign #

help(solve) # information on any specific named function
?solve # alternative

help.search("plot") # for help pages related to "plot"
apropos("thing") # for functions whose names contain "plot"

We can search any function in http://www.r-project.org

#...

OBJECTS and BASICS

We can store data in an "object":
N <- 1000
N = 1000 # alternative

y <- c(3.1,10.5,14,30,15,19)
x <- c(4,12,12,20,16,22)

strata <- c("Madrid","Barcelona","Lisboa") # character values
ok.set <- c(T,T,F,T,F) # logical values

ls() # display the names of the objects in the workspace

If you type the "object name" you see what is stored in the object
N
y
x

To see what objects have been created
objects()

 2

To remove an object
rm(x)
rm(y,z)

Other ways to enter/create data

z <- seq(1,10) # a sequence of values
z <- c(rep(3,4),rep(5,2)) # join sequences of values

majors <- c(rep("Forestry",3),rep("Fisheries",5),rep("Math",2),
 "Education",rep("Business",2))

setwd("C:/kk") # set to wherever your data directory is located
getwd() # check that you are in the correct directory

Run an ascii program written in R
source("c:/.../program.R")

#...

READ in DATA from a DATA FILE

The easiest format in a file has variable names in the first row:

case id gender deg yrdeg field startyr year rank admin
1 1 F Other 92 Other 95 95 Assist 0
2 2 M Other 91 Other 94 94 Assist 0
3 2 M Other 91 Other 94 95 Assist 0
4 4 M PhD 96 Other 95 95 Assist 0

and fields separated by spaces.

salary <- read.table("c:/.../salary.txt", header=TRUE)

Data from the file salary.txt are stored into the data frame
object "salary".

HINTS:

Many statistical packages (SAS, SPSS) can save data as an EXCEL file.
Import any type of data into R by using EXCEL and saving there
the data file into a comma delimited (*.csv) format.
Once the comma delimited file is created using the "Save As" feature
in EXCEL you can import it into R using either the read.table() or the
read.csv() function.

thing <- read.table("c:/.../myfile.csv", "header=T", sep=",")

Alternatively, you can use read.csv()
thing <-read.csv("c:/.../myfile.csv","header=T")

Alternatively, tou can use the clipboard:
Open the *.xls file in EXCEL
Select and copy the relevant cells in Windows
thing <- read.table(file="clipboard",sep="\t",header=T)

The file "clipboard" instructs read.table to read the file from the Windows
clipboard, and the separator option of "\t" notifies read.table that elements

 3

are separated by tabs.

The same way form R to EXCEL:
Going to EXCEL and issuing the "paste" command will put the matrix
into the EXCEL worksheet.

write.table(mymatrix,file="clipboard",sep="\t",col.names=NA)

Files for read.table can also 'live' on the web
fl2000 <- read.table("http://faculty.washington.edu/tlumley/
data/FLvote.dat", header=TRUE)

Another type of commonly used ASCII data format is fixed format.
In this format data are placed in a fixed column for each observation.
It requires a codebook to specify which column corresponds to which variable.

Example:
data are in file 'datfix.txt:
195 094951
26386161941
38780081841
479700 870
56878163690
66487182960
786 069 0
88194193921
98979090781
107868180801

variable name column number
id 1-2
a1 3-4
t1 5-6
gender 7
a2 8-9
t2 10-11
tgender 12

To read these data we use the read.fwf() function on fixed format data
instead of the read.table() function.
Here, we use the width argument which indicates the width of
each variable instead of using the sep argument to indicate the start
of each variable.

fixed <- read.fwf("schdat_fix.txt", width = c(2, 2, 2, 1, 2, 2, 1))
names(fixed) <- c("id", "a1", "t1", "gender", "a2", "t2", "tgender")

fixed # check the data

Sometimes we read data from other packages, such as Stata or SPSS.
library(foreign) # library to read foreign datasets
read.dta: read Stata (.dta) data files
read.spss: read SPSS (.sav) data files

#...

 4

SIMPLE ARITHMETIC OPERATIONS

x+1 # add a 1 to all values in x
x+y # add x and y
5*x # multiply all values in x by 5
x^2 # take the square of all values in x
sqrt(x) # take the square root of each value in x
log(x) # take the natural log of each value in x

Example: a sequence of arithmetic operations instead of one step
xbar <- mean(x)
diffs <- (x - xbar) # subtract mean of x from each value
diffs.sq <- diffs^2 # square all the differences
ssx <- sum(diffs.sq) # this is Sum of Squares of X

ssx <- sum((x-mean(x))^2) # can be done in one step

#...

LISTS and DATA.FRAMES

Examples of lists
w <- list(strat1=c(3,2,3),strat2=c(8,10,12,15))
x <- list(people=c("Zoe","Rapunzel","Igor"),
state=c("AK","AL","AK"),age=c(20,28,98))

Example:
One way to make side-by-side boxplots: make a list of
the values with each component in the list corresponding to
a different sample

y <- list(sample1=c(18,12,9,7,15,20),sample2=c(18,11,12,22,23,30),
 sample3=c(35,42,32,37,41,41,38,39))
boxplot(y)

OPERATIONS with lists
x <- list(one=c(18:36),two=c("AK","AL","AZ"),
three=c(T,T,F,T),four=matrix(1:12,3,4))

Access to components
x[[1]] # by order
x$one # by name

Access to elements within components
x[[1]][3:6]
x$one[3:6]

unlist() # convert a list to a vector
unlist(x) # handy for printing out returned values from function

List version of apply is lapply()
(see next item of matrices)
lapply(x,length)

DATA FRAMES: a special kind of list object; number of elements must
be the same for all components

muscle <- rnorm(n=10,mean=3,sd=1)
sex <- factor(rep(c("M","F"),c(6,4)))
speed <- rep(0,10)
speed[1:6] <- rnorm(6,30-2*muscle[1:6],2)

 5

speed[7:10] <- rnorm(4,40-2*muscle[7:10],2)
mydata <- data.frame(y=speed,x1=muscle,x2=sex)
mydata

Dealing with variables

Commands:
rbind: combines rows of data
merge: match merges two data frames
dimnames: lists or assigns names of data frames
cbind: combines columns of data
sapply: applies a function to elements of a list
factor: creates a categorical variable with value labels if desired
table: creates frequency table

Keeping and Dropping Variables
hs1 <- read.table("http://www.ats.ucla.edu/stat/R/notes/hs1.csv", header=T,
sep=",")
attach(hs1)

Keeping only the observations where the reading score is 60 or higher.
hs1.read.well <- hs1[read >= 60,]

Comparing means of read in the original hs1 data frame and the
new smaller hs1.read.well data frame.
mean(hs1.read.well$read)
mean(hs1$read)

Keeping only the variables id, female, read and write from the
hs1.read.well data frame.
names(hs1.read.well)
hs1.kept <- hs1.read.well[, c(1, 2, 7, 8)]
names(hs1.kept)

Dropping the variables ses and prog from the hs1.read.well data frame
names(hs1.read.well)
hs1.drop <- hs1.read.well[, -c(4, 12)]
names(hs1.drop)
detach()

Consider two files:
hsmale.txt with the information for the males
hsfemale.txt with the information for the females
Combine these two files

hsfemale <- read.table('http://www.ats.ucla.edu/stat/R/notes/hsfemale.txt',
header=T, sep=",")
hsmale <- read.table('http://www.ats.ucla.edu/stat/R/notes/hsmale.txt',
header=T, sep=",")
table(hsfemale$female)
table(hsmale$female)

Use the rbind function when we stack data because we combine rows of data
hsmasters <- rbind(hsfemale, hsmale)
table(hsmasters$female)
detach()

Merge two data frames on a variable (or a list of variables).
We use variable id which has the same name in both data sets.
Specifying T in the all argument indicates that we want to keep

 6

all the observations from each data set rather than only keeping
the observations that came from both data sets.

hsdem <- read.table('http://www.ats.ucla.edu/stat/R/notes/hsdem.txt',
header=T, sep=",")
hstest <- read.table('http://www.ats.ucla.edu/stat/R/notes/hstest.txt',
header=T, sep=",")
hsdem
hstest

hsdiss <- merge(hstest, hsdem, by="id", all=T)
hsdiss

If the variable that we were merging on had different names in each
data frame then we could use the by.x and by.y arguments.

In the by.x argument we would list the name of the variable(s) that
was in the data frame listed first in the merge function
(in this case in hstest) and in the by.y argument we would name the
variable(s) that was in the data frame listed second (in this case hsdem).

hsdiss.1 <- merge(hstest, hsdem, by.x="id", by.y="id", all=T)
hsdiss.1

Other option by creating an indicator of which data set the observations
came from

from <- data.frame(rep(1, length(hsdem$id)))
dimnames(from)[[2]] <- "from"
hsdem.1 <- cbind(hsdem, from)
hsdem.1

from <- data.frame(rep(1, length(hstest$id)))
dimnames(from)[[2]] <- "from"
hstest.1 <- cbind(hstest, from)
hstest.1

hsdiss.2 <- merge(hstest.1, hsdem.1, by.x="id", by.y="id", all=T,
suffix=c("test", "dem"))

attach(hsdiss.2)

hsdiss.2$both[!is.na(fromtest) & !is.na(fromdem)] <- "both"
hsdiss.2$both[is.na(fromtest)] <- "dem"
hsdiss.2$both[is.na(fromdem)] <- "test"
hsdiss.2

Factor variables
hs0 <- read.table("http://www.ats.ucla.edu/stat/R/notes/hs0.csv", header=T,
sep=",")
attach(hs0)

Check if any of the variables in the hs0 data frame are factor variables.
sapply(hs0, is.factor)

Creating a factor (categorical) variable called schtyp.f for
schtyp with value labels.
schtyp.f <- factor(schtyp, levels=c(1, 2), labels=c("public", "private"))
search()
detach()
attach(hs0)

 7

Checking the factor variable schtyp.f in a frequency table.
table(schtyp.f)
schtyp.f

Creating a factor variable called female from gender with value labels.
female <- factor(gender, levels=c(0, 1), labels=c("male", "female"))
detach()
attach(hs0)

Checking the factor variable female in a frequency table.
table(female)
table(race)
race[race==5] <- NA
detach()
attach(hs0)
table(race)

Creating a variable called total = read + write + socst
total <- read+write+socst
detach()
attach(hs0)
mean(total)

Creating a variable called grade based on total
grade <- 0
grade[total >= 80 & total < 110] <- 1
grade[total >= 110 & total < 140] <- 2
grade[total >= 140 & total < 170] <- 3
grade[total >= 170] <- 4
detach()
attach(hs0)
table(grade)

Creating a factor variable called grade.f based on grade
grade.f <- factor(grade, levels=0:4, labels=c("F", "D", "C", "B", "A"))
detach()
attach(hs0)
is.factor(grade.f)
table(grade.f)

Labels are nice when looking at frequency tables.
table(schtyp, gender) # without labels
table(schtyp.f, female) # with labels
detach()

#...

OPERATIONS with VECTORS

Examples of vectors with different types of "elements"

w <- c(3,2,1) # numeric valued
x <- c(T,T,F,F) # logical valued
y <- c("Jane","Jill","Jeff","Matt") # character valued
z <- matrix(c(3,3,2,4,2,1),nrow=3,ncol=2) # numeric valued matrix

Accessing elements of a vector in 1 of 4 ways
y <- c(18,32,15,-7,12,19)

Position in vector as positive integer

 8

y[3:5]

Excluding elements, position as negative integers
y[-c(1,5,6)]

By element name
names(y) <- c("Joe","Bill","Karen","Helen","Ray","Paul")
y[c("Helen","Ray")]

By logical conditions
y[y<15]

Merging vectors
cbind() combines vectors by columns
c1 <- c(10,20,30,40)
c2 <- c(5,10,15,20)
x <- cbind(c1,c2)
x

rbind() combines vectors by rows
x <- rbind(c1,c2)
x

#...

OPERATIONS with MATRICES

y <- c(18,32,15,-7,12,19)
x <- matrix(data=y,nrow=2,ncol=3) # fill by columns first: it is the default

x <- matrix(data=y,nrow=2,ncol=3,byrow=T) # fill rows first

dimnames(x) <- list(c("r1","r2"),c("a","b","c"))

apply(x,1,sum) # sum across the 1st dimension, namely rows
apply(x,2,sum) # sum across the 2nd dimension, columns
apply(x,1,min)

Examples:
A <- matrix(c(1, -2, 3,
 4, -5, -6,
 7, 8, 9,
 0, 0, 10),
 4, 3, byrow=TRUE)
A

t(A) # transpose a matrix
diag(A) # diagonal matrix
sum(diag(A)) # trace of a matrix

B <- matrix(c(-5, 1, 3,
 2, 2, 6,
 7, 3, -4),
 3, 3, byrow=TRUE)

A+B
A-B
-A

Product of matrices
A %*% B

 9

B %*% A

Inverse of a matrix: solve()
Example:
A <- matrix(c(2, 5, 1, 3), 2, 2, byrow=TRUE)
solve(A)

Check the result:
A %*% solve(A)
solve(A) %*% A

det(A) # determinant of a matrix
eigen(A) # eigenvalues and eigenvectors

#...

CONDITIONS AND LOOPS

if (...condition....) {
...code 1...
}
else {
...code 2...
}

while (...condition....)
{...code...}

for(rank of indices)
{...code...}

Example 1
x <- 10
y <- 2
if (y >1){
 x <- 2*x
 y <- 2*y
 } else{
 x <- 38
 x <-2*x
 }
x
y

Example 2
cunt <- c(0,0,0,0)
n <- c(2,4,6,4)
for(i in 1:length(n)){
cunt <- c(cunt,rep(i,n[i]))
}
cunt

Example 3
for (i in 1:10) print(i)
n <- 10
while (n > 0) {
cat(n,"is greater than 0 \n")
 n <- n - 1
}

 10

#...

USEFUL FUNCTIONS

x <- c(10.1, 9.9, 11.2, 4.15, 2.3)

prod(x) # Product of vector elements
cumsum(x) # Cumulative sums products
diff(x) # Lagged differences
round(x,1) # Rounding of numbers
sort(x) # Sorting or ordering vectors
rev(1:12) # Reverse elements
rank(x) # Sample ranks

Example: find a minimum of a function
x <- seq(0,5,0.001)
fx <- x^3-8*x-20
m <- order(fx)
fx[m[1]]
x[m[1]]

Samples
To take a sample of a specified size from the elements of x
using either with or without replacement
sample(x, size, replace, prob)

Example
x <- 1:12

sample(x) # a random permutation
sample(x,replace=TRUE) # bootstrap sampling (for length(x) > 1)

#...

EXTEND THE LANGUAGE BY WRITING YOUR OWN FUNCTIONS

namefunction <- function(args)
{
... code ...
}

Examples of functions:
y <- c(3.1,10.5,14,30,15,19)
x <- c(4,12,12,20,16,22)
z <- cbind(x,y)

sd <- function(x) sqrt(var(x))
sd(x)

circle.area <- function(radius) {
 area <- pi*radius^2
 return(area)
 }
circle.area(4)

mystudy <- function(x){
 par(mfrow=c(3,1))
 hist(x[,1])
 hist(x[,2])
 plot(x[,1],x[,2])
 par(mfrow=c(1,1))

 11

 apply(x,2,summary)
}
mystudy(z)

#...

SIMPLE STATISTICS, SUMMARIES, and PLOTS

Typical R functions:

head: display first n observations
sapply: applies a function to elements in a list
colMeans: column means
colSums: column sums
rowSums: row sums
median: calculates the median
length: calculates the count
var: calculates the variance
sd: calculates the standard deviation
tapply: applies a function to each cell of a ragged array
cbind: combining columns
summary: generic function provides a synopsis of an object
hist: histogram plot
histogram: trellis histogram plot(s)
boxplot: box plot
bwplot: trellis box plot(s)
stem: stem-and-leaf plot
barplot: bar plot
table: frequency table
cor: calculates correlations
lm: fits a linear model
plot: generic plot function
abline: adds a line to an existing plot

Example

hs0 <- read.table("http://www.ats.ucla.edu/stat/R/notes/hs0.csv", header=T,
sep=",")
attach(hs0)
hs0[1:20,]

names(hs0)
vars <- hs0[, 7:10] # shorthand way of referring to read, write, math, science
head(vars, n=10)

The na.rm=T argument for the mean function is used to remove missing
observations from the computation of the means.

sapply(hs0, mean, na.rm=T)
sapply(vars, length) # count

the count for science is wrong, we create a new variable with only
the nonmissing cases of science and then use the length function

science.good <- na.omit(science)
length(science.good)

sapply(vars, median, na.rm=T) # median
sapply(vars, var, na.rm=T) # variance
sapply(vars, sd, na.rm=T) # standard deviation
sapply(vars, min, na.rm=T)

 12

sapply(vars, max, na.rm=T)

Tukey's five number summary
- the maximum value
- the 75th percentile
- the 50th percentile
- the 25th percentile
- the minimum value
sapply(vars, fivenum, na.rm=T)

We can also use the colMeans function to obtain the mean.
We can specify the variables by their numbers as in the sapply
or as variable names using cbind.
colMeans(vars, na.rm=T)

Descriptive statistics can also be computed for a subset of the data frame:

we are looking at the summary statistics for only those students
who had a reading score of 60 or higher.
sapply(vars[read >= 60,], mean, na.rm=T)
sapply(vars[read >= 60,], median, na.rm=T)

Obtaining the means of the variables write and science broken down by prgtype.
Science is the only variable with missing observations and thus
we use the na.rm to remove the missing observation.
tapply(write, prgtype, mean)
tapply(science, prgtype, mean, na.rm=T)

tapply(write, prgtype, length) # count
tapply(write, prgtype, var) # variance
tapply(write, prgtype, sd) # standard deviation
tapply(write, prgtype, median) # median

Descriptive statistics for write by prgtyp in a much nicer display.

m <- tapply(write, prgtype, mean)
v <- tapply(write, prgtype, var)
med <- tapply(write, prgtype, median)
n <- tapply(write, prgtype, length)
sd <- tapply(write, prgtype, sd)
cbind(mean=m, var=v, std.dev=sd, median=med, n=n)

More descriptive statistics including quantiles can be obtained by
using the summary function.

summary(science)

#...

EXPLORING THE DATA THROUGH GRAPHS

library(lattice) # load trellis graphics
hist(write)

trellis graphs
histogram(~write, hs0, type="count")
histogram(~write | gender, hs0, type="count") # histogram of write by gender

Note: In R it is possible to change the number of bins by
using the breaks argument in the hist function.
hist(write, breaks=15)

 13

Put several plots on one image
par(mfrow=c(2,1))
hist(write, breaks=15)
hist(write)

boxplot of the variable write
boxplot(write)

trellis graph of write by ses
bwplot(ses ~ write, hs0)

trellis graph of boxplots of write by ses for each level of gender
bwplot(ses ~ write| gender, hs0)

The graph shows ses by gender where the levels of ses are stacked
on top of another
barplot(table(ses,gender), legend=c("low","medium","high"), ylim=c(0,135))

barplot(table(ses,gender), beside=T, legend=c("low","medium","high"),
ylim=c(0,60))

#...

FREQUENCY TABLES

table(ses)

The table of write shows that it is generally undesirable to
obtain frequencies of continuous variables.
table(write)

table.vars <- hs0[, c(1,5,6)] # shorthand way of referring to gender, schtyp
and prgtype
sapply(table.vars, table)

Crosstabulation of gender and ses.
tab1 <- table(gender,ses)
tab1

Compute the row and column proportions and frequencies
and a chisquare test of independence for the two-way table.

prop.table(tab1,1) # row proportions
prop.table(tab1,2) # column proportions
rowSums(tab1) # row frequencies
colSums(tab1) # column frequencies
summary(tab1) # chi-square test of independence

Correlations of write, read, math and science with listwise deletion
of missing values.
The correlations will not be calculated if there are missing values

cor(vars, use="complete.obs")

#...

 14

ANALYZING DATA

hs1 <- read.table("http://www.ats.ucla.edu/stat/R/notes/hs1.csv",
header=T, sep=",")

attach(hs1)

t.test: t-tests, including one sample, two sample and paired
tapply: applies a function to each cell of a ragged array
var: calculates the variance
lm: fits a linear model (regression)
anova: extracts the anova table from a lm object
summary: generic function provides a synopsis of an object
fitted: extracts the fitted values from a lm object
resid: extracts the residuals from a lm object
abline: generic function which adds a line to an existing plot
glm: logistic regression
drop1: compares model by dropping terms one at a time
wilcox.test: non-parametric analyses
kruskal.test: non-parametric analyses

t-tests
one-sample t-test, testing whether the sample of writing scores
was drawn from a population with a mean of 50.
t.test(write, mu=50)

paired t-test, testing whether or not the mean of write
equals the mean of read.
t.test(write, read, paired=TRUE)

two-sample independent t-test.
use the tapply function to look at the variances of the variable
write for each group of female.
tapply(write, female, var)
t.test(write~female, var.equal=TRUE) # assuming equal variances
t.test(write~female, var.equal=FALSE) # assuming unequal variances

ANOVA

In R you can use either the aov function or the anova function
combined with the lm function.
The anova function extracts the anova table from the linear model
fitted by the lm function.
The aov function only fits an anova model and we use the summary
function to see all the output.

anova(lm(write~factor(prog)))
is equivalent to
summary(aov(write~factor(prog)))

two factors with interactions
anova(lm(write~factor(prog)*female))
summary(aov(write~factor(prog)*female))

Analysis of covariance (ANCOVA)
here, prog is the categorical predictor and read is the continuous covariate

anova(lm(write~factor(prog) + read))
summary(aov(write~factor(prog) + read))

 15

REGRESSION

summary(lm(write~female+read))

plot function will produce multiple diagnostic plots when applied
to an lm object. These plots include residual versus fitted plots,
qqplots of the residuals as well as scatter plots with the regression
line overlaid

lm2 <- lm(write~read+socst)
summary(lm2)
plot(lm2) # plotting diagnostic plots of lm2

Plotting all in one figure
par(mfrow=c(2,2))
plot(lm2)

