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Practice 3 SPSS 
Partially based on Notes from the University of Reading: http://www.reading.ac.uk 

 

Simple Linear Regression  

A simple linear regression model is fitted when you want to investigate whether there 

is a linear relationship between two quantitative variables. It takes the form  

y = α + βx + ε  

where y is the response (dependent) variable, in this next case height, x is the 

explanatory (independent) variable, which will be age, α is the intercept term of the 

model, β is the gradient of the linear model and ε is the error term.  

To fit a Simple Linear Regression model to the data go to Analyze, followed by 

Regression, and then Linear. Drag drop Height in to the Dependent variable box and 

Age into the Independent variable box.   

Analizar    →   Regresion   →   Lineales 

 

It is obtained the R-Square value which is the amount of variation in the response that 

is explained by the model proposed. It is the square of Pearson’s correlation 

coefficient. We would ideally like this percentage to be greater than 65%. 

Coefficients of the fitted regression model along with their standard errors and p-

values (Sig.) are also shown. 



 

 

Note:  

Assumptions of the model 

individuals.  

Interpretation:  

In this example the regression model that has been fitted is 

Height = 100.43 + 0.35*Age

The t-statistics are testing whether 

are given.  

ssumptions of the model are Normality of the errors and a constant variance for all 

In this example the regression model that has been fitted is  

Height = 100.43 + 0.35*Age  

statistics are testing whether α = 0 or β = 0 and the corresponding 
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Normality of the errors and a constant variance for all 

= 0 and the corresponding p-values (Sig.) 



 

These p-values show us that both the intercept and gradient parameters are 

significantly different from zero as they are both significant. The result for 

strong evidence of an assoc

The Rsquare value is 0.459 which means that 45.9% of the variation in height is 

explained by age. The ANOVA table can be ignored as the hypothesis being tested for a 

simple linear regression model is again that 

given in the T-test section. 

 

Creating and adding a regression line to a scatterplot 

 When creating a scatterplot

graphically what your regression model is describing. In SPSS we need to create the 

scatterplot and add the fitted line all at once. 

First click on Analyze, followed by 

Height to the Dependent variable

Under Models tick Linear is checked and leave the rest as the default settings. 

Analizar    →   Regresion   →   

 

Interpretation:  

From this graph it can be seen that there is a strong positive relationship between age 

and height. This means as age increases height will generally increase too. The graph 

explains what was seen earlier in the regression model output.

 

values show us that both the intercept and gradient parameters are 

significantly different from zero as they are both significant. The result for 

strong evidence of an association between height and age.  

value is 0.459 which means that 45.9% of the variation in height is 

explained by age. The ANOVA table can be ignored as the hypothesis being tested for a 

simple linear regression model is again that β = 0, the results of which are already 

 

Creating and adding a regression line to a scatterplot  

When creating a scatterplot you may want to fit a regression line to demonstrate 

graphically what your regression model is describing. In SPSS we need to create the 

d the fitted line all at once.  

, followed by Regression, and then Curve Estimation

Dependent variable box and Age to the Independent variable

is checked and leave the rest as the default settings. 

→   Estimacion curvilinea  

this graph it can be seen that there is a strong positive relationship between age 

and height. This means as age increases height will generally increase too. The graph 

explains what was seen earlier in the regression model output. 
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values show us that both the intercept and gradient parameters are 

significantly different from zero as they are both significant. The result for β provides 

value is 0.459 which means that 45.9% of the variation in height is 

explained by age. The ANOVA table can be ignored as the hypothesis being tested for a 

results of which are already 

you may want to fit a regression line to demonstrate 

graphically what your regression model is describing. In SPSS we need to create the 

ation. Drag drop 

Independent variable box.  

is checked and leave the rest as the default settings.  

 

this graph it can be seen that there is a strong positive relationship between age 

and height. This means as age increases height will generally increase too. The graph 
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Multiple Linear Regression  

  

Multiple regression involves fitting a model for a quantitative response (dependent) 

variable involving more than one explanatory variable, which is linear in its 

parameters. The data we will use for this example is delivery.txt. The file is about 

drinks delivery and contains three columns:  

- Column 1 is the delivery time in minutes  

- Column 2 is the number of cases being delivered  

- Column 3 is the distance walked by the delivery man in feet  

  

A multiple regression equation for this problem takes the form  

y = β0 + β1x1 + β2x2 + ε 

where the y variable is the response (delivery time), and the x’s are the explanatory 

variables (number of cases delivered and distance walked) and ε is the error term.  

  

To fit the regression model select Analyze, then Regression, followed by Linear. 

Analizar    →   Regresion   →   Lineales  

 

It is shown the calculated coefficients for the equation (under the unstandardized 

coefficients, B column). Std Error is the standard error for the estimated coefficient. 

The T-statistics (t) are testing to see whether βi  = 0 and the corresponding p-values are 

given (Sig.). 



 

 

It is shown the estimated standard deviation (Std

the model. The R Square value is the amount of variation in the response that is 

explained by the model. It should

The ANOVA table is used to see if any of the variables are significant, un

which looks more specifically at the significance of individual variables. 

Note:  

Unless there is a good reason to keep a variable in the model when it is not significant 

then the variable should be removed and the model fitted again. Thi

unnecessary increased variability in predictions arising from the model.

 

It is shown the estimated standard deviation (Std Error of the Estimate) for the error in 

the model. The R Square value is the amount of variation in the response that is 

It should be as high as possible.   

The ANOVA table is used to see if any of the variables are significant, un

which looks more specifically at the significance of individual variables. 

nless there is a good reason to keep a variable in the model when it is not significant 

then the variable should be removed and the model fitted again. Thi

unnecessary increased variability in predictions arising from the model.

 

5 

 

Error of the Estimate) for the error in 

the model. The R Square value is the amount of variation in the response that is 

The ANOVA table is used to see if any of the variables are significant, unlike the T-tests 

which looks more specifically at the significance of individual variables.  

nless there is a good reason to keep a variable in the model when it is not significant 

then the variable should be removed and the model fitted again. This avoids 

unnecessary increased variability in predictions arising from the model. 
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Interpretation:  

 

Looking at the p-values of the coefficients we can see that the constant term in the 

model is only just significant at the 5% level, but we still include it. The p-values for the 

other terms in the model are highly significant (being less than 0.001) and so we reject 

the null hypothesis that each parameter is equal to zero, given the other terms are in 

the model. Therefore each variable influences the response.  

  

The Rsquare value for this model is 96%, meaning that 96% of the variation in delivery 

time is explained by the regression model with cases and distance.  

  

From the ANOVA table we can see that the model is significant with p<0.001. This 

means that there is strong evidence to suggest that at least one of the parameters is 

non-zero, which we have already concluded from the earlier tests.    

 

Model Checking  

   

The main reason for model checking is to see if the underlying assumptions of a 

multiple regression hold. The main assumptions are as follows:  

  

- The errors are Normally distributed (which implies that the response is as well, if all 

explanatory variables are quantitative).   

- There is a linear relationship between the response and explanatory variable.    

- The variance of the errors is equal for all observations.   

  

When checking the model assumptions select Analyze, Regression, followed by Linear, 

The same window will appear as above. Click Plots. 

Analizar    →   Regresion   →   Lineales (Graficos) 



 

 

Clicking the Guardar (Save)

 

) button will produce the following window 
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Note:  

If the graph does not appear to be approximately Normally distributed then 

transformations, like logarithms or inverses will be needed.  

Note:  

In the data view window you will now have two new columns, for residuals and 

predicted values. You will now need to create a scatterplot with your X variable as the 

unstandardized predicted value, and the Y variable as the standardized residual. 

 

 
 
 
Note:  
 
residual plots are a function of the difference between observed responses and those  
predicted by the model. If the standardised residual plots are not showing a random 
scatter of data, as being represented above, then patterns within them will indicate 
problems with the assumptions. Mild deviations from the ideal pattern are not too 
concerning. However, major deviations will suggest that the model is unreliable. 
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Examples of problems with residual plots 
 

 

 

For residuals versus explanatory variable graph: If the following pattern is being 

displayed then a square term needs to be added to the model, i.e. x2 

 

 

 

 

For residuals versus explanatory variable graph: If the following pattern is being 

displayed then a cubic term needs to be added to the model, i.e. x3 
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For residuals versus fit graph: If a funnel shape is shown like this, then the variances are 

not constant, and are in fact increasing with the fitted value. 

 

 

 
 

For residuals versus fit graph: If a funnel shape is shown like this, then the variances are 
not constant, and are in fact decreasing with the fitted value. 
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S tepwise Selection 

 

Stepwise selection is a method for building a model which contains only those 

variables which are significant (at a chosen level) in modelling the response 

(dependent) variable. It is particularly useful when there are many possible 

explanatory (independent) variables. Some of these variables may be highly correlated 

with each other and therefore will explain the same variation in the response and not 

be independently predictive. Some may also not influence the response in any 

meaningful way. It is advisable to construct a model with as few explanatory variables 

as possible to ensure an easy-to-interpret model which will be efficient for future 

prediction purposes.  

Stepwise selection aims to construct a good model satisfying these aims by the 

dropping and adding of variables in a model according to their significance in the 

presence of the other variables.   

 For stepwise selection data would usually be in the form of one quantitative response 

variable, plus several quantitative explanatory variables. It is assumed normality for 

the response variable and it is build a multiple linear regression model.  

Note: there is no guarantee that the final model produced is sensible. Standard model 

checking procedures should be applied to check that the assumptions of the final 

model are reasonable.   

 For this example the data that will be used is physical.xlsx. This dataset consists of the 

mass (weight in kg) plus various physical measurements for 22 healthy young males. 

To perform stepwise selection select Analyze, followed by Regression then select 

Linear. 

Analizar    →   Regresion   →   Lineales  

Add the response variable to the Dependent box and add the explanatory variables 

into the Independent(s) box. 

Select Stepwise (Pasos sucesivos) from the Method (Método) drop down menu. 



 

 

Interpretation:  

The variables entered/removed box shows the number of steps carried out in the 

analysis and which variables ar

 The model summary section 

analysis.  

Note: of most interest is the fourth model as it is the final one

  

The variables entered/removed box shows the number of steps carried out in the 

analysis and which variables are added and removed at each stage.  

The model summary section gives the summary statistics of each model in the 

: of most interest is the fourth model as it is the final one.  
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The variables entered/removed box shows the number of steps carried out in the 

the summary statistics of each model in the 
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R-Square is the amount of variation in the response that is explained by the model; 

Adjusted R-Square is the adjusted value that takes into account the number of variable 

in the model.  

The ANOVA table is the final row of results which are relevant to the final model.  

In the Coefficients section we can again see that there were only four steps carried out 

in this analysis to reach the final model, and we can see there are only four variable 

added from the original ten (all of the four variables are significant).  

The estimates of the parameters for each of these variables are given in the 

Unstandardized coefficients (B) column.  

The final model has an R-Square value of 96.6%, so the majority of variation in the 

response (mass) is explained by this model.  

The final fitted model using this selection process includes variables:  

Waist, Fore, Height and Thigh.  

 


