
Probability and Random variables
Partially based on IPSUR notes



Sample Spaces

For a random experiment E, the set of all possible outcomes of E
is called the sample space and is denoted by the letter S . For a
coin-toss experiment, S would be the results Head and Tail.
It may represented by S = {H,T}. Formally, the performance of a
random experiment is the unpredictable selection of an outcome in
S.

library(prob)

tosscoin (3)

# 6-sided die

rolldie (2)

# Cards

cards()



Events and Probability Functions I

I An event A is a subset of the sample space After the
performance of a random experiment E. We say that the
event A occurred if the experiment’s outcome belongs to A.

I We say that a bunch of events A1,A2,A3 . . . are mutually
exclusive or disjoint if Ai ∩Aj=∅ for any distinct pair Ai 6= Aj .

I A probability function is a rule that associates with each event
A of the sample space a unique number P(A) = p, called the
probability of A. Any probability function P satisfies the three
Kolmogorov Axioms:



Events and Probability Functions II

I The probability of an event should never be negative. Since
the sample space contains all possible outcomes, its
probability should be one. Finally, for a sequence of disjoint
events (sets that do not overlap), their total probability
(measure) should equal the sum of its parts.

# Equally likely model

tosscoin(3, makespace=TRUE)

probspace(rolldie (2))

# Not equal probabilities

iidspace(c("H","T"), ntrials=3, probs=c(0.7, 0.3))



Conditional Probability

I Definition: The conditional probability of B given A, denoted
P(B|A), is defined by

P(B|A) =
P(B ∩ A)

p(A)

if P(A) > 0. When P(A) = 0, the theory forms the foundation
for the study of stochastic processes.

S = rolldie(2, makespace=TRUE)

S

A = subset(S, X1 == X2)

B = subset(S, X1 + X2 >= 8)

prob(A, given=B)

prob(B, given=A)



Independence

I Definition: Events A and B are said to be independent if

P(A ∩ B) = P(A)P(B)

Otherwise, the events are said to be dependent.

I Example: Toss ten coins. What is the probability of
observing at least one Head?

S = tosscoin (10, makespace=TRUE)

A = subset(S, isrep(S, vals="T", nrep =10))

1 - prob(A)



Bayes’ Rule I

The Bayes’ Rule allows us to update our probabilities when new
information becomes available:
Let B1,B2, . . .Bn be mutually exclusive and exhaustive and let A
be an event with P(A) > 0. Then

P (Bk |A) =
P (A|Bk) · P (Bk)
n∑

i=1
P (A|Bi ) .P (Bi )

for k = 1, 2, . . . , n.



Bayes’ Rule II

Example
In this problem, there are three assistants working at a company:
Moe, Larry, and Curly.
Their primary job duty is to file paperwork in the filing cabinet
when papers become available. The three assistants have different
work schedules:

Moe Larry Curly

Workload 60% 30% 10%

That is, Moe works 60% of the time, Larry works 30% of the time,
and Curly does the remaining 10%, and they file documents at
approximately the same speed. Suppose a person were to select
one of the documents from the cabinet at random.



Bayes’ Rule II

Example.
Let M be the event M = {Moe filed the document} and let L and
C be the events that Larry and Curly, respectively, filed the
document.
In the absence of additional information, reasonable prior
probabilities would just be

P(M) = 0.60 P(L) = 0.30 P(C ) = 0.10

Now, the boss comes in one day, opens up the file cabinet, and
selects a file at random. The boss discovers that the file has been
misplaced. The question is: who misplaced the file?



Bayes’ Rule II

Example
The boss has information about Moe, Larry, and Curly’s filing
accuracy in the past (due to historical performance evaluations).
The performance information may be represented by the following
table:

Moe Larry Curly

Misfile Rate 0.003 0.007 0.010

In other words, on the average, Moe misfiles 0.3% of the
documents he is supposed to file and so on.



Bayes’ Rule II

Example
We store the prior probabilities and the likelihoods in vectors and
we apply the Bayes’ Rule directly.

prior = c(0.6 , 0.3 , 0.1)

like = c(0.003 , 0.007 , 0.01)

post = prior * like

post/sum(post)

[1] 0.3673469 0.4285714 0.2040816

The conclusion: Larry probably misplaced the file...



Random Variables

We conduct a random experiment E and after learning the
outcome ω in S we calculate a number X. That is, to each
outcome ω in the sample space we associate a number X (ω) = x .

Definition: A random variable X is a function X : S → R that
associates to each outcome ω ∈ S exactly one number X (ω) = x .

Example: Let E be the experiment of flipping a coin twice. Now
define the random variable X = the number of heads. That is, for
example, X (HH) = 2, while X (HT ) = 1. We may make a table of
the possibilities

ω ∈ S HH HT TH TT

X (ω) = x 2 1 1 0



Random Variables

Example: let us roll a die three times, and let us define the
random variables

U = X1 − X2 + X3

V = max(X1,X2,X3)

W = X1 + X2 + X3

S = rolldie(3, makespace=TRUE)

S = addrv(S, U = X1 - X2 + X3)

S = addrv(S, FUN=max , invars=c("X1","X2","X3"),

name="V")

S = addrv(S, FUN=sum , invars=c("X1","X2","X3"),

name="W")

S

prob(S, U > 6)

prob(S, U + W - V > 10)



Discrete Distributions

Discrete random variables are characterized by their supports
which take the form

SX = {u1, u2, . . .}

Every discrete random variable X has associated with it a
probability mass function (PMF) fX : SX → [0; 1] defined by

fX (x) = P(X = x)

for x ∈ SX .
Mean and Variance:

µ = E (X ) =
∑
x∈S

xfX (x)

σ2 =
∑
x∈S

(x − µ)2fX (x)



Discrete Distributions

Example:

x = c(0,1,2,3)

f = c(1/8, 3/8, 3/8, 1/8)

mu = sum(x * f); mu

sigma2 = sum((x-mu)^2 * f); sigma2

sigma = sqrt(sigma2 ); sigma

# Using an specific library

library(distrEx)

X = DiscreteDistribution(supp =0:3, prob=c(1,3,3,1)/8)

E(X); var(X); sd(X)



Binomial Distribution

The binomial distribution is based on a Bernoulli trial, which is a
random experiment in which there are only two possible outcomes:
success (S) and failure (F). We conduct the Bernoulli trial and let

X =

{
1 if the outcomes is S
0 if the outcomes is F

The probability function is

fX (x) = px(1− p)1−x

for x = 0, 1.
The Binomial model has three defining properties:

I Bernoulli trials are conducted n times,

I the trials are independent,

I the probability of success p does not change between trials.



Binomial Distribution

The probability function is

fX (x) =

(
n

x

)
px(1− p)1−x

for x = 0, 1, 2, . . . , n

A <- data.frame(Pr=dbinom (0:3, size=3, prob=0.5))

rownames(A) <- 0:3

A

plot(0, xlim=c(-1.2, 4.2), ylim=c(-0.04 , 1.04),

type="n", xlab="number of successes",

ylab="cumulative probability")

abline(h=c(0,1), lty=2, col="grey")



Binomial Distribution
lines(stepfun (0:3, pbinom (-1:3, size=3, prob=0.5)),

verticals=FALSE , do.p=FALSE)

points (0:3, pbinom (0:3, size=3, prob=0.5), pch=16,

cex=1.2)

points (0:3, pbinom (-1:2, size=3, prob=0.5), pch=1,

cex=1.2)



Binomial Distribution
We can use the library distr

library(distr)

X = Binom(size=3, prob=1/2)

d(X)(1) # pmf of X evaluated at x=1

p(X)(2) # cdf of X evaluated at x=2

op <- par(pty="s") # square plotting region

plot(X, cex=0.2)

par(op)



Binomial Distribution

In general,

Given X ∼ dbinom(size=n, prob=p)

How to do with stats (default) with distr

PMF: P(X = x) dbinom(x, size=n, prob=p) d(X)(x)

CDF: P(X ≤ x) pbinom(x, size=n, prob=p) p(X)(x)

Simulate k variates rbinom(k, size=n, prob=p) r(X)(k)

For using the library distr we need to write previously

X = Binom(size=n, prob=p)

# Example

X <- Binom(size=3, prob=0.45)

library(distrEx)

E(X)

E(3*X + 4)



The Poisson Distribution

This is a distribution associated with “rare events”, like traffic
accidents, typing errors, or customers arriving in a bank.
Let λ be the average number of events, then,

fX (x) = P(X = x) = e−λ
λx

x!
, x = 0, 1, 2, . . .

The associated R functions are: dpois(x, lambda), ppois(x,
lambda), qpois(x, lambda), rpois(n, lambda) which give the
PMF, CDF, quantile function, and simulate random variates,
respectively.

Example: Suppose Y ∼ Pois(lambda = 50), compute
P(48 ≤ Y ≤ 50) = P(X ≤ 50)− P(X ≤ 47).

diff(ppois(c(47, 50), lambda =50))



The Empirical Distribution

Do an experiment n times, and observe n values x1, x2, . . . , xn of a
random variable X . The empirical cumulative distribution function
Fn (written ECDF) is the probability distribution that places
probability mass 1/n on each of the values x1, x2, . . . , xn. The
empirical PMF takes the form

fX (x) =
1

n

for x ∈ {x1, x2, . . . xn} .
Mean and variance are

µ =
n∑

i=1

xi ·
1

n
= x

σ2 =
n∑

i=1

(xi − x)2 · 1

n



The Empirical Distribution
With R: The graph is of a right-continuous function with jumps
exactly at the locations stored in x :

x = c(4, 7, 9, 11, 12)

ecdf(x)

plot(ecdf(x), main=’Empirical Distribution of X’)



The Empirical Distribution

A function can be defined to compute the empirical PDF in each
point:

epdf = function(x,t){

sum(x %in% t)/length(x)

}

x = c(0,0,1)

epdf(x,0) # should be 2/3

To simulate from the empirical distribution supported on the
vector x , we use the sample function.

x = c(0, 0, 1)

sample(x, size=7, replace=TRUE)



Continuous Random Variables

Continuous random variables have supports like

SX = [a, b] or (a, b),

or unions of intervals of the above form. For example,

I the height or weight of an individual,

I physical measurements such as the length or size of an object,
and

I durations of time (usually).

Every continuous random variable X has a probability density
function (PDF) denoted fX associated with it.



Continuous Random Variables

It satisfies three basic properties:

1. fX (x) > 0 for x ∈ SX ,

2.
∫
x∈SX fX (x)dx = 1, and

3. P(X ∈ A) =
∫
x∈A fX (x)dx , for an event A ⊂ SX .

The mean µ, also known as E (X ):

µ = E (X ) =

∫
x∈S

xfX (x)dx ,

provided
∫
S |x |f (x)dx is finite. The variance is

σ2 = E (X − µ)2 =

∫
x∈S

(x − µ)2fX (x)dx ,

or alternatively σ2 = E (X 2)− (E (X ))2.



Continuous Random Variables

Example: Let X have PDF f (x) = 3x2, 0 < x < 1 and find
P(0.14 ≤ X ≤ 0.71), E (X ) and Var(X ).

f = function(x) {3*x^2}

integrate(f, lower=0.14 , upper=0.71)

# With library distr

library(distr)

X = AbscontDistribution(d=f, low1=0, up1=1)

p(X)(0.71) - p(X)(0.14)

# With library distrEx

# Mean and Variance

library(distrEx)

E(X)

var(X)



Normal Distribution

We say that X has a normal distribution if it has PDF

fX (x) =
1

σ
√

2π
exp

{
−(x − µ)2

2σ2

}
, −∞ < x <∞.

We write X ∼ N(µ, σ), and the associated R function is
dnorm(x, mean=0, sd=1)

The familiar bell-shaped curve, the normal distribution is also
known as the Gaussian distribution
This distribution is by far the most important distribution,
continuous or discrete. The normal model appears in the theory of
all sorts of phenomena.

curve(dnorm(x), from=-5, to=5, ylab="y",

main="Normal Density")

# Some quantiles

qnorm(c(0.025 , 0.01 , 0.005), lower.tail=FALSE)



Functions of Continuous Random Variables
Let X have PDF fX and let g be a function which is one-to-one
with a differentiable inverse g−1.
Then, the PDF of U = g(X ) is given by

fU(u) = fX
[
g−1(u)

] ∣∣∣∣ ddug−1(u)

∣∣∣∣ .
It is better to write in the intuitive form

fU(u) = fX (x)

∣∣∣∣dxdu
∣∣∣∣ .

library(distr)

X <- Norm(mean=0, sd=1)

Y <- 4 - 3*X

p(Y)(0.5)

plot(Y)

W <- sin(exp(X) + 27)

p(W)(0.5)

plot(W)



Other Important Distributions: Uniform Distribution

A random variable X with the continuous uniform distribution on
the interval (a, b) has PDF

fX (x) =
1

b − a
, a < x < b.

The associated R function is dunif(min = a, max = b).
It is used to model experiments whose outcome is an interval of
numbers that are equally likely in the sense that any two intervals
of equal length in the support have the same probability associated
with them.
The mean of X ∼ unif(min = a, max = b) is

µ = E (X ) =
b + a

2



Other Important Distributions: Exponential Distribution

We say that X has an exponential distribution and write
X ∼ exp(rate = λ). It is closely related to the Poisson
distribution.
If customers arrive at a store, according to exponential distibuted
times with rate λ, and if Y counts the number of customers that
arrive in the time interval [0, t), then Y ∼ Pois(lambda = λt).

fX (x) = λe−λx , x > 0

The associated R functions are: dexp(x, rate), pexp(x,
rate), qexp(x, rate), rexp(n, rate) which give the PMF,
CDF, quantile function, and simulate random variates, respectively.

curve(dexp(x, rate=2), from=0, to=5, ylab="f(x)",

main="Exponential Distribution")



Other Important Distributions: Chi square Distribution

A random variable X with PDF

fX (x) =
1

Γ(p/2)2p/2
xp/2−1e−x/2, x > 0,

is said to have a chi-square distribution with p degrees of freedom.
The associated R functions are dchisq(x, df), pchisq, qchisq,
and rchisq, which give the PDF, CDF, quantile function, and
simulate random variates, respectively.

curve(dchisq(x, df=3), from=0, to=20, ylab="f(x)")

ind <- c(4, 5, 10, 15)

for (i in ind) curve(dchisq(x, df=i), 0, 20, add=TRUE)



Other Important Distributions: t Student Distribution

A random variable X with PDF

fX (x) =
Γ [(r + 1)/2]√

rπ Γ(r/2)

(
1 +

x2

r

)−(r+1)/2

, −∞ < x <∞

is said to have Student’s t distribution with r degrees of freedom.
The associated R functions are dt(x, df), pt(x, df), qt(x,
df) and rt(n, df).

curve(dt(x, df=50), from=-5, to=5, xlab="y",

ylab="f(x)", col="yellow")

curve(dt(x, df=3), from=-5, add=TRUE , col="blue")



Other Important Distributions: F Distribution

A random variable X with p.d.f.

fX (x) =
Γ[(m + n)/2]

Γ(m/2)Γ(n/2)

(m
n

)m/2
xm/2−1

(
1 +

m

n
x
)−(m+n)/2

, x > 0.

is said to have an F distribution with (m, n) degrees of freedom.
The associated R functions are df(x, df1, df2), pf(x, df1,

df2), qf(x, df1, df2) and rf(n, df1, df2).

X11()

curve(df(x, df1=3, df2=20), from=0, to=20,

xlab="y", ylab="f(x)", col="yellow")

curve(df(x, df1=10, df2=2), from=0, to=20,

add=TRUE , col="blue")



Rcmdr: Distributions of continuous and discrete random
variables



Finding (upper) quantiles of a distribution

I Find (upper) α quantile of the standard normal distribution,
i.e., find a number zα such that P(Z > zα) = α for α = 0.05



Finding (upper) quantiles of a distribution cont.

I P(Z > z0.05) = 0.05 is satisfied by z0.05 = 1.64



Finding probabilities of a distribution

I For X ∼ Poisson(λ = 2) E [X ] = 1/λ = 0.5 find P(X > 3)

I Upper probabilities are with strict > inequality

I Lower probabilities are with ≤



Finding probabilities of a distribution cont.

I For X ∼ Poisson(λ = 2), P(X > 3) = 0.001752

I To find P(X ≥ 3) = P(X > 2), set 2 in Variable value(s)



Plotting probability density function, pdf

I For X ∼ Exp(α = 4)



Plotting probability density function, pdf cont.

I For X ∼ Exp(α = 4)
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Plotting (cumulative) distribution function, cdf
I For X ∼ Binomial(n = 100, p = 0.2)
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Generating samples from a distribution
I For X ∼ Uniform(a = 1, b = 3) generate m = 40 samples,

each of size n = 30
I Calculate sample mean for each sample



Generating samples from a distribution cont.
I For X ∼ Uniform(a = 1, b = 3) generate m = 40 samples,

each of size n = 30
I Calculate sample mean for each sample



Generating samples from a distribution cont.

Interpretation of the data table:

Sample 1: . . . , x
(1)
28 = 1.88, x

(1)
29 = 1.47, x

(1)
30 = 1.26, x̄ (1) = 2.05

. . .
Sample 10: . . . , x

(10)
28 = 1.91, x

(10)
29 = 2.78, . . . , x

(10)
30 = 2.70, x̄ (10) = 1.96

. . .



The Central Limit Theorem
Let X1, X2, . . . , Xn be a random sample from a population
distribution with mean µ and finite standard deviation σ. Then the
sampling distribution of

Z =
X − µ
σ/
√
n

approaches a standard normal ditribution N(0, 1) as n→∞.

I For highly skewed or heavy-tailed populations the samples
may need to be larger for the distribution of the sample means
shows a bell-shape.

I For any distribution (with finite standard deviation) the
approximation tends to be better for larger sample sizes.

library(TeachingDemos)

example(clt.examp)

library(distrTeach)

illustrateCLT(Distr=Unif(), len =20)



Towards Central Limit Theorem
I Make a histogram of the m = 40 sample means from the

previous page
I According to CLT, what should be its shape and its center?

Normal, centered at the population mean
µ = E [X ] = a+b

2 = 2
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Central Limit Theorem with Teaching Demos



Central Limit Theorem with Teaching Demos, n = 5
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Central Limit Theorem with Teaching Demos, n = 35
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