Probability and Random variables

Partially based on IPSUR notes

Sample Spaces

For a random experiment E, the set of all possible outcomes of E is called the sample space and is denoted by the letter S. For a coin-toss experiment, S would be the results Head and Tail. It may represented by $S=\{H, T\}$. Formally, the performance of a random experiment is the unpredictable selection of an outcome in S.

```
library(prob)
tosscoin(3)
# 6-sided die
rolldie(2)
# Cards
cards()
```


Events and Probability Functions I

- An event A is a subset of the sample space After the performance of a random experiment E. We say that the event A occurred if the experiment's outcome belongs to A.
- We say that a bunch of events $A_{1}, A_{2}, A_{3} \ldots$ are mutually exclusive or disjoint if $A_{i} \cap A_{j}=\varnothing$ for any distinct pair $A_{i} \neq A_{j}$.
- A probability function is a rule that associates with each event A of the sample space a unique number $P(A)=p$, called the probability of A. Any probability function P satisfies the three Kolmogorov Axioms:

Events and Probability Functions II

- The probability of an event should never be negative. Since the sample space contains all possible outcomes, its probability should be one. Finally, for a sequence of disjoint events (sets that do not overlap), their total probability (measure) should equal the sum of its parts.

```
# Equally likely model
tosscoin(3, makespace=TRUE)
probspace(rolldie(2))
# Not equal probabilities
iidspace(c("H","T"), ntrials=3, probs=c(0.7, 0.3))
```


Conditional Probability

- Definition: The conditional probability of B given A, denoted $P(B \mid A)$, is defined by

$$
P(B \mid A)=\frac{P(B \cap A)}{p(A)}
$$

if $P(A)>0$. When $P(A)=0$, the theory forms the foundation for the study of stochastic processes.

```
S = rolldie(2, makespace=TRUE)
S
A = subset(S, X1 == X2)
B = subset(S, X1 + X2 >= 8)
prob(A, given=B)
prob(B, given=A)
```


Independence

- Definition: Events A and B are said to be independent if

$$
P(A \cap B)=P(A) P(B)
$$

Otherwise, the events are said to be dependent.

- Example: Toss ten coins. What is the probability of observing at least one Head?

```
S = tosscoin(10, makespace=TRUE)
A = subset(S, isrep(S, vals="T", nrep=10))
1 - prob(A)
```


Bayes' Rule I

The Bayes' Rule allows us to update our probabilities when new information becomes available:
Let $B_{1}, B_{2}, \ldots B_{n}$ be mutually exclusive and exhaustive and let A be an event with $P(A)>0$. Then

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) \cdot P\left(B_{k}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}
$$

for $k=1,2, \ldots, n$.

Bayes' Rule II

Example

In this problem, there are three assistants working at a company:
Moe, Larry, and Curly.
Their primary job duty is to file paperwork in the filing cabinet when papers become available. The three assistants have different work schedules:

	Moe	Larry	Curly
Workload	60%	30%	10%

That is, Moe works 60% of the time, Larry works 30% of the time, and Curly does the remaining 10%, and they file documents at approximately the same speed. Suppose a person were to select one of the documents from the cabinet at random.

Bayes' Rule II

Example.

Let M be the event $M=\{$ Moe filed the document $\}$ and let L and
C be the events that Larry and Curly, respectively, filed the document.
In the absence of additional information, reasonable prior probabilities would just be

$$
P(M)=0.60 \quad P(L)=0.30 \quad P(C)=0.10
$$

Now, the boss comes in one day, opens up the file cabinet, and selects a file at random. The boss discovers that the file has been misplaced. The question is: who misplaced the file?

Bayes' Rule II

Example

The boss has information about Moe, Larry, and Curly's filing accuracy in the past (due to historical performance evaluations). The performance information may be represented by the following table:

	Moe	Larry	Curly
Misfile Rate	0.003	0.007	0.010

In other words, on the average, Moe misfiles 0.3% of the documents he is supposed to file and so on.

Bayes' Rule II

Example

We store the prior probabilities and the likelihoods in vectors and we apply the Bayes' Rule directly.

```
prior = c(0.6, 0.3, 0.1)
like = c(0.003, 0.007, 0.01)
post = prior * like
post/sum(post)
[1] 0.3673469 0.4285714 0.2040816
```

The conclusion: Larry probably misplaced the file...

Random Variables

We conduct a random experiment E and after learning the outcome ω in S we calculate a number X. That is, to each outcome ω in the sample space we associate a number $X(\omega)=x$.

Definition: A random variable X is a function $X: S \rightarrow \mathbb{R}$ that associates to each outcome $\omega \in S$ exactly one number $X(\omega)=x$.

Example: Let E be the experiment of flipping a coin twice. Now define the random variable $X=$ the number of heads. That is, for example, $X(H H)=2$, while $X(H T)=1$. We may make a table of the possibilities

$\omega \in S$	$H H$	$H T$	$T H$	$T T$
$X(\omega)=x$	2	1	1	0

Random Variables

Example: let us roll a die three times, and let us define the random variables

$$
\begin{aligned}
U & =X_{1}-X_{2}+X_{3} \\
V & =\max \left(X_{1}, X_{2}, X_{3}\right) \\
W & =X_{1}+X_{2}+X_{3}
\end{aligned}
$$

```
S = rolldie(3, makespace=TRUE)
S = addrv(S, U = X1 - X2 + X3)
S = addrv(S, FUN=max, invars=c("X1","X2","X3"),
name="V")
S = addrv(S, FUN=sum, invars=c("X1","X2","X3"),
name="W")
S
prob(S, U > 6)
prob(S, U + W - V > 10)
```


Discrete Distributions

Discrete random variables are characterized by their supports which take the form

$$
S_{X}=\left\{u_{1}, u_{2}, \ldots\right\}
$$

Every discrete random variable X has associated with it a probability mass function $(P M F) f_{X}: S_{X} \rightarrow[0 ; 1]$ defined by

$$
f_{X}(x)=P(X=x)
$$

for $x \in S_{X}$.
Mean and Variance:

$$
\begin{aligned}
\mu & =E(X)=\sum_{x \in S} x f_{X}(x) \\
\sigma^{2} & =\sum_{x \in S}(x-\mu)^{2} f_{X}(x)
\end{aligned}
$$

Discrete Distributions

Example:

```
x = c(0,1,2,3)
f = c(1/8, 3/8, 3/8, 1/8)
mu = sum(x * f); mu
sigma2 = sum((x-mu)^2 * f); sigma2
sigma = sqrt(sigma2); sigma
# Using an specific library
library(distrEx)
X = DiscreteDistribution(supp=0:3, prob=c(1,3,3,1)/8)
E(X); var(X); sd(X)
```


Binomial Distribution

The binomial distribution is based on a Bernoulli trial, which is a random experiment in which there are only two possible outcomes: success (S) and failure (F). We conduct the Bernoulli trial and let

$$
X=\left\{\begin{array}{l}
1 \text { if the outcomes is } S \\
0 \text { if the outcomes is } F
\end{array}\right.
$$

The probability function is

$$
f_{X}(x)=p^{x}(1-p)^{1-x}
$$

for $x=0,1$.
The Binomial model has three defining properties:

- Bernoulli trials are conducted n times,
- the trials are independent,
- the probability of success p does not change between trials.

Binomial Distribution

The probability function is

$$
f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{1-x}
$$

```
for x = 0,1,2,\ldots,n
A <- data.frame(Pr=dbinom(0:3, size=3, prob=0.5))
rownames(A) <- 0:3
A
plot(0, xlim=c(-1.2, 4.2), ylim=c(-0.04, 1.04),
type="n", xlab="number of successes",
ylab="cumulative probability")
abline(h=c(0,1), lty=2, col="grey")
```


Binomial Distribution

```
lines(stepfun(0:3, pbinom(-1:3, size=3, prob=0.5)),
verticals=FALSE, do.p=FALSE)
points(0:3, pbinom(0:3, size=3, prob=0.5), pch=16,
cex=1.2)
points(0:3, pbinom(-1:2, size=3, prob=0.5), pch=1,
cex=1.2)
```


Binomial Distribution

We can use the library distr

```
library(distr)
X = Binom(size=3, prob=1/2)
```

```
d(X)(1) # pmf of X evaluated at x=1
```

d(X)(1) \# pmf of X evaluated at x=1
p(X)(2) \# cdf of X evaluated at x=2
p(X)(2) \# cdf of X evaluated at x=2
op <- par(pty="s") \# square plotting region
op <- par(pty="s") \# square plotting region
plot(X, cex=0.2)
plot(X, cex=0.2)
par(op)

```
par(op)
```

Probability function of Binom($3,0.5$.

CDF of Binom $(3,0.5)$

Quantile function of Binom $(3,0.5)$

Binomial Distribution

In general,
Given $X \sim$ dbinom (size=n, prob=p)

How to do	with stats $($ default $)$	with distr
PMF: $P(X=x)$	dbinom $(x$, size $=n$, prob=p)	$\mathrm{d}(\mathrm{X})(\mathrm{x})$
CDF: $P(X \leq x)$	pbinom $(\mathrm{x}$, size $=\mathrm{n}$, prob $=\mathrm{p})$	$\mathrm{p}(\mathrm{X})(\mathrm{x})$
Simulate k variates	rbinom $(\mathrm{k}$, size $=\mathrm{n}$, prob=p)	$\mathrm{r}(\mathrm{X})(\mathrm{k})$

For using the library distr we need to write previously

```
X = Binom(size=n, prob=p)
    # Example
    X <- Binom(size=3, prob=0.45)
    library(distrEx)
    E(X)
    E(3*X + 4)
```


The Poisson Distribution

This is a distribution associated with "rare events", like traffic accidents, typing errors, or customers arriving in a bank.
Let λ be the average number of events, then,

$$
f_{X}(x)=P(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x=0,1,2, \ldots
$$

The associated R functions are: dpois (x , lambda), ppois (x ,
 PMF, CDF, quantile function, and simulate random variates, respectively.

Example: Suppose $Y \sim$ Pois(lambda $=50$), compute $P(48 \leq Y \leq 50)=P(X \leq 50)-P(X \leq 47)$.
diff(ppois(c(47, 50), lambda=50))

The Empirical Distribution

Do an experiment n times, and observe n values $x_{1}, x_{2}, \ldots, x_{n}$ of a random variable X. The empirical cumulative distribution function F_{n} (written ECDF) is the probability distribution that places probability mass $1 / n$ on each of the values $x_{1}, x_{2}, \ldots, x_{n}$. The empirical PMF takes the form

$$
f_{X}(x)=\frac{1}{n}
$$

for $x \in\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$.
Mean and variance are

$$
\begin{aligned}
\mu & =\sum_{i=1}^{n} x_{i} \cdot \frac{1}{n}=\bar{x} \\
\sigma^{2} & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \cdot \frac{1}{n}
\end{aligned}
$$

The Empirical Distribution

With R: The graph is of a right-continuous function with jumps exactly at the locations stored in x :

```
x = c(4, 7, 9, 11, 12)
ecdf(x)
plot(ecdf(x), main='Empirical Distribution of X')
```

Empirical Distribution of X

The Empirical Distribution

A function can be defined to compute the empirical PDF in each point:

```
epdf = function(x,t){
sum(x %in% t)/length(x)
}
x = c(0,0,1)
epdf(x,0) # should be 2/3
```

To simulate from the empirical distribution supported on the vector x, we use the sample function.

```
x = c(0, 0, 1)
sample(x, size=7, replace=TRUE)
```


Continuous Random Variables

Continuous random variables have supports like

$$
S_{X}=[a, b] \text { or }(a, b),
$$

or unions of intervals of the above form. For example,

- the height or weight of an individual,
- physical measurements such as the length or size of an object, and
- durations of time (usually).

Every continuous random variable X has a probability density function (PDF) denoted f_{X} associated with it.

Continuous Random Variables

It satisfies three basic properties:

1. $f_{X}(x)>0$ for $x \in S_{X}$,
2. $\int_{x \in S_{X}} f_{X}(x) d x=1$, and
3. $P(X \in A)=\int_{x \in A} f_{X}(x) d x$, for an event $A \subset S_{X}$.

The mean μ, also known as $E(X)$:

$$
\mu=E(X)=\int_{x \in S} x f_{X}(x) d x
$$

provided $\int_{S}|x| f(x) d x$ is finite. The variance is

$$
\sigma^{2}=E(X-\mu)^{2}=\int_{x \in S}(x-\mu)^{2} f_{X}(x) d x
$$

or alternatively $\sigma^{2}=E\left(X^{2}\right)-(E(X))^{2}$.

Continuous Random Variables

Example: Let X have PDF $f(x)=3 x^{2}, 0<x<1$ and find $P(0.14 \leq X \leq 0.71), E(X)$ and $\operatorname{Var}(X)$.

```
f = function(x) {3*x^2}
integrate(f, lower=0.14, upper=0.71)
# With library distr
library(distr)
X = AbscontDistribution(d=f, low1=0, up1=1)
p(X)(0.71) - p(X)(0.14)
# With library distrEx
# Mean and Variance
library(distrEx)
E(X)
var(X)
```


Normal Distribution

We say that X has a normal distribution if it has PDF

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right\}, \quad-\infty<x<\infty
$$

We write $X \sim N(\mu, \sigma)$, and the associated R function is dnorm (x, mean=0, sd=1)

The familiar bell-shaped curve, the normal distribution is also known as the Gaussian distribution
This distribution is by far the most important distribution, continuous or discrete. The normal model appears in the theory of all sorts of phenomena.

```
curve(dnorm(x), from=-5, to=5, ylab="y",
main="Normal Density")
# Some quantiles
qnorm(c(0.025, 0.01, 0.005), lower.tail=FALSE)
```


Functions of Continuous Random Variables

Let X have PDF f_{X} and let g be a function which is one-to-one with a differentiable inverse g^{-1}.
Then, the PDF of $U=g(X)$ is given by

$$
f_{U}(u)=f_{X}\left[g^{-1}(u)\right]\left|\frac{d}{d u} g^{-1}(u)\right| .
$$

It is better to write in the intuitive form

$$
f_{U}(u)=f_{X}(x)\left|\frac{d x}{d u}\right|
$$

```
library(distr)
X <- Norm(mean=0, sd=1)
Y <- 4 - 3*X
p(Y)(0.5)
plot(Y)
W <- sin(exp(X) + 27)
p(W)(0.5)
plot(W)
```


Other Important Distributions: Uniform Distribution

A random variable X with the continuous uniform distribution on the interval (a, b) has PDF

$$
f_{X}(x)=\frac{1}{b-a}, \quad a<x<b
$$

The associated R function is dunif($\min =a$, $\max =b$). It is used to model experiments whose outcome is an interval of numbers that are equally likely in the sense that any two intervals of equal length in the support have the same probability associated with them.
The mean of $X \sim \operatorname{unif}(\min =a, \max =b)$ is

$$
\mu=E(X)=\frac{b+a}{2}
$$

Other Important Distributions: Exponential Distribution

We say that X has an exponential distribution and write $X \sim \exp ($ rate $=\lambda)$. It is closely related to the Poisson distribution.
If customers arrive at a store, according to exponential distibuted times with rate λ, and if Y counts the number of customers that arrive in the time interval $[0, t)$, then $Y \sim \operatorname{Pois}(\operatorname{lambda}=\lambda t)$.

$$
f_{X}(x)=\lambda e^{-\lambda x}, \quad x>0
$$

The associated R functions are: $\operatorname{dexp}(\mathrm{x}$, rate), $\operatorname{pexp}(\mathrm{x}$, rate), qexp(x, rate), rexp(n, rate) which give the PMF, CDF, quantile function, and simulate random variates, respectively.

```
curve(dexp(x, rate=2), from=0, to=5, ylab="f(x)",
main="Exponential Distribution")
```


Other Important Distributions: Chi square Distribution

A random variable X with PDF

$$
f_{X}(x)=\frac{1}{\Gamma(p / 2) 2^{p / 2}} x^{p / 2-1} e^{-x / 2}, \quad x>0
$$

is said to have a chi-square distribution with p degrees of freedom.
The associated R functions are dchisq(x, df), pchisq, qchisq, and rchisq, which give the PDF, CDF, quantile function, and simulate random variates, respectively.

```
curve(dchisq(x, df=3), from=0, to=20, ylab="f(x)")
ind <- c(4, 5, 10, 15)
for (i in ind) curve(dchisq(x, df=i), 0, 20, add=TRUE)
```


Other Important Distributions: t Student Distribution

A random variable X with PDF

$$
f_{X}(x)=\frac{\Gamma[(r+1) / 2]}{\sqrt{r \pi} \Gamma(r / 2)}\left(1+\frac{x^{2}}{r}\right)^{-(r+1) / 2}, \quad-\infty<x<\infty
$$

is said to have Student's t distribution with r degrees of freedom. The associated R functions are $d t(x, d f)$, $p t(x, d f)$, $q t(x$, $\mathrm{df})$ and $\mathrm{rt}(\mathrm{n}, \mathrm{df})$.

$$
\begin{aligned}
& \text { curve(dt(x, df=50), from=-5, to=5, xlab="y", } \\
& \text { ylab="f(x)", col="yellow") } \\
& \text { curve(dt(x, df=3), from=-5, add=TRUE, col="blue") }
\end{aligned}
$$

Other Important Distributions: F Distribution

A random variable X with p.d.f.
$f_{X}(x)=\frac{\Gamma[(m+n) / 2]}{\Gamma(m / 2) \Gamma(n / 2)}\left(\frac{m}{n}\right)^{m / 2} x^{m / 2-1}\left(1+\frac{m}{n} x\right)^{-(m+n) / 2}, \quad x>0$.
is said to have an F distribution with (m, n) degrees of freedom. The associated R functions are $d f(x, d f 1, d f 2), p f(x, d f 1$, $\mathrm{df} 2), \mathrm{qf}(\mathrm{x}, \mathrm{df} 1, \mathrm{df} 2)$ and $\mathrm{rf}(\mathrm{n}, \mathrm{df} 1, \mathrm{df} 2)$.

```
X11()
curve(df(x, df1=3, df2=20), from=0, to=20,
xlab="y", ylab="f(x)", col="yellow")
curve(df(x, df1=10, df2=2), from=0, to=20,
add=TRUE, col="blue")
```


Rcmdr: Distributions of continuous and discrete random variables

Finding (upper) quantiles of a distribution

- Find (upper) α quantile of the standard normal distribution, i.e., find a number z_{α} such that $P\left(Z>z_{\alpha}\right)=\alpha$ for $\alpha=0.05$

Distributions Tools Help		
Continuous distributions	Normal distribution	Normal quantiles...
Discrete distributions *	t distribution Chi-squared distribution	Normal probabilities Plot normal distribut Sample from normal
	F distribution *	
	Exponential distribution *	
	Uniform distribution *	
	Beta distribution	
	Cauchy distribution	
	Logistic distribution	
	Lognormal distribution	
	Gamma distribution *	
	Weibull distribution	
	Gumbel distribution	

Finding (upper) quantiles of a distribution cont.

- $P\left(Z>z_{0.05}\right)=0.05$ is satisfied by $z_{0.05}=1.64$

Finding probabilities of a distribution

- For $X \sim \operatorname{Poisson}(\lambda=2) E[X]=1 / \lambda=0.5$ find $P(X>3)$
- Upper probabilities are with strict > inequality
- Lower probabilities are with \leq

Distributions Tools Help		
Continuous distributions * bl: <No active model>		
Discrete distributions	Binomial distribution	
	Poisson distribution	Poisson quantiles...
	Geometric distribution	Poisson tail probabilities...
	Hypergeometric distribution *	Poisson probabilities...
	Negative binomial distribution *	Plot Poisson distribution...
		Sample from Poisson distril

Finding probabilities of a distribution cont.

- For $X \sim \operatorname{Poisson}(\lambda=2), P(X>3)=0.001752$
- To find $P(X \geq 3)=P(X>2)$, set 2 in Variable value(s)

Plotting probability density function, pdf

- For $X \sim \operatorname{Exp}(\alpha=4)$

7\% Exponential Distribution

Plotting probability density function, pdf cont.

- For $X \sim \operatorname{Exp}(\alpha=4)$

Plotting (cumulative) distribution function, cdf

- For $X \sim \operatorname{Binomial}(n=100, p=0.2)$

Binomial Distribution: Trials $=100$, Probability of success $=0.2$

Generating samples from a distribution

- For $X \sim$ Uniform $(a=1, b=3)$ generate $m=40$ samples, each of size $n=30$
- Calculate sample mean for each sample

Distributions Tools Help		
Continuous distributions ${ }^{\text {- }}$	Normal distribution t distribution Chi-squared distribution F distribution Exponential distribution	
Discrete distributions *		
	Uniform distribution	Uniform quantiles...
	Beta distribution *	Uniform probabilities...
	Cauchy distribution	Plot uniform distribution...
	Logistic distribution	Sample from uniform distribution...
	Lognormal distribution	
	Gamma distribution *	
	Weibull distribution	
	Gumbel distribution	

Generating samples from a distribution cont.

- For $X \sim$ Uniform $(a=1, b=3)$ generate $m=40$ samples, each of size $n=30$
- Calculate sample mean for each sample

Generating samples from a distribution cont.

Interpretation of the data table:
Sample 1: $\ldots, x_{28}^{(1)}=1.88, x_{29}^{(1)}=1.47, x_{30}^{(1)}=1.26, \bar{x}^{(1)}=2.05$
Sample 10: $\ldots, x_{28}^{(10)}=1.91, x_{29}^{(10)}=2.78, \ldots, x_{30}^{(10)}=2.70, \bar{x}^{(10)}=1.96$

76 UnitormSamples										
	-bs22	-obs23	-bs24	obs25	-bs26	0bs27	28	obs29	30	
	2.582253	1.553872	1.721375	1.66	1.	1.	5	1.473431	,	2.05217
mp	2.204278	1.416973	2.473223	1.773321	2.552076	2.52133	2.114723	1.17183	6667	
sample3	1.669251	2.606270	1.751927	1.589064	2.030841	2.604819	1.943639	2.256295	1.477837	2.079086
sample4	2.907687	1.244568	1.617775	1.261370	1.418457	2.064660	2.781578	2.543390	2.905500	051441
sample 5	2.389902	1.461783	1.102419	2.815090	2.642343	1.002430	1.525546	1.152975	1.216409	. 028403
sample 6	2.458287	2.139461	2.855624	1.922593	1.025467	2.725611	2.162475	2.574379	1.994768	. 028033
sample7	2.828883	1.968302	1.225310	2.366593	2.820637	2.822298	1.463490	1.756133	2.142561	2.073798
ample8	1.781358	2.357416	2.817104	1.257100	1.999403	2.744865	2.707661	1.280759	1.458416	1.874091
sample9	1.267791	2.754763	2.069404	1.231848	2.000610	1.079638	2.569111	2.139157	2.612367	1.951578
ample	1.333785	1.773379	1.289907	2.715519	2.543643	1.544733	1.911046	2.780196	2.69563	. 958274
mpl	2.927192	1.675120	2.328251	2.202508	1.883138	2.855632	1.750483	1.234351	2.831332	2.127475
mpl	1.441371	1.695623	1.476890	2.393616	1.612549	2.040803	2.721733	2.332777	2.096245	. 896277
sampl	1.295602	1.086920	2.405013	2.529621	1.429409	1.016261	1.300232	1.003421	1.31233	. 838
sampl	1.834232	1.491226	1.773037	1.848101	2.086949	1.481470	1.389542	1.820624	. 554322	. 9982
samp	1.246469	2.516357	1.889279	2.265037	1.003413	1.003731	1.019298	2.981070	. 607242	. 9861
sampl	1.967234	2.080339	1.700127	2.315298	1.882857	1.902648	1.989172	1.540364	. 482040	. 989567
samplel	2.279792	2.838627	2.757429	2.717959	1.981486	2.818517	2.947425	1.694706	. 140786	. 197983
sample1	1.417441	1.108798	2.888227	1.900799	1.290917	1.035056	1.772251	1.429612	1.234399	. 960232
samplel9	2.630464	2.588595	1.566644	2.580179	2.244479	2.468222	1.050039	2.420473	2.456681	. 233124
sample20	1.238690	2.125256	2.327209	1.159793	2.202307	1.203764	1.225207	2.345689	1.664489	. 81

The Central Limit Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population distribution with mean μ and finite standard deviation σ. Then the sampling distribution of

$$
Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

approaches a standard normal ditribution $N(0,1)$ as $n \rightarrow \infty$.

- For highly skewed or heavy-tailed populations the samples may need to be larger for the distribution of the sample means shows a bell-shape.
- For any distribution (with finite standard deviation) the approximation tends to be better for larger sample sizes.

```
library(TeachingDemos)
example(clt.examp)
library(distrTeach)
illustrateCLT(Distr=Unif(), len=20)
```


Towards Central Limit Theorem

- Make a histogram of the $m=40$ sample means from the previous page
- According to CLT, what should be its shape and its center? Normal, centered at the population mean $\mu=E[X]=\frac{a+b}{2}=2$

Central Limit Theorem with Teaching Demos

File Edit Data Statistics Graphs	Models Distributions	Demos] Tools Help
$\mathbf{R}_{\text {dx }}$ Data set: < No active dataset>	Edit data set View	Central limit theorem... Confidence interval for the mean... Power of the test
Script Window		
		Flip a coin
		Roll a die
		Simple linear regression
		Simple correlation

Central Limit Theorem with Teaching Demos, $n=5$

sample size $=5$

Normal
Gamma

Uniform

Beta

Central Limit Theorem with Teaching Demos, $n=35$

sample size $=35$

Normal

x

Uniform

Gamma

Beta

