Bivariate data analysis

Categorical data - creating data set

Upload the following data set to R Commander

sex	female	male	male	male	male	female	female	male	female	female
eye	black	black	blue	green	green	green	black	green	blue	blue

- Method 1: Type the table in the Notepad, save it and import to Rcmdr
- Method 2: Introduce directly in the Script Window

```
eye = c("black","black","blue","green","green",
"green","black","green","blue","blue")
sex = c("female","male","male","male","male",
"female", "female","male","female","female")
DataSexEye = data.frame(sex,eye)
```


Categorical data - contingency table

Categorical data - contingency table cont.

- How many of the sampled people are female with black eyes? (2)
- What \% of the sampled people are male with blue eyes? (10\%)
- What $\%$ of the sampled people are male? (50\%)
- What $\%$ of the sampled people have green eyes? (40%)

Categorical data - barchart

- Load the library lattice, then create barchart grouping the data by sex

```
library(lattice)
barchart(DataSexEye, groups=DataSexEye$sex)
```


Categorical data - barchart cont.

- Are there more females or males with blue eyes? (females)
- What is the most common eye color among males? (green)

Numerical data - load anscombe data set from R library

76 R Commander

File Edit Data Statistics Graphs Models Distributions Tools Help						
$\mathbf{R}_{\text {candr }}$ Data set: DataSexEye	Edit data set	View data set	Model:	<No active model>		
Script Window	76 Read Data From Package			\square	回	$\Sigma 3$
	Package (Double-click to select) D			Data set (Double-click to select)		
	car	-	ab	ability.cov	-	
	datasets		ai	airmiles	三	
	lattice			airquality		
		*		anscombe	-	
	OR					
	Enter name of data set:		anscombe			
	OK	Car		Help		

Output Window

Numerical data - scatterplot of $y 1$ versus $x 1$

76 R Commander

File Edit Data Statistics	Graphs Models Distributions	Tools Help
$\mathbf{R}_{\text {cardx }}$ Data set: anscombe	Color palette... Index plot... Histogram... Stem-and-leaf display... Boxplot... Quantile-comparison plot...	del: <No active model>
Script Window		
data (anscombe, pack		
	Scatterplot...	
	Scatterplot matrix...	
	Line graph...	
	XY conditioning plot...	
	Plot of means...	
1	Strip chart...	
Output Window	Bar graph...	
	Pie chart...	
> data (anscombe, pa	3D graph *	
	Save graph to file *	

Numerical data - scatterplot of $y 1$ versus $x 1$ cont.

- Uncheck all but the Least-squares line
- Plotting characters 20 corresponds to bullets
- Increase the Point size to 2.5

Numerical data - scatterplot of $y 1$ versus $x 1$ cont.

Numerical data - scatterplot matrix (only $x_{1}, x_{2}, y_{1}, y_{2}$)

76 R Commander

Numerical data - scatterplot matrix (only $x_{1}, x_{2}, y_{1}, y_{2}$)

 cont.- Check Least-squares line

Numerical data - scatterplot matrix (only $x_{1}, x_{2}, y_{1}, y_{2}$) cont.

latticist environment

You can create interactive graphics:
data(anscombe, package="datasets")
library(latticist)
latticist(anscombe)

Numerical data - correlation matrix

76 R Commander

File Edit Data	Statistics	Graphs Models	Distributions Tools Help
\mathbf{R} Data set: an	Summaries ,		Active data set
	Contingency tables *		Numerical summaries...
Script Window	Means		Frequency distributions...
	Proportions		Count missing observations
	Variances		Table of statistics...
	Nonparametric tests		Correlation matrix...
	Dimensional analysis *		Correlation test...
	Fit models		Shapiro-Wilk test of normality...

Output Window

Numerical data - correlation matrix (only $x_{1}, x_{2}, y_{1}, y_{2}$) cont.

- Matrix is symmetrical with values on the diagonal $=1$
- $\operatorname{cor}\left(x_{1}, y_{1}\right)=\operatorname{cor}\left(y_{1}, x_{1}\right)=0.8164205$

Numerical data - covariance matrix (only $x_{1}, x_{2}, y_{1}, y_{2}$)

- Replace cor by cov in the last command in the Script Window
- $\operatorname{cov}\left(x_{1}, y_{1}\right)=5.501$
- Matrix is symmetrical with values on the diagonal = variances, eg, $\operatorname{cov}\left(y_{1}, y_{1}\right)=\operatorname{var}\left(y_{1}\right)=4.127269$

Simple linear regression -y 1 versus x 1

76 R Commander

Output Window

Simple linear regression -y 1 versus x 1 cont .

Output Window

Simple linear regression - y1 versus x 1 cont .

- Intercept estimate: $a=3.0001$
- Slope estimate: $b=0.5001$
- Residual standard deviation: $s_{R}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2}}=1.237$
- R-squared: $R^{2}=0.6665 \quad \Rightarrow \quad \operatorname{cor}(x, y)=\sqrt{0.6665}$

Regression Diagnostics: Tools for Checking the Validity of a Model (I)

- Determine whether the proposed regression model provides an adequate fit to the data: plots of standardized residuals.
- The plots assess visually whether the assumptions are being violated.
- Determine which (if any) of the data points have x values that have an unusually large effect on the estimated regression model (leverage points).
- Determine which (if any) of the data points are outliers: points which do not follow the pattern set by the bulk of the data.

Regression Diagnostics: Tools for Checking the Validity of a Model (II)

- If leverage points exist, determine whether each is a bad leverage point. If a bad leverage point exists we shall assess its influence on the fitted model.
- Examine whether the assumption of constant variance of the errors is reasonable. If not, we shall look at how to overcome this problem.
- If the data are collected over time, examine whether the data are correlated over time.
- If the sample size is small or prediction intervals are of interest, examine whether the assumption that the errors are normally distributed is reasonable.

Sources:
Edward R. Tufte, The Visual Display of Quantitative Information (Cheshire, Connecticut: Graphics Press, 1983), pp. 14-15.
F.J. Anscombe, "Graphs in Statistical Analysis," American Statistician, vol. 27 (Feb 1973), pp. 17-21.

Anscombe's Data											
Observation	x 1	y 1		x 2	y 2		x 3	y 3		x 4	y 4
1	10	8,04		10	9,14		10	7,46		8	6,58
2	8	6,95		8	8,14		8	6,77	8	5,76	
3	13	7,58		13	8,74		13	12,74		8	7,71
4	9	8,81		9	8,77		9	7,11		8	8,84
5	11	8,33		11	9,26		11	7,81	8	8,47	
6	14	9,96		14	8,1		14	8,84		8	7,04
7	6	7,24		6	6,13		6	6,08	8	5,25	
8	4	4,26		4	3,1		4	5,39		19	12,5
9	12	10,84		12	9,13		12	8,15		8	5,56
10	7	4,82		7	7,26		7	6,42		8	7,91
11	5	5,68		5	4,74		5	5,73		8	6,89
				$\underline{\text { Summary Statistics }}$							
N	11	11		11	11		11	11		11	11
mean	9,00	7,50		9,00	7,50091		9,00	7,50		9,00	7,50
SD	3,16	1,94		3,16	1,94		3,16	1,94		3,16	1,94
r	0,82			0,82			0,82			0,82	

Use the charts below to get the regression lines via Excel's Trendline feature.

Regression Results

LINEST OUTPUT		x1-y1		x2-y2		x3-y3		x4-y4	
slope	intercept	0,50	3	0,50	3	0,50	3	0,50	3
SE	SE	0,12	1,12	0,12	1,13	0,12	1,12	0,12	1,12
R^{2}	RMSE	0,67	1,24	0,67	1,24	0,67	1,24	0,67	1,24
F	df	17,99	9	17,97	9	17,97	9	18,00	9
Reg SS	SSR	27,51	13,76	27,50	13,78	27,47	13,76	27,49	13,74

Simple linear regression - residual plot (method 1)

Simple linear regression - residual plot (method 1) cont.
 - Residuals versus fitted (top left plot)

$$
\operatorname{Im}(y 1 \sim x 1)
$$

Simple linear regression - residual plot (method 2)

- Append the fitted values, residuals, standardized residuals etc to the existing data set

Simple linear regression - residual plot (method 2 cont.)

- Append the fitted values, residuals, studentized residuals etc to the existing data set

Simple linear regression - residual plot (method 2 cont.)

- Now the data set has new columns on the right with \hat{y}, r, etc

Simple linear regression - residual plot (method 2 cont.)

- Use the scatterplot option in the Graphs menu to plot residuals versus fitted

Simple linear regression - residual plot (method 2 cont.)

- Residuals versus fitted (cloud of points oscillates around the horizontal axis $y=0$)
- There is no pattern, no heteroscedasticity \Rightarrow regression model is appropriate

fitted.RegModel. 1

Simple linear regression - residual plot (method 2 cont.)

- Studentized Residuals $\left(\frac{r_{i}}{s_{R}}\right)$ versus x_{1} (cloud of points oscillates around the horizontal axis $y=0$)
- There is no pattern, no heteroscedasticity \Rightarrow regression model is appropriate

