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Learning goals
At the end of this chapter you should know how to:

» Estimate the unknown population parameters from the sample data

» Construct confidence intervals for the unknown population
parameters from the sample data:

» In the case of a normal distribution: confidence intervals for the
population mean and variance

> In large samples: confidence intervals for the population mean and
proportion

» Interpret the confidence interval

» Understand the impact of the sample size, confidence level, etc on
the length of the confidence interval

» Calculate a sample size needed to control a given interval width
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Statistical inference: key words (i)

» Population: the complete set of numerical information on a
particular quantity in which an investigator is interested.

» We identify the concept of the population with that of the random
variable X.

» The law or the distribution of the population is the distribution of X,
Fx.

» Sample: an observed subset (say, of size n) of the population values.

» Represented by a collection of n random variables X1, Xz, ..., X,

typically | iid (independent identically distributed) |

» Parameter: a constant characterizing X or Fx.




Statistical inference: key words (ii)

» Statistical inference: the process of drawing conclusions about a
population on the basis of measurements or observations made on a
sample of individuals from the population.

» Statistic: a random variable obtained as a function of a random
sample, X1, X5,..., X,

» Estimator of a parameter: a random variable obtained as a function,
say T, of a random sample, X1, X5, ..., X, used to estimate the
unknown population parameter.

» Estimate: a specific realization of that random variable, i.e., T
evaluated at the observed sample, xi, x2, ..., x,, that provides an
approximation to that unknown parameter.

Statistical inference: example

We want to know We have n copies We have n
ux = E[X] of X observed values of
X15X2,"'7Xn
X1, X0, ..., Xp~F X1, X0, oy Xn

X ~F i Sample i Observed sample

4 e 4

Estimator of ux (r. v.) Estimate of px (number)
Lx = E[X] = X <= %

Expected value of X Sample mean Sample mean




Point estimators: introduction

» A point estimator of a population parameter is a function, call it T,
of the sample information X, = (X, ..., X,) that yields a single

number.

» Examples of population parameters, estimators and estimates:

Population Estimator: Estimate:
parameter T(X,) notation notation
X1+..‘+Xn Y _ ~ _
Pop. mean px sample mean ———— X = x Ax
Pop. prop. px | sample prop. Px Px
- X2 —n(X)? N .
Pop. var. o% sample var. i X —nC” 5% 52
] - X2 —n(X)2 .
Pop. var. ai sample quasi. var. % = n—ﬁlai s)2< sﬁ
In general, Ox Ox 0

Point estimators: properties (i)

What are desirable characteristics of the estimators?

» Unbiasdness. This means that the bias of the estimator is zero.
What's bias? Bias equals the expected value of the estimator minus
the target parameter

BiaS[éx] = E[éx] — 0)(

Population Estimator Minimum Variance
parameter T(X,) Bias Unbiased? | Unbiased Estimator?
Pop. mean ux X E[X] — ux =0 Yes Yes, if X normal
Pop. prop. px Px E[px] —px =0 Yes Yes
Pop. var. o 5 E[6%] — ox # 0 No No
Pop. var. oy Sx E[sx] —ox =0 Yes Yes, if X normal
In general, Ox 0x E[0x] — 0x Often Rarely




Point estimators: properties (ii)

» Efficiency. Measured by the estimator’s variance. Estimators with
smaller variance are more efficient.

» Relative efficiency of two unbiased estimators éx,l and éx,g of a
parameter Ox is

~a Var[0
Relative efficiency(0x 1,60x.2) = M
Var[0x »]

Note:

» sometimes the inverse is used as a definition
> in any case, an estimator with smaller variance is more efficient

Point estimators: properties (iii)

» A more general criterion to select estimators (among unbiased and
biased ones) is the mean squared error defined as

MSE[0x] = E[(Ox — 0x)?] = Var[fx] + (Bias[0x])

Note:
» the mean squared error of an unbiased estimator equals its variance
> an estimator with smaller MSE is better
» the minimum variance unbiased estimator has the smallest
variance/MSE among all estimators

» How do we come up with the definition of the estimator T7

» In some situations, there exists an optimal estimator called minimum

variance unbiased estimator.
» If that's not the case, there are various alternative methods that
yield reasonable estimators, for example:

» Maximum likelihood estimation
> Method of moments




Point estimation: example

Example: 7.1 (Newbold) Price-earnings ratios for a random sample of
ten stocks traded on the NY Stock Exchange on a particular day were

10, 16, 5, 10, 12, 8, 4, 6, 5, 4

Use an unbiased estimation procedure to find point estimates of the
following population parameters: mean, variance, proportion of values
exceeding 8.5.

80
¥ = 2 _g
10
782 — 10(8)?
2
- _ 15.78
> 10— 1
) 1+140+1414+04+0+0+0+0
Px =
10
— 04

Point estimation: example

Example: Let ix = ﬁ(Xl +2Xo + ...+ nX,) be an estimator of the
population mean based on a SRS X. Compare this estimator with the sample

mean, X.
v 2
We know that X is an unbiased estimator of px, whose variance is UTX
fux is also unbiased: And its variance/MSE is:
Elax] = E (X +2Xp + ... +nXp)|  VIax] = v (X, +2Xp + .. . + nXp)
n(n+ 1) n(n + 1)
2 2
= D) (E[X1] + 2E[Xp] + - . . + nE[Xp]) =indep. <n(n " 1)) (VIX,] + 22V[Xo] + - - - + n2V[Xn])
=id (bx +2ux + .-+ npx) n(n+1)(2n+1)/6
n(n+ 1) . . - -
n(n+1)/2 =id mGX(l +2°+ ... 409
! N
= 2px (I1+2+...4+n)=npx B 2(2n+1)02
n(n+ 1) = ot ) %
= Bias[fix] =0
MSE[fi ] = Viix] + 0% = 2en +1) ox
3n(n+1)
2
. .. A ox/n 3(n+1)
Relative efficiency(X = =
Y( nuX) 2(2n+1)0_2 2(2n T 1)
3n(n+1) 7 X

It's easy to see that for n > 2, this ratio is smaller than 1 so X is a more
efficient estimator for ux.




From point estimation to confidence interval estimation

» So far, we have consider the point estimation of an unknown
population parameter which, assuming we had a SRS sample of n
observations from X, would produce an educated guess about that
unknown parameter

» Point estimates however, do not take into account the variability of
the estimation procedure due to, among other factors:

» sample size - surely, larger samples should provide more accurate
information about the population parameter

» variability in the population - samples from populations with smaller
variance should give more accurate estimates

» whether other population parameters are known

> etc

These drawbacks can be overcome by considering confidence interval
estimation, that is, a method that gives a range of values (an interval) in
which the parameter is likely to fall.

Confidence interval estimator and confidence interval

Let X,, = (X1, X2,...,X,) be a SRS from a population X with a cdf Fx
that depends on an unknown parameter 6.

» A confidence interval estimator for 0 at a confidence level
(1—a)=100(1— )% is an interval (T1(X,), To(X,)) that satisfies

P(Oec(Ti(X,), T2(X,)=1-a

> Interpretation: we have a probability of (1 — «) that the unknown
population parameter will be in (T1(X,), T2(X,)).

» A confidence interval for @ at a confidence level 1 — « is the
observed value of the confidence interval estimator,

(T1(x,), Ta(x,))

> Interpretation: we can be (1 — a) confident that the unknown
population parameter will be in (Ti(x,), T2(x,)).

Typical levels of confidence

o 0.01 | 0.05 | 0.10
100(1 —a)% | 99% | 95% | 90%




Finding confidence interval estimators: procedure

1. Find a quantity involving the unknown parameter 6 and the sample
X, C(X,,0), whose distribution is known and does not depend on
the parameter - a so-called pivotal quantity or a pivot for

2. Use the upper 1 —a/2 and «/2 quantiles of that distribution and the
definition of the confidence interval estimator to set up the equation

double inequality

P(1— a/2 quantile< C(X,,0)<a/2 quantile) = 1 —

3. To find the end points T1(X,) and T,(X,) of the confidence
interval estimator, solve the double inequality for the parameter 0

4. A 100(1 — a)% confidence interval for 8 is (T1(x,), T2(x,))

Confidence interval for the population mean, normal
population with known variance

1. Let X, be a SRS of size n from X. Under the assumptions:

> X follows a normal distribution with parameters ux and o%
> o is known (rather unrealistic)

2. The pivotal quantity for ux is

X—/JX
ox/vn

~ N(0,1)

> Note: the standard deviation of X, ox/+/n, (or any other stats) is
called the standard error




Confidence interval for the population mean, normal
population with known variance

3. Hence, if z;_,/2 and z,/, are the
(1 —a/2) and (a/2) upper
quantiles of the N(0,1), we have

P(Zl_a/g < Z< Za/2) =1—«

Standard normal density

Recall: If Z ~ N(0,1) then
E[Z] =0, V[Z] =1

Z
—Zn /2 /)?—’H
— — KX
4. Therefore P(Z1 /s < <z,p)=1-
erefore P(z_q /2 ox /T Zo/2) o

Confidence interval for the population mean, normal
population with known variance

5. Solve the double inequality for ux:

_ X—p
Zapp < UX/\;%< Za /2
gx = oOx
—Zn /0 —— < X - <  Zy/2—F—=
o = — o
_za/g\/—XE—X < —ux < —)<—+—Zoé/2\/—xﬁ
o = — o
Za/Z\/_XE —|—X >,U/X> X—Za/z\/—xﬁ
to obtain the confidence interval estimator
Ti(X,) T>(X,)
X —=zyp—=, X+ 24—
( 1 7 + 202 \/ﬁ)

6. The confidence interval is:

Cli—a(ux) ()? 2o )2 2K R+ 2o sy X X F 2o
1—alMX) = - a/2ﬁa a/zﬁ = a/QW




Example: finding a confidence interval for px

Example: 8.2 (Newbold) A process produces bags of refined sugar. The
weights of the contents of these bags are normally distributed with standard
deviation 1.2 ounces. The contents of a random sample of twenty-five bags had
mean weight 19.8 ounces. Find a 95% confidence interval for the true mean

weight for all bags of sugar produced by the process.

Population:
X = "weight of a sugar bag (in oz)"
X ~ N(ux,ox = 1.2%)

SRS: n=25

Sample: x =19.8

Zo.025 =1

.96

Objective: Clo.gs(ix) = (; e ZM%)

ox
n=25
1—a=0.95

Zo )2

Clo.os(1tx)

Interpretation:

(19.33,20.27)

1.2
% =198
a/2 = 0.025

Zg.025 = 1.96

1.2
19.8 F1.96—=
< - \/25)
(19.8 F 0.47)

(19.33,20.27)

We can be 95%
confident that ux is in

Frequency interpretation of the Cl, conf. level effect

In this simulated example, 150 samples of the same size n = 50 were generated

from

X ~ N(ux = —5,0% = 1°)

a =0.1 and a = 0.01.

fx in approximately 150(0.9) = 135 ints.
(but not in 150(0.1) = 15)

Index

The width of the interval,

(1 —a)=0.9,n=50

-55 -5.0 -4,
Confidence interval

1204

and 150 Ch_q(ux) were constructed with

in approximately 150(0.99) = 148.5 ints.

(but not in 150(0.01) = 1.5)

(1 —a)=0.99,n=50

Index

-5.5 -5.0 -4.5
Confidence interval

w=Xx-+

Za /29X

v _<’_‘_

NG

Za /20X

) — 2za/2UX

NG

increases with the increasing confidence level (keeping everything else the
same). Why?




Frequency interpretation of the Cl, sample size effect

Here we collect 150 samples of size n = 50 and another 150 of size n = 200

from | X ~ N(ux = —5,0% = 1%) |,

Wx in approximately 150(0.9) = 135 ints.
(but not in 150(0.1) = 15)

(1 — ) =0.9,n=200

px in approximately 150(0.9) = 135 ints.
(but not in 150(0.1) = 15)

(1-—a)=0.9,n=50

Index
Index

-55 -5.0 -45 -55 -5.0 -4.5
Confidence interval Confidence interval

The width of the interval decreases with the increasing sample size (keeping
everything else the same). Why?

Question: What is the effect of o on the width?

Example: estimating the sample size
Example: 8.14 (Newbold) The lengths of metal rods produced by an industrial
process are normally distributed with standard deviation 1.8mm. Suppose that
a production manager requires a 99% confidence interval extending no further
than 0.5mm on each side of the sample mean. How large a sample is needed to

achieve such an interval?

Objective: n such that width <1

Population:
X = "length of a metal rod (in mm)"
X ~ N(ux, 0% = 1.8%) pZe/29X
V.
SRS: n =7 2z pox < Vn
85.93 = (2(2.575)(1.8))> < n

width

Zo /20X To satisfy the manager's

<2(05)=1 requirement, a sample of at least
86 observations is needed.

Clo.go(pex): 2

Zp.005 = 2.575




Confidence interval for the population mean in large
samples

1. Let X, be a SRS of size n from X. Under the assumptions:

> X follows a nonnormal distribution with parameters px and o
> the sample size n is large (n > 30)

2. The pivotal quantity for ux based on the Central Limit Theorem is

X_MX
Gx/v/n

~approx. N(0,1)

Confidence interval for the population mean in large
samples

3. Hence, if z;_,/> and z,/, are the
(1 —a/2) and («/2) upper
quantiles of the N(0,1), we have

P(Zl—a/2 < Z< Za/2) =1—-«

Standard normal density E>

Z
—Zy2 T
X — px

6x/v/n

4. Therefore P(z_q /2 < <zyp)=l-a




Confidence interval for the population mean in large
samples

5. Solve the double inequality for ux:

X_HX
6x/v/n

to obtain the confidence interval estimator

—Zg)2 < < Zy/2

Tl (Kn) T2 (Kn)

7\ 7\
7 N /7 Y
~

. ox < o
(X_Za/27XEaX+Za/2

—)
Vn
6. The confidence interval is:

Cl_a (3 _ X’_
1-alpx) = (X -

Confidence interval for the population proportion in large
samples

Application of Cls for the population mean in large samples

Let X,, n > 30 be a SRS from a Bernoulli distr. with parameter px

(ux = E[X] = px and ox = /px(1 — px)). The sample proportion 2%
Is a special case of the sample mean of zero-one observations, px = X.

Thus, from the CLT $ This result remains true if we

Px — px ~approx. N(O, 1) use an estim:.zlte. for the population
\/px(l — px)/n standard deviation

M Px — px
ox/v/n - = ~approx. N(0,1)
Vbx(1—px)/Vn
6')(/\/5

Thus, in large samples, the confidence interval for px is:

N ﬁx ]- - AX A Ax ]- - Ax
Cll—a(pX) — (px_za/2 ¥7px+za/2\/w>

n




Example: finding a confidence interval for px

Example: 8.6 (Newbold) A random sample of 344 industrial buyers were asked:
"What is your firm's policy for purchasing personnel to follow on accepting
gifts from vendors?". For 83 of these buyers, the policy of the firm was for the
buyer to make his/her own decision. Find a 90% confidence interval for the
population proportion of all buyers who are allowed to make their own decisions.

Population:

X =1 if a buyer makes their own

decision and 0 otherwise
X ~ Bernoulli(px)

SRS: n =344

Sample: px = % = 0.241

large

Zp.05= 1.645

344

. . 1 5
Objective: Cly g(px) = <Px F 24 /2 M)
px = 0.241 n = 344
1—a=0.9 /2 = 0.05
Za )2 = 79,05 = 1.645
0.241(1 — 0.241)
Cl.olpx) = 0.241 F1.645¢) — — "7

(0.241 F 0.038)
(0.203, 0.279)

Interpretation: We can be 90%
confident that the proportion of
buyers who make their own decision,
px, falls in (0.203,0.279)

Confidence interval for the population mean, normal
population with unknown variance

1. Let X, be a SRS of size n from X. Under the assumptions:

» X follows a normal distribution with parameters ux and oy
> 0% is unknown (quite realistic)

2. The pivotal quantity for ux is

X—/LX

sx/v/n

~ th_1




Confidence interval for the population mean, normal
population with unknown variance

3. Hence, if tn—l;l—a/Z and tn—l;a/2 are the
(1 —«/2) and (a/2) upper quantiles of
the t distribution with n — 1 degrees of
freedom (df), we have

~ th—1

=~
P(tn—l;l—oz/2 < T < tn*1§a/2) =1l-a

t (Student) density |:>

Recall: if T ~t,, E[T] =0, V[T] = n—2

T ~ th—1
_tn—l;a/2 f)_<—/H
—— — Ux
4. Therefore P(t,_1.1_a/n < < th_1an)=1-—
refore P(t, 1. /2 sx//n 1; /2) o

Confidence interval for the population mean, normal
population with known variance

5. Solve the double inequality for ux:
—tn—l;a/Z < ii;% <

tn—l;a/2

to obtain the confidence interval estimator

Tl (Kn ) T2 (Kn)

>, - .
Y

- sx s SX

(X — tn—l;a/2ﬁ’)_< + tn—l;a/2 \/ﬁ)

6. The confidence interval is:

- Sy _ Sx
Cli_a(ux) = (x - tn—l;oz/2ﬁax + tn—l;oz/2%)




Example: finding a confidence interval for px

Example: 8.4 (Newbold) A random sample of six cars from a particular model
year had the following fuel consumption figures, in mpg: 18.6, 18.4, 19.2, 20.8,
19.4, 20.5. Find a 90% confidence interval for the population mean fuel
consumption, assuming that the population distribution is normal.

Population:
X = "mpg of a car from the model

o% unknown

year" X ~ N(ux,ox)

SRS: n =6 | small
Sample: x = 22 =10.4833
. 2
55 _ 2282.41 — 6(19.4833) 096
6—1
t5;0_05:2.015

)

Objective: Clo.o(ux) = ()'( F t,,_l;a/2%

v0.96 = 0.98

Sx =
n==6 x = 10.48
l1-a=09 = a/2=0.05
th—1,a/2 = 5005 = 2.015
0.98
Cho(ux) = (19.48 T 2.105W)
= (19.48 1 0.81)
= (18.67,20.29)

Interpretation: We can be 90%
confident that the population mean
fuel consumption for these cars, ux,
is between 18.67 and 20.29

Example: finding a confidence

Example: 8.4 (cont.) in Excel: Go to
Analysis, choose function: Descriptive

interval for pix

menu: Data, submenu: Data
Statistics.

Column A (data), in yellow (sample mean, half-width tnfl;a/zﬁ, lower
end-point (cell D3-D16), upper end-point (cell D3+D16)).

Excel

/-\fueb(ls - Microsoft
i

ot | Filt Textto Remove
Columns Duplicates 5 W
Sort&FlItev/-\

Isample mean \ - —

F | G H |

Descriptive Statistics

Input
Input Range:

Grouped By:

[7] Labels in first row

Output options
@ OQutput Range:
") New Worksheet Ply:

1]

New Workbook
[¥] summary statistics
[¥] Confidence Level for Mean:
[T] kth Largest: 1
[7] kth Smallest: L

90 %

¥ Advanced
L] .6, Column1
2} 4
3 192} Mean 19.48333
4, ZO.BE Standard Error 0.400347
51 194 Median 19.3
6, ___205 Mode #N/A
7 Standard Deviation 0.980646
8 Sample Variance 0.961667
9 Kurtosis -1.65819
10 Skewness 0.429279
gl Range
12 data Minimum 4
13 Maximum half-width
14 Sum
15 Count 6
16 Confidence Level(90.0%) 0.806719
1
18 Lower 18.67661
19 Upper 20.29005

| Sheetl Sheet2 Sheet3 ~¥J

[ m
[ETE T e ——




t and x? distributions

» Recall that T ~ t, if T = \/% where Z ~ N(0,1) and x> follows a

chi-square distribution with df = n, independent of Z.

» On the other hand, x?2 is the distribution of the sum of n independent
squared N(0,1) random variables.

» Note that the rescaled sample quasi variance follows a chi-square
distribution with n — 1 degrees of freedom

CERE D MC S VEE *)2 ~

2 Ox

2
Ix Ix i=1

Why n — 1 and not n?

If we knew px, the number of Since we have to estimate pux with
degrees of freedom would be n, X, the df are n — 1, because we only
because we would have n iid random have n — 1 iid random variables X"U;X
variables XI;% (once you know n — 1 of them, yo)lj

can figure out the remaining one)

We say that one degree of freedom is used up to estimate ux

t and y? distributions

0.4

0.3

0.2

0.1

0.0

t and N(0,1) densities x° densities




Confidence interval for the population variance, normal
population

1. Let X, be a SRS of size n from X. Under the assumptions:

» X follows a normal distribution with parameter o

2. The pivotal quantity for 0% is

Confidence interval for the population variance, normal
population

3. Hence, if X%—l;l—a/2 and X%}—l;l—a/Q
are the (1 — «/2) and («/2) upper
quantiles of the chi-square distribution
with n — 1 degrees of freedom, we have

P(Xi—l;l—a/2 <xo1 < Xi—l;oz/2) =1-a

Chi-square density $

Recall: E[x3] = n, V[x3] = 2n

2
Xn—1
2
-1
4. Therefore P(X%_m_a/z < % < Xi—l;a/Z) =l-a
X




Confidence interval for the population variance, normal
population

5. Solve the double inequality for o%:

2 —1)s; 2

Xn—l;l—a/Z < (n o—i)sx < Xn—l;a/2
1 S o2 S 1

2 1 2
Xn—l;l—a/2 (n )SX Xn—l;a/2

n—1)s2 n—1)s2
N I 1
Xn-1;1-a/2 Xn-1;a/2

to obtain the confidence interval estimator

((n2 sk (n=1)s5 )

Xn-1;a/2 Xn-11-a/2

6. The confidence interval is:

(n—1)s2 (n—1)s? )

2 1 2
Xn—tia/2 Xn-1.1-a/2

Cha(ok) = (

Example: finding a confidence interval for 0% and ox

Example: 8.8 (Newbold) A random sample of fifteen pills for headache relief
showed a quasi standard deviation of 0.8% in the concentration of the active
ingredient. Find a 90% confidence interval for the population variance for these
pills. How would you obtain a Cl for the population standard deviation?

Population: Objective: Cly g(oy) = <X(2”—1)5>2< ’ X2(H—1)5>2< )
X = "concentration of an active n—lLi/2 “n—1l-—a/2
ingredient in a pill (in %)" , ,
X ~ N(px,o%) sy =0.8" =0.64 n=15
l-a=09 = «/2=0.05
SRS: n =15 X%—l;l—a/2 = X§4;o.95 = 6.57
2 2
- = : = 23.68
Sample: s, = 0.8 Xn—1ia/2 X14y0~(05 | ( )
14(0.64) 14(0.64
Clho(ox) =
0-0(o%) ( 23.68 ' 6.57 )
= (0.378,1.364) =
Cho(ox) = (0.378,V1.364)
o o = (0.61,1.17)

2 2
X14;095 X14;0.05

—6.57 =23.68 To obtain Cl(ox) we apply / to the

end-points of Cl(o%)




Confidence intervals formulae

Summary for one population

> Let X, be a simple random sample from a population X with mean px
and variance o%

Parameter Assumptions Pivotal quantity (1 — a) Conf. Interval
X—pn o o
Normal data X N(O. 1 (— _ 99X % 7X>
~ ) I € (X Z X+ z
Known variance ox/vn ©5 X /2°/n «/2/n
Mean Nonnormal data X—vx N(0, 1) uxy € (x — %4z Gx
Large sample UX/\/ approx. X fa/2 \/ a/2 vn
Bernoulli data Px —px -~ A Px(1—px)
Large sample /7,3)((1_’3)()/" approx. N(0,1) pPx € (Px + Za/2\/ n
X—p
Normal data X ~ % — Sx g Sx_
Unknown variance sx/v/n fn—1 Hx € (X fn—1,a/2 Vn’ XTin—1,a/2 \/E)
2 2
) (n—1)sy 2 2 (n l)s (n—1)s
Variance Normal data 0_2 ~ Xp—1 Ix € X2 =
X Xp—1; a/2 n—11l—a/2
2
(n—1)s5 2 (n—1)s2 (n 1)s
Standard dev. | Normal data X~ X, ox € R
X Xn—l;a/2 Xp— lil—a/2

Confidence intervals for the population mean:

when to use what?

X ~ distribution with mean ux and standard deviation o

/

X ~ normal
]/known o
z-based (exact) t-

N\,

O'

unknown

ased (exact)

N\

X ~ normal

v

n sma

|

Est I

Methods beyond

N\,

n large

l

z-based
(approx. CLT)




