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Chapter 1

Completely Randomized Design

1.1 Introduction

Suppose we have an experiment which compares k treatments or k levels of a single factor. Suppose we have n
experimental units to be included in the experiment. We can assign the first treatment to n1 units randomly
selected from among the n, assign the second treatment to n2 units randomly selected from the remaining
n−n1 units, and so on until the kth treatment is assigned to the final nk units. Such an experimental design
is called a completely randomized design (CRD).

We shall describe the observations using the linear statistical model

yij = µ + τi + εij , i = 1, · · · , k, j = 1, · · · , ni , (1.1)

where

• yij is the jth observation on treatment i,

• µ is a parameter common to all treatments (overall mean),

• τi is a parameter unique to the ith treatment (ith treatment effect), and

• εij is a random error component.

In this model the random errors are assumed to be normally and independently distributed with mean zero
and variance σ2, which is assumed constant for all treatments. The model is called the one-way classification
analysis of variance (one-way ANOVA).

The typical data layout for a one-way ANOVA is shown below:

Treatment
1 2 · · · k
y11 y21 yk1

y11 y21 yk1

...
...

...
y1n1 y2n2 yknk

The model in Equation (1.1) describes two different situations :

1. Fixed Effects Model : The k treatments could have been specifically chosen by the experimenter. The
goal here is to test hypotheses about the treatment means and estimate the model parameters (µ, τi,
and σ2). Conclusions reached here only apply to the treatments considered and cannot be extended
to other treatments that were not in the study.

1



2 CHAPTER 1. COMPLETELY RANDOMIZED DESIGN

2. Random Effects Model : The k treatments could be a random sample from a larger population of
treatments. Conclusions here extend to all the treatments in the population. The τi are random
variables; thus, we are not interested in the particular ones in the model. We test hypotheses about
the variability of τi.

Here are a few examples taken from Peterson : Design and Analysis of Experiments:

1. Fixed : A scientist develops three new fungicides. His interest is in these fungicides only.

Random : A scientist is interested in the way a fungicide works. He selects, at random, three fungicides
from a group of similar fungicides to study the action.

2. Fixed : Measure the rate of production of five particular machines.

Random : Choose five machines to represent machines as a class.

3. Fixed : Conduct an experiment to obtain information about four specific soil types.

Random : Select, at random, four soil types to represent all soil types.

1.2 The Fixed Effects Model

In this section we consider the ANOVA for the fixed effects model. The treatment effects, τi, are expressed
as deviations from the overall mean, so that

k∑

i=1

τi = 0 .

Denote by µi the mean of the ith treatment; µi = E(yij) = µ + τi, i = 1, · · · , k. We are interested in
testing the equality of the k treatment means;

H0 : µ1 = µ2 = · · · = µk

HA : µi 6= µj for at least one i, j

An equivalent set of hypotheses is

H0 : τ1 = τ2 = · · · = τk = 0
HA : τi 6= 0 for at least one i

1.2.1 Decomposition of the Total Sum of Squares

In the following let n =
∑k

i=1 ni. Further, let

ȳi. =
1
ni

ni∑

j=1

yij , ȳ.. =
1
n

k∑

i=1

ni∑

j=1

yij

The total sum of squares (corrected) given by

SST =
k∑

i=1

ni∑

j=1

(yij − ȳ..)2 ,

measures the total variability in the data.
The total sum of squares, SST , may be decomposed as
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k∑

i=1

ni∑

j=1

(yij − ȳ..)2 =
k∑

i=1

ni(ȳi. − ȳ..)2 +
k∑

i=1

ni∑

j=1

(yij − ȳi.)2

The proof is left as an exercise.
We will write

SST = SSB + SSW ,

where SSB =
∑k

i=1 ni(ȳi.−ȳ..)2 is called the between treatments sum of squares and SSW =
∑k

i=1

∑ni

j=1(yij−
ȳi.)2 is called the within treatments sum of squares.

One can easily show that the estimate of the common variance σ2 is SSW /(n− k).
Mean squares are obtained by dividing the sum of squares by their respective degrees of freedoms as

MSB = SSB/(k − 1), MSW = SSW /(n− k) .

1.2.2 Statistical Analysis

Testing

Since we assumed that the random errors are independent, normal random variables, it follows by Cochran’s
Theorem that if the null hypothesis is true, then

F0 =
MSB

MSW

follows an F distribution with k− 1 and n− k degrees of freedom. Thus an α level test of H0 rejects H0

if

F0 > Fk−1,n−k(α) .

The following ANOVA table summarizes the test procedure:

Source df SS MS F0

Between k − 1 SSB MSB F0 = MSB/MSW

Within (Error) n− k SSW MSW

Total n− 1 SST

Estimation

Once again consider the one-way classification model given by Equation (1.1). We now wish to estimate the
model parameters (µ, τi, σ

2). The most popular method of estimation is the method of least squares (LS)
which determines the estimators of µ and τi by minimizing the sum of squares of the errors

L =
k∑

i=1

ni∑

j=1

ε2ij =
k∑

i=1

ni∑

j=1

(yij − µ− τi)2 .

Minimization of L via partial differentiation provides the estimates µ̂ = ȳ.. and τ̂i = ȳi. − ȳ.., for
i = 1, · · · , k.

By rewriting the observations as

yij = ȳ.. + (ȳi. − ȳ..) + (yij − ȳi.)

one can easily observe that it is quite reasonable to estimate the random error terms by

eij = yij − ȳi. .

These are the model residuals.
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Alternatively, the estimator of yij based on the model (1.1) is

ŷij = µ̂ + τ̂i ,

which simplifies to ŷij = ȳi.. Thus, the residuals are yij − ŷij = yij − ȳi..
An estimator of the ith treatment mean, µi, would be µ̂i = µ̂ + τ̂i = ȳi..
Using MSW as an estimator of σ2, we may provide a 100(1− α)% confidence interval for the treatment

mean, µi,

ȳi. ± tn−k(α/2)
√

MSW /ni .

A 100(1− α)% confidence interval for the difference of any two treatment means, µi − µj , would be

ȳi. − ȳj. ± tn−k(α/2)
√

MSW (1/ni + 1/nj)

We now consider an example from Montgomery : Design and Analysis of Experiments.

Example

The tensile strength of a synthetic fiber used to make cloth for men’s shirts is of interest to a manufacturer.
It is suspected that the strength is affected by the percentage of cotton in the fiber. Five levels of cotton
percentage are considered: 15%, 20%, 25%, 30% and 35%. For each percentage of cotton in the fiber,
strength measurements (time to break when subject to a stress) are made on five pieces of fiber.

15 20 25 30 35
7 12 14 19 7
7 17 18 25 10

15 12 18 22 11
11 18 19 19 15
9 18 19 23 11

The corresponding ANOVA table is

Source df SS MS F0

Between 4 475.76 118.94 F0 = 14.76
Within (Error) 20 161.20 8.06
Total 24 636.96

Performing the test at α = .01 one can easily conclude that the percentage of cotton has a significant
effect on fiber strength since F0 = 14.76 is greater than the tabulated F4,20(.01) = 4.43.

The estimate of the overall mean is µ̂ = ȳ.. = 15.04. Point estimates of the treatment effects are

τ̂1 = ȳ1. − ȳ.. = 9.80− 15.04 = −5.24
τ̂2 = ȳ2. − ȳ.. = 15.40− 15.04 = 0.36
τ̂3 = ȳ3. − ȳ.. = 17.60− 15.04 = −2.56
τ̂4 = ȳ4. − ȳ.. = 21.60− 15.04 = 6.56
τ̂5 = ȳ5. − ȳ.. = 10.80− 15.04 = −4.24

A 95% percent CI on the mean treatment 4 is

21.60± (2.086)
√

8.06/5 ,

which gives the interval 18.95 ≤ µ4 ≤ 24.25.
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1.2.3 Comparison of Individual Treatment Means

Suppose we are interested in a certain linear combination of the treatment means, say,

L =
k∑

i=1

liµi ,

where li, i = 1, · · · , k, are known real numbers not all zero.
The natural estimate of L is

L̂ =
k∑

i=1

liµ̂i =
k∑

i=1

liȳi. .

Under the one-way classification model (1.1), we have :

1. L̂ follows a N(L, σ2
∑k

i=1 l2i /ni),

2. L̂−L√
MSW (

Pk
i=1 l2i /ni)

follows a tn−k distribution,

3. L̂± tn−k(α/2)
√

MSW (
∑k

i=1 l2i /ni),

4. An α-level test of

H0 : L = 0
HA : L 6= 0

is ∣∣∣∣∣
L̂√

MSW (
∑k

i=1 l2i /ni)

∣∣∣∣∣ > tn−k(α/2) .

A linear combination of all the treatment means

φ =
k∑

i=1

ciµi

is known as a contrast of µ1, · · · , µk if
∑k

i=1 ci = 0. Its sample estimate is

φ̂ =
k∑

i=1

ciȳi. .

Examples of contrasts are µ1 − µ2 and µ1 − µ.
Consider r contrasts of µ1, · · · , µk, called planned comparisons, such as,

φi =
k∑

s=1

cisµs with
k∑

s=1

cis = 0 for i = 1, · · · , r ,

and the experiment consists of
H0 : φ1 = 0 · · · H0 : φr = 0

HA : φ1 6= 0 · · · HA : φr 6= 0
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Example

The most common example is the set of all
(
k
2

)
pairwise tests

H0 : µi = µj

HA : µi 6= µj

for 1 ≤ i < j ≤ k of all µ1, · · · , µk. The experiment consists of all
(
k
2

)
pairwise tests. An experimentwise

error occurs if at least one of the null hypotheses is declared significant when H0 : µ1 = · · · = µk is known
to be true.

The Least Significant Difference (LSD) Method

Suppose that following an ANOVA F test where the null hypothesis is rejected, we wish to test H0 : µi = µj ,
for all i 6= j. This could be done using the t statistic

t0 =
ȳi. − ȳj.√

MSW (1/ni + 1/nj)

and comparing it to tn−k(α/2). An equivalent test declares µi and µj to be significantly different if |ȳi.−ȳj.| >
LSD, where

LSD = tn−k(α/2)
√

MSW (1/ni + 1/nj) .

The following gives a summary of the steps.

Stage 1 : Test H0 : µ1 = · · · = µk with F0 = MSB/MSW .

• if F0 < Fk−1,n−k(α), then declare H0 : µ1 = · · · = µk true and stop.

• if F0 > Fk−1,n−k(α), then go to Stage 2.

Stage 2 : Test

H0 : µi = µj

HA : µi 6= µj

for all
(
k
2

)
pairs with

|tij | = |ȳi. − ȳj.|√
MSW (1/ni + 1/nj)

• if |tij | < tn−k(α/2), then accept H0 : µi = µj .

• if |tij | > tn−k(α/2), then reject H0 : µi = µj .

Example

Consider the fabric strength example we considered above. The ANOVA F -test rejected H0 : µ1 = · · · = µ5.
The LSD at α = .05 is

LSD = t20(.025)
√

MSW (1/5 + 1/5) = 2.086

√
2(8.06)

5
= 3.75 .

Thus any pair of treatment averages that differ by more than 3.75 would imply that the corresponding pair of
population means are significantly different. The

(
5
2

)
= 10 pairwise differences among the treatment means

are
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ȳ1. − ȳ2. = 9.8− 15.4 = −5.6∗

ȳ1. − ȳ3. = 9.8− 17.6 = −7.8∗

ȳ1. − ȳ4. = 9.8− 21.6 = −11.8∗

ȳ1. − ȳ5. = 9.8− 10.8 = −1.0
ȳ2. − ȳ3. = 15.4− 17.6 = −2.2
ȳ2. − ȳ4. = 15.4− 21.6 = −6.2∗

ȳ2. − ȳ5. = 15.4− 10.8 = 4.6∗

ȳ3. − ȳ4. = 17.6− 21.6 = −4.0∗

ȳ3. − ȳ5. = 17.6− 10.8 = 6.8∗

ȳ4. − ȳ5. = 21.6− 10.8 = 10.8∗

Using underlining the result may be summarized as

ȳ1. ȳ5. ȳ2. ȳ3. ȳ4.

9.8 10.8 15.4 17.6 21.6

As k gets large the experimentwise error becomes large. Sometimes we also find that the LSD fails to
find any significant pairwise differences while the F -test declares significance. This is due to the fact that
the ANOVA F -test considers all possible comparisons, not just pairwise comparisons.

Scheffé’s Method for Comparing all Contrasts

Often we are interested in comparing different combinations of the treatment means. Scheffé (1953) has
proposed a method for comparing all possible contrasts between treatment means. The Scheffé method
controls the experimentwise error rate at level α.

Consider the r contrasts

φi =
k∑

s=1

cisµs with
k∑

s=1

cis = 0 for i = 1, · · · , r ,

and the experiment consists of
H0 : φ1 = 0 · · · H0 : φr = 0

HA : φ1 6= 0 · · · HA : φr 6= 0

The Scheffé method declares φi to be significant if

|φ̂i| > Sα,i ,

where

φ̂i =
k∑

s=1

cisȳs.

and

Sα,i =
√

(k − 1)Fk−1,n−k(α)

√√√√MSW

k∑
s=1

(c2
is/ni) .

Example

As an example, consider the fabric strength data and suppose that we are interested in the contrasts

φ1 = µ1 + µ3 − µ4 − µ5

and
φ2 = µ1 − µ4 .
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The sample estimates of these contrasts are

φ̂1 = ȳ1. + ȳ3. − ȳ4. − ȳ5. = 5.00

and
φ̂2 = ȳ1. − ȳ4. = −11.80 .

We compute the Scheffé 1% critical values as

S.01,1 =
√

(k − 1)Fk−1,n−k(.01)

√√√√MSW

k∑
s=1

(c2
1s/n1)

=
√

4(4.43)
√

8.06(1 + 1 + 1 + 1)/5
= 10.69

and

S.01,2 =
√

(k − 1)Fk−1,n−k(.01)

√√√√MSW

k∑
s=1

(c2
2s/n2)

=
√

4(4.43)
√

8.06(1 + 1)/5
= 7.58

Since |φ̂1| < S.01,1, we conclude that the contrast φ1 = µ1 + µ3 − µ4 − µ5 is not significantly different
from zero. However, since |φ̂2| > S.01,2, we conclude that φ2 = µ1 − µ2 is significantly different from zero;
that is, the mean strengths of treatments 1 and 4 differ significantly.

The Tukey-Kramer Method

The Tukey-Kramer procedure declares two means, µi and µj , to be significantly different if the absolute
value of their sample differences exceeds

Tα = qk,n−k(α)

√
MSW

2

( 1
ni

+
1
nj

)
,

where qk,n−k(α) is the α percentile value of the studentized range distribution with k groups and n − k
degrees of freedom.

Example

Reconsider the fabric strength example. From the studentized range distribution table, we find that
q4,20(.05) = 4.23. Thus, a pair of means, µi and µj , would be declared significantly different if |ȳi. − ȳj.|
exceeds

T.05 = 4.23

√
8.06
2

(1
5

+
1
5

)
= 5.37 .

Using this value, we find that the following pairs of means do not significantly differ:

µ1 and µ5

µ5 and µ2

µ2 and µ3

µ3 and µ4

Notice that this result differs from the one reported by the LSD method.
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The Bonferroni Procedure

We start with the Bonferroni Inequality. Let A1, A2, · · · , Ak be k arbitrary events with P (Ai) ≥ 1 − α/k.
Then P (A1 ∩A2 ∩ · · · ∩Ak) ≥ 1− α.

The proof of this result is left as an exercise.
We may use this inequality to make simultaneous inference about linear combinations of treatment means

in a one-way fixed effects ANOVA set up.
Let L1, L2, · · · , Lr be r linear combinations of µ1, · · · , µk where Li =

∑k
j=1 lijµj and L̂i =

∑k
j=1 lij ȳj.

for i = 1, · · · , r.
A (1− α)100% simultaneous confidence interval for L1, · · · , Lr is

L̂i ± tn−k

( α

2r

)
√√√√MSW

k∑

j=1

l2ij/nj .

for i = 1, · · · , r.
A Bonferroni α-level test of

H0 : µ1 = µ2 = · · · = µk

is performed by testing
H0 : µi = µj vs. HA : µi 6= µj

with

tij
|ȳi. − ȳj.|√

MSW (1/ni + 1/nj)
> tn−k

(
α

2
(
k
2

)
)

,

for 1 ≤ i < j ≤ k.
There is no need to perform an overall F -test.

Example

Consider the tensile strength example considered above. We wish to test

H0 : µ1 = · · · = µ5

at .05 level of significance. This is done using

t20(.05/(2 ∗ 10)) = t20(.0025) = 3.153 .

So the test rejects H0 : µi = µj in favor of HA : µi 6= µj if |ȳi. − ȳj.| exceeds

3.153
√

MSW (2/5) = 5.66 .

Exercise : Use underlining to summarize the results of the Bonferroni testing procedure.

Dunnett’s Method for Comparing Treatments to a Control

Assume µ1 is a control mean and µ2, · · · , µk are k − 1 treatment means. Our purpose here is to find a set
of (1− α)100% simultaneous confidence intervals for the k − 1 pairwise differences comparing treatment to
control, µi − µ1, for i = 2, · · · , k.

Dunnett’s method rejects the null hypothesis H0 : µi = µ1 at level α if

|ȳi. − ȳ1.| > dk−1,n−k(α)
√

MSW (1/ni + 1/n1) ,

for i = 2, · · · , k.
The value dk−1,n−k(α) is read from a table.
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Example

Consider the tensile strength example above and let treatment 5 be the control. The Dunnett critical value
is d4,20(.05) = 2.65. Thus the critical difference is

d4,20(.05)
√

MSW (2/5) = 4.76

So the test rejects H0 : µi = µ5 if
|ȳi. − ȳ5.| > 4.76 .

Only the differences ȳ3. − ȳ5. = 6.8 and ȳ4. − ȳ5. = 10.8 indicate any significant difference. Thus we
conclude µ3 6= µ5 and µ4 6= µ5.

1.3 The Random Effects Model

The treatments in an experiment may be a random sample from a larger population of treatments. Our
purpose is to estimate (and test, if any) the variability among the treatments in the population. Such a
model is known as a random effects model. The mathematical representation of the model is the same as
the fixed effects model:

yij = µ + τi + εij , i = 1, · · · , k, j = 1, · · · , ni ,

except for the assumptions underlying the model.

Assumptions

1. The treatment effects, τi, are a random sample from a population that is normally distributed with
mean 0 and variance σ2

τ , i.e. τi ∼ N(0, σ2
τ ).

2. The εij are random errors which follow the normal distribution with mean 0 and common variance σ2.

If the τi are independent of εij , the variance of an observation will be

Var(yij) = σ2 + σ2
τ .

The two variances, σ2 and σ2
τ are known as variance components.

The usual partition of the total sum of squares still holds:

SST = SSB + SSW .

Since we are interested in the bigger population of treatments, the hypothesis of interest is

H0 : σ2
τ = 0

versus
HA : σ2

τ > 0 .

If the hypothesis H0 : σ2
τ = 0 is rejected in favor of HA : σ2

τ > 0, then we claim that there is a significant
difference among all the treatments.

Testing is performed using the same F statistic that we used for the fixed effects model:

F0 =
MSB

MSW

An α-level test rejects H0 if F0 > Fk−1,n−k(α).

The estimators of the variance components are

σ̂2 = MSW



1.3. THE RANDOM EFFECTS MODEL 11

and
σ̂2

τ =
MSB −MSW

n0
,

where

n0 =
1

k − 1

[
k∑

i=1

ni −
∑k

i=1 n2
i∑k

i=1 ni

]
.

We are usually interested in the proportion of the variance of an observation, Var(yij), that is the result
of the differences among the treatments:

σ2
τ

σ2 + σ2
τ

.

A 100(1− α)% confidence interval for σ2
τ/(σ2 + σ2

τ ) is
(

L

1 + L
,

U

1 + U

)
,

where

L =
1
n0

(
MSB

MSW

1
Fk−1,n−k(α/2)

− 1

)
,

and

U =
1
n0

(
MSB

MSW

1
Fk−1,n−k(1− α/2)

− 1

)
.

The following example is taken from from Montgomery : Design and Analysis of Experiments.

Example

A textile company weaves a fabric on a large number of looms. They would like the looms to be homogeneous
so that they obtain a fabric of uniform strength. The process engineer suspects that, in addition to the usual
variation in strength within samples of fabric from the same loom, there may also be significant variations
in strength between looms. To investigate this, he selects four looms at random and makes four strength
determinations on the fabric manufactured on each loom. The data are given in the following table:

Observations
Looms 1 2 3 4

1 98 97 99 96
2 91 90 93 92
3 96 95 97 95
4 95 96 99 98

The corresponding ANOVA table is

Source df SS MS F0

Between (Looms) 3 89.19 29.73 15.68
Within (Error) 12 22.75 1.90
Total 15 111.94

Since F0 > F3,12(.05), we conclude that the looms in the plant differ significantly.
The variance components are estimated by

σ̂2 = 1.90

and
σ̂2

τ =
29.73− 1.90

4
= 6.96 .
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Thus, the variance of any observation on strength is estimated by σ̂2 + σ̂2
τ = 8.86. Most of this variability

(about 6.96/8.86 = 79%) is attributable to the difference among looms. The engineer must now try to isolate
the causes for the difference in loom performance (faulty set-up, poorly trained operators, . . . ).

Lets now find a 95% confidence interval for σ2
τ/(σ2 + σ2

τ ). From properties of the F distribution we
have that Fa,b(α) = 1/Fb,a(1 − α). From the F table we see that F3,12(.025) = 4.47 and F3,12(.975) =
1/F12,3(.025) = 1/5.22 = 0.192. Thus

L =
1
4

[(
29.73
1.90

)(
1

4.47

)
− 1

]
= 0.625

and

U =
1
4

[(
29.73
1.90

)(
1

0.192

)
− 1

]
= 20.124

which gives the 95% confidence interval

(0.625/1.625 = 0.39 , 20.124/21.124 = 0.95) .

We conclude that the variability among looms accounts for between 39 and 95 percent of the variance in the
observed strength of fabric produced.

Using SAS

The following SAS code may be used to analyze the tensile strength example considered in the fixed effects
CRD case.

OPTIONS LS=80 PS=66 NODATE;

DATA MONT;

INPUT TS GROUP@@;

CARDS;

7 1 7 1 15 1 11 1 9 1

12 2 17 2 12 2 18 2 18 2

14 3 18 3 18 3 19 3 19 3

19 4 25 4 22 4 19 4 23 4

7 5 10 5 11 5 15 5 11 5

;

/* print the data */

PROC PRINT DATA=MONT;

RUN;

QUIT;

PROC GLM;

CLASS GROUP;

MODEL TS=GROUP;

MEANS GROUP/ CLDIFF BON TUKEY SCHEFFE LSD DUNNETT(’5’);

CONTRAST ’PHI1’ GROUP 1 0 1 -1 -1;

ESTIMATE ’PHI1’ GROUP 1 0 1 -1 -1;

CONTRAST ’PHI2’ GROUP 1 0 0 -1 0;

ESTIMATE ’PHI2’ GROUP 1 0 0 -1 0;

RUN;

QUIT;

A random effects model may be analyzed using the RANDOM statement to specify the random factor:
PROC GLM DATA=A1;

CLASS OFFICER;
MODEL RATING=OFFICER;
RANDOM OFFICER;

RUN;
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SAS Output

The SAS System 1

Obs TS GROUP

1 7 1

2 7 1

3 15 1

4 11 1

5 9 1

6 12 2

7 17 2

8 12 2

9 18 2

10 18 2

11 14 3

12 18 3

13 18 3

14 19 3

15 19 3

16 19 4

17 25 4

18 22 4

19 19 4

20 23 4

21 7 5

22 10 5

23 11 5

24 15 5

25 11 5

The SAS System 2

The GLM Procedure

Class Level Information

Class Levels Values

GROUP 5 1 2 3 4 5

Number of observations 25

The SAS System 3

The GLM Procedure

Dependent Variable: TS

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 475.7600000 118.9400000 14.76 <.0001

Error 20 161.2000000 8.0600000
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Corrected Total 24 636.9600000

R-Square Coeff Var Root MSE TS Mean

0.746923 18.87642 2.839014 15.04000

Source DF Type I SS Mean Square F Value Pr > F

GROUP 4 475.7600000 118.9400000 14.76 <.0001

Source DF Type III SS Mean Square F Value Pr > F

GROUP 4 475.7600000 118.9400000 14.76 <.0001

The SAS System 4

The GLM Procedure

t Tests (LSD) for TS

NOTE: This test controls the Type I comparisonwise error rate, not the

experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of t 2.08596

Least Significant Difference 3.7455

Comparisons significant at the 0.05 level are indicated by ***.

Difference

GROUP Between 95% Confidence

Comparison Means Limits

4 - 3 4.000 0.255 7.745 ***

4 - 2 6.200 2.455 9.945 ***

4 - 5 10.800 7.055 14.545 ***

4 - 1 11.800 8.055 15.545 ***

3 - 4 -4.000 -7.745 -0.255 ***

3 - 2 2.200 -1.545 5.945

3 - 5 6.800 3.055 10.545 ***

3 - 1 7.800 4.055 11.545 ***

2 - 4 -6.200 -9.945 -2.455 ***

2 - 3 -2.200 -5.945 1.545

2 - 5 4.600 0.855 8.345 ***

2 - 1 5.600 1.855 9.345 ***

5 - 4 -10.800 -14.545 -7.055 ***

5 - 3 -6.800 -10.545 -3.055 ***

5 - 2 -4.600 -8.345 -0.855 ***

5 - 1 1.000 -2.745 4.745
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1 - 4 -11.800 -15.545 -8.055 ***

1 - 3 -7.800 -11.545 -4.055 ***

1 - 2 -5.600 -9.345 -1.855 ***

1 - 5 -1.000 -4.745 2.745

The SAS System 5

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for TS

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of Studentized Range 4.23186

Minimum Significant Difference 5.373

Comparisons significant at the 0.05 level are indicated by ***.

Difference

GROUP Between Simultaneous 95%

Comparison Means Confidence Limits

4 - 3 4.000 -1.373 9.373

4 - 2 6.200 0.827 11.573 ***

4 - 5 10.800 5.427 16.173 ***

4 - 1 11.800 6.427 17.173 ***

3 - 4 -4.000 -9.373 1.373

3 - 2 2.200 -3.173 7.573

3 - 5 6.800 1.427 12.173 ***

3 - 1 7.800 2.427 13.173 ***

2 - 4 -6.200 -11.573 -0.827 ***

2 - 3 -2.200 -7.573 3.173

2 - 5 4.600 -0.773 9.973

2 - 1 5.600 0.227 10.973 ***

5 - 4 -10.800 -16.173 -5.427 ***

5 - 3 -6.800 -12.173 -1.427 ***

5 - 2 -4.600 -9.973 0.773

5 - 1 1.000 -4.373 6.373

1 - 4 -11.800 -17.173 -6.427 ***

1 - 3 -7.800 -13.173 -2.427 ***

1 - 2 -5.600 -10.973 -0.227 ***

1 - 5 -1.000 -6.373 4.373

The SAS System 6

The GLM Procedure

Bonferroni (Dunn) t Tests for TS

NOTE: This test controls the Type I experimentwise error rate, but

it generally
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has a higher Type II error rate than Tukey’s for all pairwise comparisons.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of t 3.15340

Minimum Significant Difference 5.6621

Comparisons significant at the 0.05 level are indicated by ***.

Difference

GROUP Between Simultaneous 95%

Comparison Means Confidence Limits

4 - 3 4.000 -1.662 9.662

4 - 2 6.200 0.538 11.862 ***

4 - 5 10.800 5.138 16.462 ***

4 - 1 11.800 6.138 17.462 ***

3 - 4 -4.000 -9.662 1.662

3 - 2 2.200 -3.462 7.862

3 - 5 6.800 1.138 12.462 ***

3 - 1 7.800 2.138 13.462 ***

2 - 4 -6.200 -11.862 -0.538 ***

2 - 3 -2.200 -7.862 3.462

2 - 5 4.600 -1.062 10.262

2 - 1 5.600 -0.062 11.262

5 - 4 -10.800 -16.462 -5.138 ***

5 - 3 -6.800 -12.462 -1.138 ***

5 - 2 -4.600 -10.262 1.062

5 - 1 1.000 -4.662 6.662

1 - 4 -11.800 -17.462 -6.138 ***

1 - 3 -7.800 -13.462 -2.138 ***

1 - 2 -5.600 -11.262 0.062

1 - 5 -1.000 -6.662 4.662

The SAS System 7

The GLM Procedure

Scheffe’s Test for TS

NOTE: This test controls the Type I experimentwise error rate, but

it generally

has a higher Type II error rate than Tukey’s for all pairwise comparisons.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of F 2.86608

Minimum Significant Difference 6.0796

Comparisons significant at the 0.05 level are indicated by ***.
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Difference

GROUP Between Simultaneous 95%

Comparison Means Confidence Limits

4 - 3 4.000 -2.080 10.080

4 - 2 6.200 0.120 12.280 ***

4 - 5 10.800 4.720 16.880 ***

4 - 1 11.800 5.720 17.880 ***

3 - 4 -4.000 -10.080 2.080

3 - 2 2.200 -3.880 8.280

3 - 5 6.800 0.720 12.880 ***

3 - 1 7.800 1.720 13.880 ***

2 - 4 -6.200 -12.280 -0.120 ***

2 - 3 -2.200 -8.280 3.880

2 - 5 4.600 -1.480 10.680

2 - 1 5.600 -0.480 11.680

5 - 4 -10.800 -16.880 -4.720 ***

5 - 3 -6.800 -12.880 -0.720 ***

5 - 2 -4.600 -10.680 1.480

5 - 1 1.000 -5.080 7.080

1 - 4 -11.800 -17.880 -5.720 ***

1 - 3 -7.800 -13.880 -1.720 ***

1 - 2 -5.600 -11.680 0.480

1 - 5 -1.000 -7.080 5.080

The SAS System 8

The GLM Procedure

Dunnett’s t Tests for TS

NOTE: This test controls the Type I experimentwise error for

comparisons of all

treatments against a control.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.06

Critical Value of Dunnett’s t 2.65112

Minimum Significant Difference 4.7602

Comparisons significant at the 0.05 level are indicated by ***.

Difference

GROUP Between Simultaneous 95%

Comparison Means Confidence Limits

4 - 5 10.800 6.040 15.560 ***

3 - 5 6.800 2.040 11.560 ***

2 - 5 4.600 -0.160 9.360

1 - 5 -1.000 -5.760 3.760
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The SAS System 9

The GLM Procedure

Dependent Variable: TS

Contrast DF Contrast SS Mean Square F Value Pr > F

PHI1 1 31.2500000 31.2500000 3.88 0.0630

PHI2 1 348.1000000 348.1000000 43.19 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

PHI1 -5.0000000 2.53929124 -1.97 0.0630

PHI2 -11.8000000 1.79555005 -6.57 <.0001

1.4 More About the One-Way Model

1.4.1 Model Adequacy Checking

Consider the one-way CRD model

yij = µ + τi + εij , i = 1, · · · , k, j = 1, · · · , ni ,

where it is assumed that εij ∼i.i.d. N(0, σ2). In the random effects model, we additionally assume that
τi ∼i.i.d. N(0, σ2

τ ) independently of εij .
Diagnostics depend on the residuals,

eij = yij − ŷij = yij − ȳi.

The Normality Assumption

The simplest check for normality involves plotting the empirical quantiles of the residuals against the expected
quantiles if the residuals were to follow a normal distribution. This is known as the normal QQ-plot. Other
formal tests for normality (Kolmogorov-Smirnov, Shapiro-Wilk, Anderson-Darling, Cramer-von Mises) may
also be performed to assess the normality of the residuals.

Example

The following SAS code and partial output checks the normality assumption for the tensile strength example
considered earlier. The results from the QQ-plot as well as the formal tests (α = .05) indicate that the
residuals are fairly normal.

SAS Code

OPTIONS LS=80 PS=66 NODATE; DATA MONT; INPUT TS GROUP@@; CARDS; 7

1 7 1 15 1 11 1 9 1 12 2 17 2 12 2 18 2 18 2 14 3 18 3 18 3 19 3

19 3 19 4 25 4 22 4 19 4 23 4 7 5 10 5 11 5 15 5 11 5 ;

TITLE1 ’STRENGTH VS. PERCENTAGE’; SYMBOL1 V=CIRCLE I=NONE;

PROC GPLOT DATA=MONT; PLOT TS*GROUP/FRAME; RUN; QUIT;
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PROC GLM;

CLASS GROUP;

MODEL TS=GROUP;

OUTPUT OUT=DIAG R=RES P=PRED;

RUN;

QUIT;

PROC SORT DATA=DIAG;

BY PRED;

RUN;

QUIT;

TITLE1 ’RESIDUAL PLOT’;

SYMBOL1 V=CIRCLE I=SM50;

PROC GPLOT DATA=DIAG;

PLOT RES*PRED/FRAME;

RUN;

QUIT;

PROC UNIVARIATE DATA=DIAG NORMAL;

VAR RES;

TITLE1 ’QQ-PLOT OF RESIDUALS’;

QQPLOT RES/NORMAL (L=1 MU=EST SIGMA=EST);

RUN;

QUIT;

Partial Output

The UNIVARIATE Procedure

Variable: RES

Moments

N 25 Sum Weights 25

Mean 0 Sum Observations 0

Std Deviation 2.59165327 Variance 6.71666667

Skewness 0.11239681 Kurtosis -0.8683604

Uncorrected SS 161.2 Corrected SS 161.2

Coeff Variation . Std Error Mean 0.51833065

Basic Statistical Measures

Location Variability

Mean 0.00000 Std Deviation 2.59165

Median 0.40000 Variance 6.71667

Mode -3.40000 Range 9.00000

Interquartile Range 4.00000

NOTE: The mode displayed is the smallest of 7 modes with a count of 2.
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Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 0 Pr > |t| 1.0000

Sign M 2.5 Pr >= |M| 0.4244

Signed Rank S 0.5 Pr >= |S| 0.9896

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.943868 Pr < W 0.1818

Kolmogorov-Smirnov D 0.162123 Pr > D 0.0885

Cramer-von Mises W-Sq 0.080455 Pr > W-Sq 0.2026

Anderson-Darling A-Sq 0.518572 Pr > A-Sq 0.1775
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Constant Variance Assumption

Once again there are graphical and formal tests for checking the constant variance assumption. The graphical
tool we shall utilize in this class is the plot of residuals versus predicted values. The hypothesis of interest is

H0 : σ2
1 = σ2

2 = · · · = σ2
k

versus
HA : σ2

i 6= σ2
j for at least one pair i 6= j .

One procedure for testing the above hypothesis is Bartlett’s test. The test statistic is

B0 = 2.3026
q

c

where

q = (n− k) log10 MSW −
k∑

i=1

(ni − 1) log10 S2
i
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c = 1 +
1

3(k − 1)

(
k∑

i=1

( 1
ni − 1

)
− 1

n− k

)

We reject H0 if

B0 > χ2
k−1(α)

where χ2
k−1(α) is read from the chi-square table.

Bartlett’s test is too sensitive deviations from normality. So, it should not be used if the normality
assumption is not satisfied.

A test which is more robust to deviations from normality is Levene’s test. Levene’s test proceeds by
computing

dij = |yij −mi| ,

where mi is the median of the observations in group i, and then running the usual ANOVA F -test using the
transformed observations, dij , instead of the original observations, yij .

Example

Once again we consider the tensile strength example. The plot of residuals versus predicted values (see
above) indicates no serious departure from the constant variance assumption. The following modification to
the proc GLM code given above generates both Bartlett’s and Levene’s tests. The tests provide no evidence
that indicates the failure of the constant variance assumption.

Partial SAS Code

PROC GLM;

CLASS GROUP;

MODEL TS=GROUP;

MEANS GROUP/HOVTEST=BARTLETT HOVTEST=LEVENE;

RUN;

QUIT;

Partial SAS Output

The GLM Procedure

Levene’s Test for Homogeneity of TS Variance

ANOVA of Squared Deviations from Group Means

Sum of Mean

Source DF Squares Square F Value Pr > F

GROUP 4 91.6224 22.9056 0.45 0.7704

Error 20 1015.4 50.7720

Bartlett’s Test for Homogeneity of TS Variance

Source DF Chi-Square Pr > ChiSq

GROUP 4 0.9331 0.9198
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1.4.2 Some Remedial Measures

The Kruskal-Wallis Test

When the assumption of normality is suspect, we may wish to use nonparametric alternatives to the F -test.
The Kruskal-Wallis test is one such procedure based on the rank transformation.

To perform the Kruskal-Wallis test, we first rank all the observations, yij , in increasing order. Say the
ranks are Rij . The Kruskal-Wallis test statistic is

KW0 =
1
S2

[
k∑

i=1

R2
i.

ni
− n(n + 1)2

4

]

where Ri. is the sum of the ranks of group i, and

S2 =
1

n− 1

[
k∑

i=1

ni∑

j=1

R2
ij −

n(n + 1)2

4

]

The test rejects H0 : µ1 = · · · = µk if

KW0 > χ2
k−1(α) .

Example

For the tensile strength data the ranks, Rij , of the observations are given in the following table:

15 20 25 30 35
2.0 9.0 11.0 20.5 2.0
2.0 14.0 16.5 25.0 5.0

12.5 9.5 16.5 23.0 7.0
7.0 16.5 20.5 20.5 12.5
4.0 16.5 20.5 24.0 7.0

Ri. 27.5 66.0 85.0 113.0 33.5

We find that S2 = 53.03 and KW0 = 19.25. From the chi-square table we get χ2
4(.01) = 13.28. Thus we

reject the null hypothesis and conclude that the treatments differ.
The SAS procedure NPAR1WAY may be used to obtain the Kruskal-Wallis test.

OPTIONS LS=80 PS=66 NODATE;

DATA MONT;

INPUT TS GROUP@@;

CARDS;

7 1 7 1 15 1 11 1 9 1

12 2 17 2 12 2 18 2 18 2

14 3 18 3 18 3 19 3 19 3

19 4 25 4 22 4 19 4 23 4

7 5 10 5 11 5 15 5 11 5

;

PROC NPAR1WAY WILCOXON;

CLASS GROUP;

VAR TS;

RUN;

QUIT;
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The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable TS

Classified by Variable GROUP

Sum of Expected Std Dev Mean

GROUP N Scores Under H0 Under H0 Score

---------------------------------------------------------------------

1 5 27.50 65.0 14.634434 5.50

2 5 66.00 65.0 14.634434 13.20

3 5 85.00 65.0 14.634434 17.00

4 5 113.00 65.0 14.634434 22.60

5 5 33.50 65.0 14.634434 6.70

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square 19.0637

DF 4

Pr > Chi-Square 0.0008

Variance Stabilizing Transformations

There are several variance stabilizing transformations one might consider in the case of heterogeneity of
variance (heteroscedasticity). The common transformations are

√
y, log(y), 1/y, arcsin(

√
y), 1/

√
y .

A simple method of choosing the appropriate transformation is to plot log Si versus log ȳi. or regress
log Si versus log ȳi.. We then choose the transformation depending on the slope of the relationship. The
following table may be used as a guide:

Slope Transformation
0 No Transformation
1/2 Square root
1 Log
3/2 Reciprocal square root
2 Reciprocal

A slightly more involved technique of choosing a variance stabilizing transformation is the Box-Cox
transformation. It uses the maximum likelihood method to simultaneously estimate the transformation
parameter as well as the overall mean and the treatment effects.



Chapter 2

Randomized Blocks, Latin Squares,
and Related Designs

2.1 The Randomized Complete Block Design

2.1.1 Introduction

In a completely randomized design (CRD), treatments are assigned to the experimental units in a completely
random manner. The random error component arises because of all the variables which affect the dependent
variable except the one controlled variable, the treatment. Naturally, the experimenter wants to reduce the
errors which account for differences among observations within each treatment. One of the ways in which
this could be achieved is through blocking. This is done by identifying supplemental variables that are used
to group experimental subjects that are homogeneous with respect to that variable. This creates differences
among the blocks and makes observations within a block similar. The simplest design that would accomplish
this is known as a randomized complete block design (RCBD). Each block is divided into k subblocks of equal
size. Within each block the k treatments are assigned at random to the subblocks. The design is ”complete”
in the sense that each block contains all the k treatments.

The following layout shows a RCBD with k treatments and b blocks. There is one observation per
treatment in each block and the treatments are run in a random order within each block.

Treatment 1 Treatment 2 · · · Treatment k

Block 1 y11 y21 · · · yk1

Block 2 y12 y22 · · · yk2

Block 3 y13 y23 · · · yk3

...
...

...
...

Block b y1b y2b · · · ykb

The statistical model for RCBD is

yij = µ + τi + βj + εij , i = 1, · · · , k, j = 1, · · · , b (2.1)

where

• µ is the overall mean,

• τi is the ith treatment effect,

• βj is the effect of the jth block, and

• εij is the random error term associated with the ijth observation.

25
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We make the following assumptions concerning the RCBD model:

• ∑k
i=1 τi = 0,

• ∑b
j=1 βj = 0, and

• εij ∼i.i.d N(0, σ2).

We are mainly interested in testing the hypotheses

H0 : µ1 = µ2 = · · · = µk

HA : µi 6= µj for at least one pair i 6= j

Here the ith treatment mean is defined as

µi =
1
b

b∑

j=1

(µ + τi + βj) = µ + τi

Thus the above hypotheses may be written equivalently as

H0 : τ1 = τ2 = · · · = τk = 0
HA : τi 6= 0 for at least one i

2.1.2 Decomposition of the Total Sum of Squares

Let n = kb be the total number of observations. Define

ȳi. =
1
b

b∑

j=1

yij , i = 1, · · · , k

ȳ.j =
1
k

k∑

i=1

yij , j = 1, · · · , b

ȳ.. =
1
n

k∑

i=1

b∑

j=1

yij =
1
k

k∑

i=1

ȳi. =
1
b

b∑

j=1

ȳ.j

One may show that

k∑

i=1

b∑

j=1

(yij − ȳ..)2 = b

k∑

i=1

(ȳi. − ȳ..)2 + k

b∑

j=1

(ȳ.j − ȳ..)2

+
k∑

i=1

b∑

j=1

(yij − ȳi. − ȳ.j + ȳ..)2

Thus the total sum of squares is partitioned into the sum of squares due to the treatments, the sum of
squares due to the blocking, and the sum of squares due to error.

Symbolically,
SST = SSTreatments + SSBlocks + SSE

The degrees of freedom are partitioned accordingly as

(n− 1) = (k − 1) + (b− 1) + (k − 1)(b− 1)
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2.1.3 Statistical Analysis

Testing

The test for equality of treatment means is done using the test statistic

F0 =
MSTreatments

MSE

where

MSTreatments =
SSTreatments

k − 1
and MSE =

SSE

(k − 1)(b− 1)
.

An α level test rejects H0 if
F0 > Fk−1,(k−1)(b−1)(α) .

The ANOVA table for RCBD is

Source df SS MS F -statistic

Treatments k − 1 SSTreatments MSTreatments F0 =
MSTreatments

MSE

Blocks b− 1 SSBlocks MSBlocks FB =
MSBlocks

MSE

Error (k − 1)(b− 1) SSE MSE

Total n− 1 SST

Since there is no randomization of treatments across blocks the use of FB = MSBlocks/MSE as a test
for block effects is questionable. However, a large value of FB would indicate that the blocking variable is
probably having the intended effect of reducing noise.

Estimation

Estimation of the model parameters is performed using the least squares procedure as in the case of the
completely randomized design. The estimators of µ, τi, and βj are obtained via minimization of the sum of
squares of the errors

L =
k∑

i=1

b∑

j=1

ε2ij =
k∑

i=1

b∑

j=1

(yij − µ− τi − βj)2 .

The solution is

µ̂ = ȳ..

τ̂i = ȳi. − ȳ.. i = 1, · · · , k

β̂j = ȳ.j − ȳ.. j = 1, · · · , b

From the model in (2.1), we can see that the estimated values of yij are

ŷij = µ̂ + τ̂i + β̂j

= ȳ.. + ȳi. − ȳ.. + ȳ.j − ȳ..

= ȳi. + ȳ.j − ȳ..

Example

An experiment was designed to study the performance of four different detergents for cleaning clothes. The
following ”cleanliness” readings (higher=cleaner) were obtained using a special device for three different
types of common stains. Is there a significant difference among the detergents?
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Stain 1 Stain 2 Stain 3 Total
Detergent 1 45 43 51 139
Detergent 2 47 46 52 145
Detergent 3 48 50 55 153
Detergent 4 42 37 49 128

Total 182 176 207 565

Using the formulæ for SS given above one may compute:

SST = 265
SSTreatments = 111

SSBlocks = 135
SSE = 265− 111− 135 = 19

Thus

F0 =
111/3
19/6

= 11.6

which has a p-value < .01. Thus we claim that there is a significant difference among the four detergents.
The following SAS code gives the ANOVA table:

OPTIONS LS=80 PS=66 NODATE;
DATA WASH;
INPUT STAIN SOAP Y @@;
CARDS;
1 1 45 1 2 47 1 3 48 1 4 42
2 1 43 2 2 46 2 3 50 2 4 37
3 1 51 3 2 52 3 3 55 3 4 49
;

PROC GLM;
CLASS STAIN SOAP;
MODEL Y = SOAP STAIN;

RUN;
QUIT;

The corresponding output is

The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 246.0833333 49.2166667 15.68 0.0022
Error 6 18.8333333 3.1388889
Corrected Total 11 264.9166667

R-Square Coeff Var Root MSE Y Mean

0.928908 3.762883 1.771691 47.08333

Source DF Type I SS Mean Square F Value Pr > F

SOAP 3 110.9166667 36.9722222 11.78 0.0063
STAIN 2 135.1666667 67.5833333 21.53 0.0018

Source DF Type III SS Mean Square F Value Pr > F

SOAP 3 110.9166667 36.9722222 11.78 0.0063
STAIN 2 135.1666667 67.5833333 21.53 0.0018

The SAS Type I analysis gives the correct F = 11.78 with a p-value of .0063.
An incorrect analysis of the data using a one-way ANOVA set up (ignoring the blocking factor) is
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PROC GLM;
CLASS SOAP;
MODEL Y = SOAP;

RUN;
QUIT;

The corresponding output is

The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 110.9166667 36.9722222 1.92 0.2048
Error 8 154.0000000 19.2500000
Corrected Total 11 264.9166667

Notice that H0 is not rejected indicating no significant difference among the detergents.

2.1.4 Relative Efficiency of the RCBD

The example in the previous section shows that RCBD and CRD may lead to different conclusions. A
natural question to ask is ”How much more efficient is the RCBD compared to a CRD?” One way to define
this relative efficiency is

R =
(dfb + 1)(dfr + 3)
(dfb + 3)(dfr + 1)

· σ2
r

σ2
b

where σ2
r and σ2

b are the error variances of the CRD and RCBD, respectively, and dfr and dfb are the
corresponding error degrees of freedom. R is the increase in the number of replications required if a CRD
to achieve the same precision as a RCBD.

Using the ANOVA table from RCBD, we may estimate σ2
r and σ2

b as

σ̂2
b = MSE

σ̂2
r =

(b− 1)MSBlocks + b(k − 1)MSE

kb− 1

Example

Consider the detergent example considered in the previous section. From the ANOVA table for the RCBD
we see that

MSE = 3.139, dfb = (k − 1)(b− 1) = 6, dfr = kb− k = 8

Thus

σ̂2
b = MSE = 3.139

σ̂2
r =

(b− 1)MSBlocks + b(k − 1)MSE

kb− 1
=

(2)(67.58) + (3)(3)(3.139)
12− 1

= 14.86

The relative efficiency of RCBD to CRD is estimated to be

R̂ =
(dfb + 1)(dfr + 3)
(dfb + 3)(dfr + 1)

· σ̂2
r

σ̂2
b

=
(6 + 1)(8 + 3)(14.86)
(6 + 3)(8 + 1)(3.139)

= 4.5

This means that a CRD will need about 4.5 as many replications to obtain the same precision as obtained
by blocking on stain types.
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Another natural question is ”What is the cost of blocking if the blocking variable is not really important,
i.e, if blocking was not necessary?” The answer to this question lies in the differing degrees of freedom we
use for the error variable. Notice that we are using (k−1)(b−1) degrees of freedom in the RCBD as opposed
to kb− k in the case of a CRD. Thus we lose b− 1 degrees of freedom unnecessarily. This makes the test on
the treatment means less sensitive, i.e, differences among the means will remain undetected.

2.1.5 Comparison of Treatment Means

As in the case of CRD, we are interested in multiple comparisons to find out which treatment means differ.
We may use any of the multiple comparison procedures discussed in Chapter 1. The only difference here is
that we use the number of blocks b in place of the common sample size. Thus in all the equations we replace
ni by b.

Example

Once again consider the detergent example of the previous section. Suppose we wish to make pairwise
comparisons of the treatment means via the Tukey-Kramer procedure. The Tukey-Kramer procedure declares
two treatment means, µi and µj , to be significantly different if the absolute value of their sample differences
exceeds

Tα = qk,(k−1)(b−1)(α)

√
MSE

2

(2
b

)
,

where qk,(k−1)(b−1)(α) is the α percentile value of the studentized range distribution with k groups and
(k − 1)(b− 1) degrees of freedom.

The sample treatment means are

ȳ1. = 46.33, ȳ2. = 48.33, ȳ3. = 51.00, ȳ4. = 42.67,

We also have
T.05 = q4,6(.05)

√
3.139/3 = (4.90)(1.023) = 5.0127

Thus using underlining

ȳ4. ȳ1. ȳ2. ȳ3.

42.67 46.33 48.33 51.00

2.1.6 Model Adequacy Checking

Additivity

The initial assumption we made when considering the model

yij = µ + τi + βj + εij

is that the model is additive. If the first treatment increases the expected response by 2 and the first block
increases it by 4, then, according to our model, the expected increase of the response in block 1 and treatment
1 is 6. This setup rules out the possibility of interactions between blocks and treatments. In reality, the way
the treatment affects the outcome may be different from block to block.

A quick graphical check for nonadditivity is to plot the residuals, eij = yij − ŷij , versus the fitted values,
ŷij . Any nonlinear pattern indicates nonadditivity.

A formal test is Tukey’s one degree of freedom test for nonadditivity. We start out by fitting the model

yij = µ + τi + βj + γτiβj + εij

Then testing the hypothesis
H0 : γ = 0

is equivalent to testing the presence of nonadditivity. We use the regression approach of testing by fitting
the full and reduced models. Here is the procedure:
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• Fit the model
yij = µ + τi + βj + εij

• Let eij and ŷij be the residual and the fitted value, respectively, corresponding to observation ij in
resulting from fitting the model above.

• Let zij = ŷ2
ij and fit

zij = µ + τi + βj + εij

• Let rij = zij − ẑij be the residuals from this model.

• Regress eij on rij , i.e, fit the model
eij = α + γrij + εij

Let γ̂ be the estimated slope.

• The sum of squares due to nonadditivity is

SSN = γ̂2
k∑

i=1

b∑

j=1

r2
ij

• The test statistic for nonadditivity is

F0 =
SSN/1

(SSE − SSN )/[(k − 1)(b− 1)− 1]

Example

The impurity in a chemical product is believed to be affected by pressure. We will use temperature as a
blocking variable. The data is given below.

Pressure
Temp 25 30 35 40 45
100 5 4 6 3 5
125 3 1 4 2 3
150 1 1 3 1 2

The following SAS code is used.

Options ls=80 ps=66 nodate;

title "Tukey’s 1 DF Nonadditivity Test";

Data Chemical;

Input Temp @;

Do Pres = 25,30,35,40,45;

Input Im @;

output;

end;

cards;

100 5 4 6 3 5

125 3 1 4 2 3

150 1 1 3 1 2

;

proc print;

run;

quit;

proc glm;

class Temp Pres;

model Im = Temp Pres;
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output out=out1 predicted=Pred;

run;

quit;

/* Form a new variable called Psquare. */

Data Tukey;

set out1;

Psquare = Pred*Pred;

run;

quit;

proc glm;

class Temp Pres;

model Im = Temp Pres Psquare;

run;

quit;

The following is the corresponding output.

Tukey’s 1 DF Nonadditivity Test

The GLM Procedure

Dependent Variable: Im

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 35.03185550 5.00455079 18.42 0.0005

Error 7 1.90147783 0.27163969

Corrected Total 14 36.93333333

R-Square Coeff Var Root MSE Im Mean

0.948516 17.76786 0.521191 2.933333

Source DF Type I SS Mean Square F Value Pr > F

Temp 2 23.33333333 11.66666667 42.95 0.0001
Pres 4 11.60000000 2.90000000 10.68 0.0042
Psquare 1 0.09852217 0.09852217 0.36 0.5660

Source DF Type III SS Mean Square F Value Pr > F

Temp 2 1.25864083 0.62932041 2.32 0.1690
Pres 4 1.09624963 0.27406241 1.01 0.4634
Psquare 1 0.09852217 0.09852217 0.36 0.5660

Thus F0 = 0.36 with 1 and 7 degrees of freedom. It has a p-value of 0.5660. Thus we have no evidence
to declare nonadditivity.

Normality

The diagnostic tools for the normality of the error terms are the same as those use in the case of the CRD. The
graphic tools are the QQ-plot and the histogram of the residuals. Formal tests like the Kolmogorov-Smirnov
test may also be used to assess the normality of the errors.

Example

Consider the detergent example above. The following SAS code gives the normality diagnostics.
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OPTIONS LS=80 PS=66 NODATE;

DATA WASH;

INPUT STAIN SOAP Y @@;

CARDS;

1 1 45 1 2 47 1 3 48 1 4 42

2 1 43 2 2 46 2 3 50 2 4 37

3 1 51 3 2 52 3 3 55 3 4 49

;

PROC GLM;

CLASS STAIN SOAP;

MODEL Y = SOAP STAIN;

MEANS SOAP/ TUKEY LINES;

OUTPUT OUT=DIAG R=RES P=PRED;

RUN;

QUIT;

PROC UNIVARIATE NOPRINT;

QQPLOT RES / NORMAL (L=1 MU=0 SIGMA=EST);

HIST RES / NORMAL (L=1 MU=0 SIGMA=EST);

RUN;

QUIT;

PROC GPLOT;

PLOT RES*SOAP;

PLOT RES*STAIN;

PLOT RES*PRED;

RUN;

QUIT;

The associated output is (figures given first):
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Tukey’s Studentized Range (HSD) Test for Y

NOTE: This test controls the Type I experimentwise error rate, but it generally
has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 6
Error Mean Square 3.138889
Critical Value of Studentized Range 4.89559
Minimum Significant Difference 5.0076

Means with the same letter are not significantly different.

Tukey
Groupi

ng Mean N SOAP

A 51.000 3 3
A
A 48.333 3 2
A

B A 46.333 3 1
B
B 42.667 3 4

RCBD Diagnostics

The UNIVARIATE Procedure
Fitted Distribution for RES

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 0
Std Dev Sigma 1.252775

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- -----p Value-----

Cramer-von Mises W-Sq 0.01685612 Pr > W-Sq >0.250
Anderson-Darling A-Sq 0.13386116 Pr > A-Sq >0.250

Th QQ-plot and the formal tests do not indicate the presence of nonnormality of the errors.
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Constant Variance

The tests for constant variance are the same as those used in the case of the CRD. One may use formal
tests, such as Levene’s test or perform graphical checks to see if the assumption of constant variance is
satisfied. The plots we need to examine in this case are residuals versus blocks, residuals versus treatments,
and residuals versus predicted values.

The plots below (produced by the SAS code above) suggest that there may be nonconstant variance. The
spread of the residuals seems to differ from detergent to detergent. We may need to transform the values
and rerun the analsis.
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2.1.7 Missing Values

In a randomized complete block design, each treatment appears once in every block. A missing observation
would mean a loss of the completeness of the design. One way to proceed would be to use a multiple
regression analysis. Another way would be to estimate the missing value.

If only one value is missing, say yij , then we substitute a value

y′ij =
kTi. + bT.j − T..

(k − 1)(b− 1)

where

• Ti. is the total for treatment i,

• T.j is the total for block j, and

• T.. is the grand total.

We then substitute y′ij and carry out the ANOVA as usual. There will, however, be a loss of one degree
of freedom from both the total and error sums of squares. Since the substituted value adds no practical
information to the design, it should not be used in computations of means, for instance, when performing
multiple comparisons.

When more than one value is missing, they may be estimated via an iterative process. We first guess
the values of all except one. We then estimate the one missing value using the procedure above. We then
estimate the second one using the one estimated value and the remaining guessed values. We proceed to
estimate the rest in a similar fashion. We repeat this process until convergence, i.e. difference between
consecutive estimates is small.

If several observations are missing from a single block or a single treatment group, we usually eliminate
the block or treatment in question. The analysis is then performed as if the block or treatment is nonexistent.

Example

Consider the detergent comparison example. Suppose y4,2 = 37 is missing. Note that the totals (without
37) are T4. = 91, T.2 = 139, T.. = 528. The estimate is

y′4,2 =
4(91) + 3(139)− 528

6
= 42.17
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Now we just plug in this value and perform the analysis. We then need to modify the F value by hand
using the correct degrees of freedom. The following SAS code will perform the RCBD ANOVA.

OPTIONS LS=80 PS=66 NODATE;

DATA WASH;

INPUT STAIN SOAP Y @@;

CARDS;

1 1 45 1 2 47 1 3 48 1 4 42

2 1 43 2 2 46 2 3 50 2 4 .

3 1 51 3 2 52 3 3 55 3 4 49

;

/* Replace the missing value with the estimated

value. */

DATA NEW;

SET WASH;

IF Y = . THEN Y = 42.17;

RUN;

QUIT;

PROC GLM;

CLASS STAIN SOAP;

MODEL Y = SOAP STAIN;

RUN;

QUIT;

The following is the associated SAS output.

The SAS System

The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 179.6703750 35.9340750 39.30 0.0002

Error 6 5.4861167 0.9143528

Corrected Total 11 185.1564917

R-Square Coeff Var Root MSE Y Mean

0.970370 2.012490 0.956218 47.51417

Source DF Type I SS Mean Square F Value Pr > F

SOAP 3 71.9305583 23.9768528 26.22 0.0008
STAIN 2 107.7398167 53.8699083 58.92 0.0001

Source DF Type III SS Mean Square F Value Pr > F

SOAP 3 71.9305583 23.9768528 26.22 0.0008
STAIN 2 107.7398167 53.8699083 58.92 0.0001

So, the correct F value is

F0 =
71.93/3
5.49/5

= 21.84

which exceeds the tabulated value of F3,5(.05) = 5.41.
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2.2 The Latin Square Design

The RCBD setup allows us to use only one factor as a blocking variable. However, sometimes we have two
or more factors that can be controlled.

Consider a situation where we have two blocking variables, row and column hereafter, and treatments.
One design that handles such a case is the Latin square design. To build a Latin square design for p
treatments, we need p2 observations. These observations are then placed in a p× p grid made up of, p rows
and p columns, in such a way that each treatment occurs once, and only once, in each row and column.

Say we have 4 treatments, A,B,C, and D and two factors to control. A basic 4× 4 Latin square design
is

Column
Row 1 2 3 4

1 A B C D
2 B C D A
3 C D A B
4 D A B C

The SAS procedure Proc PLAN may be used in association with Proc TABULATE to generate
designs, in particular the Latin square design. The following SAS code gives the above basic 4× 4 design.

OPTIONS LS=80 PS=66 NODATE;
TITLE ’A 4 BY 4 LATIN SQUARE DESIGN’;

PROC PLAN SEED=12345;
FACTORS ROWS=4 ORDERED COLS=4 ORDERED /NOPRINT;
TREATMENTS TMTS=4 CYCLIC;
OUTPUT OUT=LAT44

ROWS NVALS=(1 2 3 4)
COLS NVALS=(1 2 3 4)
TMTS NVALS=(1 2 3 4);

RUN;
QUIT;

PROC TABULATE;
CLASS ROWS COLS;
VAR TMTS;
TABLE ROWS, COLS*TMTS;

RUN;
QUIT;

-------------------------------------------------------

A 4 BY 4 LATIN SQUARE DESIGN

______________________________________
| | COLS |
| |___________________|
| | 1 | 2 | 3 | 4 |
| |____|____|____|____|
| |TMTS|TMTS|TMTS|TMTS|
| |____|____|____|____|
| |Sum |Sum |Sum |Sum |
|__________________|____|____|____|____|
|ROWS | | | | |
|__________________| | | | |
|1 | 1| 2| 3| 4|
|__________________|____|____|____|____|
|2 | 2| 3| 4| 1|
|__________________|____|____|____|____|
|3 | 3| 4| 1| 2|
|__________________|____|____|____|____|
|4 | 4| 1| 2| 3|
|__________________|____|____|____|____|
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The statistical model for a Latin square design is

yijk = µ + αi + τj + βk + εijk





i = 1, · · · , p

j = 1, · · · , p

k = 1, · · · , p

where

• µ is the grand mean,

• αi is the ith block 1 (row) effect,

• τj is the jth treatment effect,

• βk is the kth block 2 (column) effect, and

• εijk ∼i.i.d. N(0, σ2).

There is no interaction between rows, columns, and treatments; the model is completely additive.

2.2.1 Statistical Analysis

The total sum of squares, SST , partitions into sums of squares due to columns, rows, treatments, and error.
An intuitive way of identifying the components is (since all the cross products are zero)

yijk = ȳ...+ (ȳi.. − ȳ...)+ (ȳ.j. − ȳ...)+ (ȳ..k − ȳ...)+ (yijk − ȳi.. − ȳ.j. − ȳ..k + 2ȳ...)

= µ̂ + α̂i + τ̂j + β̂k + eijk

We have
SST = SSRow + SSTrt + SSCol + SSE

where

SST =
∑∑ ∑

(yijk − ȳ...)2

SSRow = p
∑

(ȳi.. − ȳ...)2

SSTrt = p
∑

(ȳ.j. − ȳ...)2

SSCol = p
∑

(ȳ..k − ȳ...)2

SSE =
∑∑ ∑

(yijk − ȳi.. − ȳ.j. − ȳ..k + 2ȳ...)2

Thus the ANOVA table for the Latin square design is

Source df SS MS F -statistic

Treatments p− 1 SSTrt MSTrt F0 = MST rt
MSE

Rows p− 1 SSRow MSRow

Columns p− 1 SSCol MSCol

Error (p− 2)(p− 1) SSE MSE

Total p2 − 1 SST

The test statistic for testing for no differences in the treatment means is F0. An α level test rejects null
hypothesis if F0 > Fp−1,(p−2)(p−1)(α).

Multiple comparisons are performed in a similar manner as in the case of RCBD. The only difference is
that b is replaced by p and the error degrees of freedom becomes (p− 2)(p− 1) instead of (k − 1)(b− 1).
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Example

Consider an experiment to investigate the effect of four different diets on milk production of cows. There
are four cows in the study. During each lactation period the cows receive a different diet. Assume that there
is a washout period between diets so that previous diet does not affect future results. Lactation period and
cows are used as blocking variables.

A 4× 4 Latin square design is implemented.

Cow
Period 1 2 3 4

1 A=38 B=39 C=45 D=41
2 B=32 C=37 D=38 A=30
3 C=35 D=36 A=37 B=32
4 D=33 A=30 B=35 C=33

The following gives the SAS analysis of the data.

OPTIONS LS=80 PS=66 NODATE;

DATA NEW;
INPUT COW PERIOD DIET MILK @@;

CARDS;
1 1 1 38 1 2 2 32 1 3 3 35 1 4 4 33
2 1 2 39 2 2 3 37 2 3 4 36 2 4 1 30
3 1 3 45 3 2 4 38 3 3 1 37 3 4 2 35
4 1 4 41 4 2 1 30 4 3 2 32 4 4 3 33

;
RUN;
QUIT;

PROC GLM;
CLASS COW DIET PERIOD;
MODEL MILK = DIET PERIOD COW;
MEANS DIET/ LINES TUKEY;

RUN;
QUIT;

-------------------------------------------------
Dependent Variable: MILK

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 9 242.5625000 26.9513889 33.17 0.0002

Error 6 4.8750000 0.8125000

Corrected Total 15 247.4375000

R-Square Coeff Var Root MSE MILK Mean

0.980298 2.525780 0.901388 35.68750

Source DF Type I SS Mean Square F Value Pr > F

DIET 3 40.6875000 13.5625000 16.69 0.0026
PERIOD 3 147.1875000 49.0625000 60.38 <.0001
COW 3 54.6875000 18.2291667 22.44 0.0012

Source DF Type III SS Mean Square F Value Pr > F

DIET 3 40.6875000 13.5625000 16.69 0.0026
PERIOD 3 147.1875000 49.0625000 60.38 <.0001
COW 3 54.6875000 18.2291667 22.44 0.0012

Tukey’s Studentized Range (HSD) Test for MILK

Alpha 0.05
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Error Degrees of Freedom 6
Error Mean Square 0.8125
Critical Value of Studentized Range 4.89559
Minimum Significant Difference 2.2064

Means with the same letter are not significantly different.

Tukey Grouping Mean N DIET

A 37.5000 4 3
A
A 37.0000 4 4

B 34.5000 4 2
B
B 33.7500 4 1

Thus there diet has a significant effect (p-value=0.0026) on milk production. The Tukey-Kramer multiple
comparison procedure indicates that diets C and D do not differ significantly. The same result holds for
diets A and B. All other pairs are declared to be significantly different.

2.2.2 Missing Values

Missing values are estimated in a similar manner as in RCBD’s. If only yijk is missing, it is estimated by

y′ijk =
p(Ti.. + T.j. + T..k)− 2T...

(p− 1)(p− 2)

where Ti.., T.j., T..k, and T... are the row i, treatment j, column k, and grand totals of the available observa-
tions, respectively.

If more than one value is missing, we employ an iterative procedure similar to the one in RCBD.

2.2.3 Relative Efficiency

The relative efficiency of the Latin square design with respect to other designs is considered next.
The estimated relative efficiency of a Latin square design with respect to a RCBD with the rows omitted

and the columns as blocks is

R̂(Latin, RCBDcol) =
MSRow + (p− 1)MSE

pMSE

Similarly, the estimated relative efficiency of a Latin square design with respect to a RCBD with the
columns omitted and the rows as blocks is

R̂(Latin, RCBDrow) =
MSCol + (p− 1)MSE

pMSE

Furthermore, the estimated relative efficiency of a Latin square design with respect to a CRD

R̂(Latin, CRD) =
MSRow + MSCol + (p− 1)MSE

(p + 1)MSE

For instance, considering the milk production example, we see that if we just use cows as blocks, we get

R̂(Latin, RCBDcows) =
MSPeriod + (p− 1)MSE

pMSE
=

49.06 + 3(.8125)
4(.8125)

= 15.85

Thus a RCBD design with just cows as blocks would cost about 16 times as much as the present Latin
square design to achieve the same sensitivity.
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2.2.4 Replicated Latin Square

Replication of a Latin square is done by forming several Latin squares of the same dimension. This may be
done using

• same row and column blocks

• new rows and same columns

• same rows and new columns

• new rows and new columns

Examples

The following 3×3 Latin square designs are intended to illustrate the techniques of replicating Latin squares.

same rows; same columns :

1 2 3 replication
1 A B C
2 B C A 1
3 C A B

1 2 3
1 C B A
2 B A C 2
3 A C B

1 2 3
1 B A C
2 A C B 3
3 C B A

different rows; same columns :

1 2 3 replication
1 A B C
2 B C A 1
3 C A B

1 2 3
4 C B A
5 B A C 2
6 A C B

1 2 3
7 B A C
8 A C B 3
9 C B A

different rows; different columns :
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1 2 3 replication
1 A B C
2 B C A 1
3 C A B

4 5 6
4 C B A
5 B A C 2
6 A C B

7 8 9
7 B A C
8 A C B 3
9 C B A

Replication increases the error degrees of freedom without increasing the number of treatments. However,
it adds a parameter (or parameters) in our model, thus increasing the complexity of the model.

The analysis of variance depends on the type of replication.

Replicated Square

This uses the same rows and columns and different randomization of the treatments within each square. The
statistical model is

yijkl = µ + αi + τj + βk + ψl + εijkl





i = 1, · · · , p

j = 1, · · · , p

k = 1, · · · , p

l = 1, · · · , r

where r is the number of replications. Here ψl represents the effect of the lth replicate. The associated
ANOVA table is

Source df SS MS F -statistic

Treatments p− 1 SSTrt MSTrt F0 = MST rt
MSE

Rows p− 1 SSRow MSRow

Columns p− 1 SSCol MSCol

Replicate r − 1 SSRep MSRep

Error (p− 1)[r(p + 1)− 3] SSE MSE

Total rp2 − 1 SST

where

SST =
∑∑ ∑∑

(yijkl − ȳ....)2

SSTrt = np

p∑

j=1

(ȳ.j.. − ȳ....)2

SSRow = np

p∑

i=1

(ȳi... − ȳ....)2

SSCol = np

p∑

k=1

(ȳ..k. − ȳ....)2

SSRep = p2
r∑

l=1

(ȳ...l − ȳ....)2

and SSE is found by subtraction.
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Example

Three gasoline additives (TREATMENTS, A B & C) were tested for gas efficiency by three drivers (ROWS)
using three different tractors (COLUMNS). The variable measured was the yield of carbon monoxide in a
trap. The experiment was repeated twice. Here is the SAS analysis.

DATA ADDITIVE;
INPUT SQUARE COL ROW TREAT YIELD;
CARDS;
1 1 1 2 26.0
1 1 2 3 28.7
1 1 3 1 25.3
1 2 1 3 25.0
1 2 2 1 23.6
1 2 3 2 28.4
1 3 1 1 21.3
1 3 2 2 28.5
1 3 3 3 30.1
2 1 1 3 32.4
2 1 2 2 31.7
2 1 3 1 24.9
2 2 1 2 28.7
2 2 2 1 24.3
2 2 3 3 29.3
2 3 1 1 25.8
2 3 2 3 30.5
2 3 3 2 29.2
;
PROC GLM;

TITLE ’SINGLE LATIN SQUARES’;
CLASS COL ROW TREAT;
MODEL YIELD= COL ROW TREAT;
BY SQUARE;

RUN;
QUIT;

PROC GLM;
TITLE ’REPLICATED LATIN SQUARES SHARING BOTH ROWS AND COLUMNS’;
CLASS SQUARE COL ROW TREAT;
MODEL YIELD= SQUARE COL ROW TREAT;

RUN;
QUIT;

SINGLE LATIN SQUARES 1

------------------------------------------- SQUARE=1 --------------------------------------------

The GLM Procedure

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 6 64.22000000 10.70333333 72.43 0.0137

Error 2 0.29555556 0.14777778

Corrected Total 8 64.51555556

R-Square Coeff Var Root MSE YIELD Mean

0.995419 1.460434 0.384419 26.32222

Source DF Type I SS Mean Square F Value Pr > F

COL 2 1.93555556 0.96777778 6.55 0.1325
ROW 2 23.72222222 11.86111111 80.26 0.0123
TREAT 2 38.56222222 19.28111111 130.47 0.0076

Source DF Type III SS Mean Square F Value Pr > F
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COL 2 1.93555556 0.96777778 6.55 0.1325
ROW 2 23.72222222 11.86111111 80.26 0.0123
TREAT 2 38.56222222 19.28111111 130.47 0.0076

------------------------------------------- SQUARE=2 --------------------------------------------

The GLM Procedure

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 6 67.24000000 11.20666667 17.79 0.0542

Error 2 1.26000000 0.63000000

Corrected Total 8 68.50000000

R-Square Coeff Var Root MSE YIELD Mean

0.981606 2.781748 0.793725 28.53333

Source DF Type I SS Mean Square F Value Pr > F

COL 2 7.48666667 3.74333333 5.94 0.1441
ROW 2 2.44666667 1.22333333 1.94 0.3399
TREAT 2 57.30666667 28.65333333 45.48 0.0215

Source DF Type III SS Mean Square F Value Pr > F

COL 2 7.48666667 3.74333333 5.94 0.1441
ROW 2 2.44666667 1.22333333 1.94 0.3399
TREAT 2 57.30666667 28.65333333 45.48 0.0215

REPLICATED LATIN SQUARES SHARING BOTH ROWS AND COLUMNS 5

The GLM Procedure

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 132.0038889 18.8576984 8.19 0.0018

Error 10 23.0122222 2.3012222

Corrected Total 17 155.0161111

R-Square Coeff Var Root MSE YIELD Mean

0.851549 5.530809 1.516978 27.42778

Source DF Type I SS Mean Square F Value Pr > F

SQUARE 1 22.00055556 22.00055556 9.56 0.0114
COL 2 8.01444444 4.00722222 1.74 0.2244
ROW 2 7.20111111 3.60055556 1.56 0.2563
TREAT 2 94.78777778 47.39388889 20.60 0.0003

Source DF Type III SS Mean Square F Value Pr > F

SQUARE 1 22.00055556 22.00055556 9.56 0.0114
COL 2 8.01444444 4.00722222 1.74 0.2244
ROW 2 7.20111111 3.60055556 1.56 0.2563
TREAT 2 94.78777778 47.39388889 20.60 0.0003
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Replicated Rows

In this instance the rows of different squares are independent but the columns are shared; i.e different rows
but same columns. Thus, the treatment effect may be different for each square. The statistical model in
shows this by nesting row effects within squares. The model is

yijkl = µ + αi(l) + τj + βk + ψl + εijkl





i = 1, · · · , p

j = 1, · · · , p

k = 1, · · · , p

l = 1, · · · , r

where αi(l) represents the effect of row i nested within replicate (square) l.
The associated ANOVA table is

Source df SS MS F -statistic

Treatments p− 1 SSTrt MSTrt F0 = MST rt
MSE

Rows r(p− 1) SSRow MSRow

Columns p− 1 SSCol MSCol

Replicate r − 1 SSRep MSRep

Error (p− 1)[rp− 2] SSE MSE

Total rp2 − 1 SST

Example

We will reanalyze the previous example; this time assuming we have six different drivers.

DATA ADDITIVE;
INPUT SQUARE COL ROW TREAT YIELD;
CARDS;
1 1 1 2 26.0
1 1 2 3 28.7
1 1 3 1 25.3
1 2 1 3 25.0
1 2 2 1 23.6
1 2 3 2 28.4
1 3 1 1 21.3
1 3 2 2 28.5
1 3 3 3 30.1
2 1 4 3 32.4
2 1 5 2 31.7
2 1 6 1 24.9
2 2 4 2 28.7
2 2 5 1 24.3
2 2 6 3 29.3
2 3 4 1 25.8
2 3 5 3 30.5
2 3 6 2 29.2
;

PROC GLM;
TITLE ’REPLICATED LATIN SQUARES SHARING ONLY COLUMNS’;
CLASS SQUARE COL ROW TREAT;
MODEL YIELD= SQUARE COL ROW(SQUARE) TREAT;

RUN;
QUIT;

REPLICATED LATIN SQUARES SHARING ONLY COLUMNS 7

The GLM Procedure

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 9 150.9716667 16.7746296 33.18 <.0001
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Error 8 4.0444444 0.5055556

Corrected Total 17 155.0161111

R-Square Coeff Var Root MSE YIELD Mean

0.973910 2.592351 0.711024 27.42778

Source DF Type I SS Mean Square F Value Pr > F

SQUARE 1 22.00055556 22.00055556 43.52 0.0002
COL 2 8.01444444 4.00722222 7.93 0.0127
ROW(SQUARE) 4 26.16888889 6.54222222 12.94 0.0014
TREAT 2 94.78777778 47.39388889 93.75 <.0001

Source DF Type III SS Mean Square F Value Pr > F

SQUARE 1 22.00055556 22.00055556 43.52 0.0002
COL 2 8.01444444 4.00722222 7.93 0.0127
ROW(SQUARE) 4 26.16888889 6.54222222 12.94 0.0014
TREAT 2 94.78777778 47.39388889 93.75 <.0001

Replicated Rows and Columns

The different Latin squares are now independent. Both row and column effects are nested within the squares.
The statistical model is

yijkl = µ + αi(l) + τj + βk(l) + ψl + εijkl





i = 1, · · · , p

j = 1, · · · , p

k = 1, · · · , p

l = 1, · · · , r

The associated ANOVA table is

Source df SS MS F -statistic

Treatments p− 1 SSTrt MSTrt F0 = MST rt
MSE

Rows r(p− 1) SSRow MSRow

Columns r(p− 1) SSCol MSCol

Replicate r − 1 SSRep MSRep

Error (p− 1)[r(p− 1)− 1] SSE MSE

Total rp2 − 1 SST

Example

Lets reanalyze the previous example; this time assuming six different drivers and six different tractors.

DATA ADDITIVE;
INPUT SQUARE COL ROW TREAT YIELD;
CARDS;
1 1 1 2 26.0
1 1 2 3 28.7
1 1 3 1 25.3
1 2 1 3 25.0
1 2 2 1 23.6
1 2 3 2 28.4
1 3 1 1 21.3
1 3 2 2 28.5
1 3 3 3 30.1
2 4 4 3 32.4
2 4 5 2 31.7
2 4 6 1 24.9
2 5 4 2 28.7
2 5 5 1 24.3
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2 5 6 3 29.3
2 6 4 1 25.8
2 6 5 3 30.5
2 6 6 2 29.2
;

PROC GLM;
TITLE ’REPLICATED LATIN SQUARES (INDEPENDENT)’;
CLASS SQUARE COL ROW TREAT;
MODEL YIELD= SQUARE COL(SQUARE) ROW(SQUARE) TREAT;

RUN;
QUIT;

REPLICATED LATIN SQUARES (INDEPENDENT) 16

The GLM Procedure

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 152.3794444 13.8526768 31.52 0.0002

Error 6 2.6366667 0.4394444

Corrected Total 17 155.0161111

R-Square Coeff Var Root MSE YIELD Mean

0.982991 2.416915 0.662906 27.42778

Source DF Type I SS Mean Square F Value Pr > F

SQUARE 1 22.00055556 22.00055556 50.06 0.0004
COL(SQUARE) 4 9.42222222 2.35555556 5.36 0.0350
ROW(SQUARE) 4 26.16888889 6.54222222 14.89 0.0029
TREAT 2 94.78777778 47.39388889 107.85 <.0001

Source DF Type III SS Mean Square F Value Pr > F

SQUARE 1 22.00055556 22.00055556 50.06 0.0004
COL(SQUARE) 4 9.42222222 2.35555556 5.36 0.0350
ROW(SQUARE) 4 26.16888889 6.54222222 14.89 0.0029
TREAT 2 94.78777778 47.39388889 107.85 <.0001

2.3 The Graeco-Latin Square Design

Graeco-Latin squares are used when we have three blocking variables. Greek letters are used to represent
the blocking in the third direction. Thus we investigate four factors: rows, columns, Greek letters, and
treatments.

In a Graeco-Latin square, each treatment appears once, and only once, in each column, each row, and
with each Greek letter. Graeco-Latin squares exist for each p ≥ 3, with the exception of p = 6. An example
of a Graeco-Latin square for p = 4 is

C γ A β D α B δ
D δ B α C β A γ
A α C δ B γ D β
B β D γ A δ C α

The statistical model is
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yijkl = µ + αi + τj + βk + ψl + εijkl





i = 1, · · · , p

j = 1, · · · , p

k = 1, · · · , p

l = 1, · · · , p

where ψl is the effect of the lth Greek letter.
The associated ANOVA table is

Source df SS MS F -statistic

Treatments p− 1 SSTrt MSTrt F0 = MST rt
MSE

Greek letters p− 1 SSG MSG

Rows p− 1 SSRow MSRow

Columns p− 1 SSCol MSCol

Error (p− 1)(p− 3) SSE MSE

Total p2 − 1 SST

where

SST =
∑∑ ∑∑

(yijkl − ȳ....)2

SSTrt = p

p∑

j=1

(ȳ.j.. − ȳ....)2

SSRow = p

p∑

i=1

(ȳi... − ȳ....)2

SSCol = p

p∑

k=1

(ȳ..k. − ȳ....)2

SSG = p

r∑

l=1

(ȳ...l − ȳ....)2

and SSE is found by subtraction.
The following example is taken from Petersen : Design and Analysis of Experiments (1985).

Example

A food processor wanted to determine the effect of package design on the sale of one of his products. He
had five designs to be tested : A,B, C,D, E. There were a number of sources of variation. These included:
(1) day of the week, (2) differences among stores, and (3) effect of shelf height. He decided to conduct
a trial using a Graeco-Latin square design with five weekdays corresponding to the row classification, five
different stores assigned to the column classification, and five shelf heights corresponding to the Greek letter
classification. The following table contains the results of his trial.

Store
Day 1 2 3 4 5
Mon E α (238) C δ (228) B γ (158) D ε (188) A β (74)
Tue D δ (149) B β (220) A α (92) C γ (169) E ε (282)
Wed B ε (222) E γ (295) D β (104) A δ (54) C α (213)
Thur C β (187) A ε (66) E δ (242) B α (122) D γ (90)
Fri A γ (65) D α (118) C ε (279) E β (278) B γ (176)

The following is the SAS analysis.
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OPTIONS LS=80 PS=66 NODATE;
DATA GL;
INPUT ROW COL TRT GREEK Y;
CARDS;
1 1 5 1 238
1 2 3 4 228
1 3 2 3 158
1 4 4 5 188
1 5 1 2 74
2 1 4 4 149
2 2 2 2 220
2 3 1 1 92
2 4 3 3 169
2 5 5 5 282
3 1 2 5 222
3 2 5 3 295
3 3 4 2 104
3 4 1 4 54
3 5 3 1 213
4 1 3 2 187
4 2 1 5 66
4 3 5 4 242
4 4 2 1 122
4 5 4 3 90
5 1 1 3 65
5 2 4 1 118
5 3 3 5 279
5 4 5 2 278
5 5 2 4 176
;

PROC GLM;
CLASS ROW COL TRT GREEK;
MODEL Y = ROW COL TRT GREEK;

RUN;
QUIT;

The SAS System 2

The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 16 131997.8400 8249.8650 8.92 0.0019

Error 8 7397.9200 924.7400

Corrected Total 24 139395.7600

R-Square Coeff Var Root MSE Y Mean

0.946929 17.64304 30.40954 172.3600

Source DF Type I SS Mean Square F Value Pr > F

ROW 4 6138.5600 1534.6400 1.66 0.2510
COL 4 1544.9600 386.2400 0.42 0.7919
TRT 4 115462.1600 28865.5400 31.21 <.0001
GREEK 4 8852.1600 2213.0400 2.39 0.1366

Source DF Type III SS Mean Square F Value Pr > F

ROW 4 6138.5600 1534.6400 1.66 0.2510
COL 4 1544.9600 386.2400 0.42 0.7919
TRT 4 115462.1600 28865.5400 31.21 <.0001
GREEK 4 8852.1600 2213.0400 2.39 0.1366
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There are highly significant differences in mean sales among the five package designs.

2.4 Incomplete Block Designs

Some experiments may consist of a large number of treatments and it may not be feasible to run all the
treatments in all the blocks. Designs where only some of the treatments appear in every block are known as
incomplete block designs.

2.4.1 Balanced Incomplete Block Designs (BIBD’s)

In a BIBD setup, each block is selected in a balanced manner so that any pair of treatments occur together
the same number of times as any other pair. Suppose there are k treatments and b blocks. Each block can
hold a treatments, where a < k.

One way to construct a BIBD is by using
(
k
a

)
blocks and assigning different combination of treatments

to every block. The following two examples illustrate this procedure.

Examples

Consider three treatments, A, B, and C where two treatments are run in every block. There are
(
3
2

)
= 3

ways of choosing 2 out of three. Thus using three blocks

block
1 2 3
A - A
B B -
- C C

Now consider five treatments, A, B,C, D, and E where 3 treatments appear per block. We use 10 blocks.

block
1 2 3 4 5 6 7 8 9 10
A - - - A A A - A A
- B B - B B - B B -
C - C C C - - C - C
D D - D - D D D - -
- E E E - - E - E E

Usually, however, BIBD’s may be obtained using fewer than
(
k
a

)
blocks.

Statistical Analysis

We begin by introducing some notation.

• Let r be the number of blocks in which each treatment appears.

• Let λ be the number of times each pair of treatments appear together in the same block.

Thus the total sample size is ab = kr. We can also show that λ(k − 1) = r(a − 1) and thus λ =
r(a− 1)/(k − 1).

The statistical model is

yij = µ + τi + βj + εij

{
i = 1, · · · , k

j = 1, · · · , b

with the same assumptions as the RCBD model.
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We partition the total sum of squares in the usual manner; into sum of square due to treatments, blocks,
and error. The difference here is that the sum of squares due to treatments needs to be adjusted for
incompleteness. Thus, we have

SST = SSTrt(adj) + SSBlocks + SSE

where

• SST =
∑k

i=1

∑b
j=1(yij − ȳ..)2

• SSBlocks = k
∑b

j=1(ȳ.j − ȳ..)2

• Let Ti. and T.j be the ith treatment and the jth block totals, respectively, and

φij =

{
1 if trt i in block j

0 otherwise
.

Let

Qi = Ti. − 1
a

b∑

j=1

φijT.j

The quantity Qi is the ith treatment total minus the average of the block totals containing treatment
i. Now

SSTrt(adj) =
a

∑k
i=1 Q2

i

λk

• SSE = SST − SSTrt(adj) − SSBlocks.

The corresponding ANOVA table is

Source df SS MS F -statistic

Treatments k − 1 SSTrt(adj) MSTrt(adj) F0 =
MSTrt(adj)

MSE

Blocks b− 1 SSBlocks MSBlocks

Error kr − k − b + 1 SSE MSE

Total kr − 1 SST

Estimates of the model are

µ̂ = ȳ.., τ̂i =
aQi

λk
, β̂j =

rQ′
j

λb
,

where

Q′j = T.j − 1
r

k∑

i=1

φijTi.

Multiple Comparisons

The standard error of the adjusted treatment i mean, τ̂i, is
√

aMSE

λk
.

Thus individual as well as simultaneous inference may be made concerning the treatment means. For
instance, we declare treatment i and j to be significantly different, while making all pairwise comparisons,
with MEER=α, if |τ̂i − τ̂j | exceeds

Bonferroni: tkr−k−b+1

(
α

2
(
k
2

)
)√

MSE
2a

λk

and

Tukey:
qk,kr−k−b+1(α)√

2

√
MSE

2a

λk
.

The following example is taken from em Montgomery: Design and Analysis of Experiments.
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Example

A chemical engineer thinks that the time of reaction for a chemical process is a function of the type of
catalyst employed. Four catalysts are being investigated. The experimental procedure consists of selecting
a batch of raw material, loading the pilot plant, applying each catalyst in a separate run of the pilot plant,
and observing the reaction time. Since variations in the batches of raw material may affect the performance
of the catalysts, the engineer decides to use batches of raw materials as blocks. However, each batch is only
large enough to permit three catalysts to be run. The following table summarizes the results.

Block (Batch)
Treatment (Catalyst) 1 2 3 4

1 73 74 - 71
2 - 75 67 72
3 73 75 68 -
4 75 - 72 75

Thus k = 4, r = 3, a = 3, λ = 2, b = 4. This is known as a symmetric design since k = b.
The following SAS code is used to analyze the above data.

OPTIONS LS=80 PS=66 NODATE;

DATA CHEM;

INPUT CATALYST BATCH TIME;

CARDS;

1 1 73

1 2 74

1 4 71

2 2 75

2 3 67

2 4 72

3 1 73

3 2 75

3 3 68

4 1 75

4 3 72

4 4 75

;

PROC GLM;

CLASS CATALYST BATCH;

MODEL TIME = CATALYST BATCH;

LSMEANS CATALYST / TDIFF PDIFF ADJUST=BON STDERR;

LSMEANS CATALYST / TDIFF ADJUST=TUKEY;

CONTRAST ’1 VS 2’ CATALYST 1 -1 0 0;

ESTIMATE ’1 VS 2’ CATALYST 1 -1 0 0;

RUN;

QUIT;

The associated SAS output is

The SAS System 52

The GLM Procedure

Dependent Variable: TIME

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 6 77.75000000 12.95833333 19.94 0.0024
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Error 5 3.25000000 0.65000000

Corrected Total 11 81.00000000

R-Square Coeff Var Root MSE TIME Mean

0.959877 1.112036 0.806226 72.50000

Source DF Type I SS Mean Square F Value Pr > F

CATALYST 3 11.66666667 3.88888889 5.98 0.0415
BATCH 3 66.08333333 22.02777778 33.89 0.0010

Source DF Type III SS Mean Square F Value Pr > F

CATALYST 3 22.75000000 7.58333333 11.67 0.0107
BATCH 3 66.08333333 22.02777778 33.89 0.0010

The SAS System 53

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Bonferroni

Standard LSMEAN
CATALYST TIME LSMEAN Error Pr > |t| Number

1 71.3750000 0.4868051 <.0001 1
2 71.6250000 0.4868051 <.0001 2
3 72.0000000 0.4868051 <.0001 3
4 75.0000000 0.4868051 <.0001 4

Least Squares Means for Effect CATALYST
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: TIME

i/j 1 2 3 4

1 -0.35806 -0.89514 -5.19183
1.0000 1.0000 0.0209

2 0.358057 -0.53709 -4.83378
1.0000 1.0000 0.0284

3 0.895144 0.537086 -4.29669
1.0000 1.0000 0.0464

4 5.191833 4.833775 4.296689
0.0209 0.0284 0.0464

The SAS System 54

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

LSMEAN
CATALYST TIME LSMEAN Number

1 71.3750000 1
2 71.6250000 2
3 72.0000000 3
4 75.0000000 4

Least Squares Means for Effect CATALYST
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: TIME

i/j 1 2 3 4

1 -0.35806 -0.89514 -5.19183
0.9825 0.8085 0.0130

2 0.358057 -0.53709 -4.83378
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0.9825 0.9462 0.0175
3 0.895144 0.537086 -4.29669

0.8085 0.9462 0.0281
4 5.191833 4.833775 4.296689

0.0130 0.0175 0.0281

The SAS System 55

The GLM Procedure

Dependent Variable: TIME

Contrast DF Contrast SS Mean Square F Value Pr > F

1 VS 2 1 0.08333333 0.08333333 0.13 0.7349

Standard
Parameter Estimate Error t Value Pr > |t|

1 VS 2 -0.25000000 0.69821200 -0.36 0.7349

We may see from the output that F0 = 11.67 with a p-value of 0.0107. Thus we declare the catalysts to
be significantly different.

Both the Bonferroni and the Tukey-Kramer procedures give us

ȳ1. ȳ2. ȳ3. ȳ4.

71.375 71.625 72.000 75.000

2.4.2 Youden Squares

These are incomplete Latin squares, in which the number of columns is not equal to the number of rows.
The following example shows a Youden square with 5 treatments, 4 columns, and 5 rows.

Column
Row 1 2 3 4

1 A B C D
2 B C D E
3 C D E A
4 D E A B
5 E A B C

A Youden square may be considered as a symmetric BIBD with rows corresponding to blocks and each
treatment occurring exactly once in each position of the block.

2.4.3 Other Incomplete Designs

There are other incomplete designs that will not be discussed here. These include the partially balanced
incomplete block design and lattice designs such as square, cubic, and rectangular lattices.
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Chapter 3

Factorial Designs

3.1 Introduction

This chapter focuses on the study of the effects of two or more factors using factorial designs. A factorial
design is a design in which every combination of the factors is studied in every trial (replication). For
example, we may have two factors A and B, say, with a and b levels, respectively. Each replicate in a
two-factor factorial design will contain all the a× b treatment combinations.

The effect of factor A is the change in response due to a chang in the level of A. For instance, consider a
two factor experiment in which the two factors A and B have two levels each. Then the experiment is run
once. The following is the resulting output.

B1 B2

A1 30 20
A2 40 30

The average effect of factor A is then

40 + 30
2

− 30 + 20
2

= 10

Thus, increasing factor A from level 1 to level 2 causes an increase of 10 units in the response. This is know
as the main effect of factor A. In a similar fashion, the main effect of B is

40 + 30
2

− 30 + 20
2

= 10

In this case there is no interaction since the effect of factor A is the same at all levels of B:

40− 30 = 10 and 30− 20 = 10

Sometimes the effect of the first factor may depend on the level of the second factor under consideration.
The following table shows two interacting factors.

B1 B2

A1 20 25
A2 40 10

The effect of factor A at the first level of B is

40− 20 = 20 ,

and at the second level
10− 25 = −15 .

The effect of A depends on the level of B chosen. The following plots, known as profile plots, display the
two situations.

57
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The following example taken from Montgomery : Design and Analysis of Experiments considers two
factors, each with 3 levels, and the experiment repeated 4 times.

Example

The maximum output voltage of a particular battery is thought to be influenced by the material used in
the plates and the temperature in the location at which the battery is installed. Four batteries are tested at
each combination of plate material and temperature, and all 36 tests are run in random order. The results
are shown below.

Temperature
Material 15 65 80

1 130, 155, 74, 180 34, 40, 80, 75 20, 70, 82, 58
2 150, 188, 159, 126 136, 122, 106, 115 25, 70, 58, 45
3 138, 110, 168, 160 174, 120, 150, 139 96, 104, 82, 60
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As the following profile plot shows the interaction between temperature and material type may be sig-
nificant. We will perform formal statistical tests to determine whether the interaction is significant in the
next section.

The profile plot is constructed using the average response for each cell.
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3.2 The Two-Factor Factorial Design

We shall now study the statistical properties of the two-factor design. Let the factors be A and B each with
a and b levels. Suppose the experiment is run n times at each combination of the levels of A and B. The
following table displays the data arrangement of such an experiment.

Factor B
Factor A 1 2 · · · b

1 y111, · · · , y11n y121, · · · , y12n y1b1, · · · , y1bn

2 y211, · · · , y21n y221, · · · , y22n y2b1, · · · , y2bn

...
a ya11, · · · , ya1n ya21, · · · , ya2n yab1, · · · , yabn

The statistical model is

yijk = µ + τi + βj + (τβ)ij + εijk,





i = 1, · · · , a

j = 1, · · · , b

k = 1, · · · , n

(3.1)

where µ is the overall mean, τi is the effect of the ith level of factor A, βj is the effect of the jth level of
factor B, (τβ)ij is the effect of the interaction between the ith level of factor A and the jth level of factor
B, and εijk is the random error associated with the kth replicate in cell (i, j).
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3.2.1 The Fixed Effects Model

The fixed effects model is given by (3.1) along with the assumptions

a∑

i=1

τi =
b∑

j=1

βj =
a∑

i=1

(τβ)ij =
b∑

j=1

(τβ)ij = 0 .

and εijk ∼iid N(0, σ2).

Estimation

The estimators of the model parameters are obtained via the least squares procedure. They are

µ̂ = ȳ...

τ̂i = ȳi.. − ȳ..., i = 1, · · · , a

β̂j = ȳ.j. − ȳ..., j = 1, · · · , b

(̂τβ)ij = ȳij. − ȳi.. − ȳ.j. + ȳ...,

{
i = 1, · · · , a

j = 1, · · · , b

Using the model in (3.1), we can easily see that the observation yijk is estimated by

ŷijk = µ̂ + τ̂i + β̂j + (̂τβ)ij = ȳij.

Thus, every observation in cell (i, j) is estimated by the cell mean. The model residuals are obtained as

eijk = yijk − ŷijk = yijk − ȳij.

Inference

In the two-factor fixed effects model, we are interested in the hypotheses
A main effect:

H0 : τ1 = · · · = τa = 0
HA : at least one τi 6= 0

B main effect:

H0 : β1 = · · · = βb = 0
HA : at least one βj 6= 0

AB interaction effect:

H0 : (τβ)11 = · · · = (τβ)ab = 0
HA : at least one (τβ)ij 6= 0

The following is the two-factor fixed effects ANOVA table:

Source df SS MS F -statistic

A a− 1 SSA MSA FA = MSA
MSE

B b− 1 SSB MSB FB = MSB
MSE

AB (a− 1)(b− 1) SSAB MSAB FAB = MSAB
MSE

Error ab(n− 1) SSE MSE

Total abn− 1 SST
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where

SSA = bn

a∑

i=1

(ȳi.. − ȳ...)2

SSB = an

b∑

j=1

(ȳ.j. − ȳ...)2

SSAB = n

a∑

i=1

b∑

j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)2

SSE =
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − ȳij.)2

SST =
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − ȳ...)2

We then declare the A, B, or AB effect to be significant if FA > Fa−1,ab(n−1)(α), FB > Fb−1,ab(n−1)(α),
or FAB > F(a−1)(b−1),ab(n−1)(α), respectively.

Example

Consider the battery life experiment given above and assume that the material type and temperatures under
consideration are the only ones we are interested in. The following SAS code may be used to produce the
two-factor factorial ANOVA table along with an interaction plot (given above).

OPTIONS PS=66 LS=80 NODATE;

DATA BATTERY;
INPUT MAT TEMP LIFE;
DATALINES;

1 1 130
1 1 155

...

3 3 60
;

PROC GLM;
CLASS MAT TEMP;
MODEL LIFE=MAT TEMP MAT*TEMP;

RUN;
QUIT;

PROC MEANS NOPRINT;
VAR LIFE;
BY MAT TEMP;
OUTPUT OUT=OUTMEAN MEAN=MN;

RUN;
QUIT;

SYMBOL I=JOIN;
PROC GPLOT;

PLOT MN*TEMP=MAT;
RUN;
QUIT;

The corresponding SAS output is

Dependent Variable: LIFE

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 8 59416.22222 7427.02778 11.00 <.0001
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Error 27 18230.75000 675.21296

Corrected Total 35 77646.97222

R-Square Coeff Var Root MSE LIFE Mean

0.765210 24.62372 25.98486 105.5278

Source DF Type I SS Mean Square F Value Pr > F

MAT 2 10683.72222 5341.86111 7.91 0.0020
TEMP 2 39118.72222 19559.36111 28.97 <.0001
MAT*TEMP 4 9613.77778 2403.44444 3.56 0.0186

Source DF Type III SS Mean Square F Value Pr > F

MAT 2 10683.72222 5341.86111 7.91 0.0020
TEMP 2 39118.72222 19559.36111 28.97 <.0001
MAT*TEMP 4 9613.77778 2403.44444 3.56 0.0186

Therefore, we declare that both main effects as well as the interaction effect are significant.

Multiple Comparisons

The manner in which we perform multiple comparisons is dependent on whether or not the interaction effect
is significant. In the case where the interaction between factors A and B is not significant, we may compare
the means of factor A pooled over all levels of factor B (ȳi..’s) and the means of factor B pooled over all
levels of factor A (ȳ.j.’s). On the other hand, if the interaction between A and B is significant, we need to
compare the means of one factor within each level of the other factor (ȳij.’s).

The following example shows the need for comparing the means of one factor within each level of the
other.

B
A 1 2 ȳi..

1 10, 20, 30 30, 40, 50 30
ȳ11. = 20 ȳ12. = 40

2 40, 50, 60 0, 10, 20 30
ȳ21. = 50 ȳ22. = 10

ȳ.j. 35 25 ȳ... = 30
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The interaction plot shows that factor A may have an effect on the response; however, ȳ2.. − ȳ1.. = 0.
Notice that within each level of B, the effect of A is nonzero;

ȳ21. − ȳ11. = 30, ȳ22. − ȳ12. = −30 .

Generally, when interaction is not present, we use the following standard errors in our comparisons of
means:

SE(ȳi.. − ȳi′..) =

√
2MSE

nb

and

SE(ȳ.j. − ȳ.j′.) =

√
2MSE

na

Thus, for example, the a factor A means may be compared via the Tukey-Kramer procedure as : declare
τi to be significantly different from τi′ if

|ȳi.. − ȳi′..| >
qa,ab(n−1)(α)√

2

√
2MSE

nb
.

Similarly, we declare βj to be significantly different from βj′ if

|ȳ.j. − ȳ.j′.| >
qb,ab(n−1)(α)√

2

√
2MSE

na
.

When interaction is present we use the ab cell means. The standard errors are

SE(ȳij. − ȳi′j′.) =

√
2MSE

n
,

where (i, j) 6= (i′, j′).
The Tukey-Kramer method declares τi to be significantly different from τi′ in level j of factor B if

|ȳij. − ȳi′j.| >
qab,ab(n−1)(α)√

2

√
2MSE

n
.

The following SAS code provides the Tukey-Kramer intervals for the battery life example considered
above.
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PROC GLM;
CLASS MAT TEMP;
MODEL LIFE=MAT TEMP MAT*TEMP;
LSMEANS MAT | TEMP /TDIFF ADJUST=TUKEY;

RUN;
QUIT;

----------------------------------------------------------------

Adjustment for Multiple Comparisons: Tukey

LSMEAN
MAT LIFE LSMEAN Number

1 83.166667 1
2 108.333333 2
3 125.083333 3

Least Squares Means for Effect MAT
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: LIFE

i/j 1 2 3

1 -2.37236 -3.95132
0.0628 0.0014

2 2.372362 -1.57896
0.0628 0.2718

3 3.951318 1.578956
0.0014 0.2718

Adjustment for Multiple Comparisons: Tukey

LSMEAN
TEMP LIFE LSMEAN Number

1 144.833333 1
2 107.583333 2
3 64.166667 3

Least Squares Means for Effect TEMP
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: LIFE

i/j 1 2 3

1 3.51141 7.604127
0.0044 <.0001

2 -3.51141 4.092717
0.0044 0.0010

3 -7.60413 -4.09272
<.0001 0.0010

Adjustment for Multiple Comparisons: Tukey

LSMEAN
MAT TEMP LIFE LSMEAN Number

1 1 134.750000 1
1 2 57.250000 2
1 3 57.500000 3
2 1 155.750000 4
2 2 119.750000 5
2 3 49.500000 6
3 1 144.000000 7
3 2 145.750000 8
3 3 85.500000 9

Least Squares Means for Effect MAT*TEMP
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t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: LIFE

i/j 1 2 3 4 5

1 4.2179 4.204294 -1.14291 0.816368
0.0065 0.0067 0.9616 0.9953

2 -4.2179 -0.01361 -5.36082 -3.40153
0.0065 1.0000 0.0003 0.0460

3 -4.20429 0.013606 -5.34721 -3.38793
0.0067 1.0000 0.0004 0.0475

4 1.142915 5.360815 5.347209 1.959283
0.9616 0.0003 0.0004 0.5819

5 -0.81637 3.401533 3.387926 -1.95928
0.9953 0.0460 0.0475 0.5819

6 -4.63969 -0.42179 -0.4354 -5.78261 -3.82332
0.0022 1.0000 1.0000 0.0001 0.0172

7 0.503427 4.721327 4.707721 -0.63949 1.319795
0.9999 0.0018 0.0019 0.9991 0.9165

Least Squares Means for Effect MAT*TEMP
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: LIFE

i/j 6 7 8 9

1 4.63969 -0.50343 -0.59867 2.680408
0.0022 0.9999 0.9995 0.2017

2 0.42179 -4.72133 -4.81657 -1.53749
1.0000 0.0018 0.0014 0.8282

3 0.435396 -4.70772 -4.80296 -1.52389
1.0000 0.0019 0.0015 0.8347

4 5.782605 0.639488 0.544245 3.823323
0.0001 0.9991 0.9997 0.0172

5 3.823323 -1.31979 -1.41504 1.86404
0.0172 0.9165 0.8823 0.6420

6 -5.14312 -5.23836 -1.95928
0.0006 0.0005 0.5819

7 5.143117 -0.09524 3.183834
0.0006 1.0000 0.0743

Adjustment for Multiple Comparisons: Tukey

Least Squares Means for Effect MAT*TEMP
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: LIFE

i/j 1 2 3 4 5

8 0.59867 4.81657 4.802964 -0.54425 1.415038
0.9995 0.0014 0.0015 0.9997 0.8823

9 -2.68041 1.537493 1.523887 -3.82332 -1.86404
0.2017 0.8282 0.8347 0.0172 0.6420

Least Squares Means for Effect MAT*TEMP
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: LIFE

i/j 6 7 8 9

8 5.23836 0.095243 3.279077
0.0005 1.0000 0.0604

9 1.959283 -3.18383 -3.27908
0.5819 0.0743 0.0604

Notice that SAS has labelled the 9 cells consecutively as
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1 2 3
4 5 6
7 8 9

We use underlining to summarize the results.
Temperature within Material:

Material = 1 ȳ12. ȳ13. ȳ11.

57.25 57.50 134.75

Material = 2 ȳ23. ȳ22. ȳ21.

49.50 119.75 155.75

Material = 3 ȳ33. ȳ31. ȳ32.

85.5 144.00 145.75

Material within Temperature:

Temperature = 1 ȳ11. ȳ31. ȳ21.

134.75 144.00 155.75

Temperature = 2 ȳ12. ȳ22. ȳ32.

57.25 119.75 145.75

Temperature = 3 ȳ23. ȳ13. ȳ33.

49.50 57.50 85.5

Model Diagnostics

Diagnostics are run the usual way via residual analysis. Recall that the residuals for the two-factor factorial
model are given by

eijk = yijk − ȳij.

Graphical checks for equality of variances as well as unusual observations are plots of residuals versus

• ȳij.,

• factor A, and

• factor B.

The graphical check for normality is the QQ-plot of the residuals. For the battery life example the
following SAS code may be used to produce the required plots.

PROC GLM;
CLASS MAT TEMP;
MODEL LIFE=MAT TEMP MAT*TEMP;
OUTPUT OUT=DIAG R=RES P=PRED;

RUN;
QUIT;

SYMBOL V=CIRCLE;
PROC UNIVARIATE NOPRINT;

QQPLOT RES / NORMAL (L=1 MU=0 SIGMA=EST);
HIST RES / NORMAL (L=1 MU=0 SIGMA=EST);

RUN;
QUIT;

PROC GPLOT;
PLOT RES*MAT;
PLOT RES*TEMP;
PLOT RES*PRED;

RUN;
QUIT;
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Formal tests for normality indicate no deviation from normality. The QQ-plot shows no signs of non-
normality. The residual plots show a mild deviation from constant variance. We may need to transform the
data.

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- -----p Value-----

Cramer-von Mises W-Sq 0.05586092 Pr > W-Sq >0.250
Anderson-Darling A-Sq 0.34769847 Pr > A-Sq >0.250
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There is no command in SAS to perform Levene’s test for equality of variances. The following trick of
relabelling the cells and running a one-factor ANOVA model may be used to perform Levene’s test. The
partial SAS code is given along with the output.

OPTIONS LS=80 PS=66 NODATE;

DATA BATTERY;
INPUT MAT TEMP LIFE;

CELL = 3*(MAT - 1) + TEMP;
DATALINES;

1 1 130
1 1 155

...

3 3 82
3 3 60
;

PROC GLM;
CLASS CELL;
MODEL LIFE=CELL;
MEANS CELL/ HOVTEST=LEVENE;

RUN;
QUIT;
--------------------------------------------------

Levene’s Test for Homogeneity of LIFE Variance
ANOVA of Squared Deviations from Group Means
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Sum of Mean
Source DF Squares Square F Value Pr > F
CELL 8 5407436 675929 1.48 0.2107
Error 27 12332885 456774
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3.2.2 Random and Mixed Models

We shall now consider the case where the levels of factor A or the levels of factor B are randomly chosen
from a population of levels.

The Random Effects Model

In a random effects model the a levels of factor A and the b levels of factor B are random samples from
populations of levels. The statistical model is the same as the one given in (3.1) where τi, βj , (τβ)ij , and εijk

are randomly sampled from N(0, σ2
τ ), N(0, σ2

β),N(0, σ2
τβ), and N(0, σ2) distributions, respectively. Thus, the

variance of any observation is
V ar(yijk) = σ2

τ + σ2
β + σ2

τβ + σ2

The hypotheses of interest are
A main effect:

H0 : σ2
τ = 0

HA : σ2
τ 6= 0

B main effect:

H0 : σ2
β = 0

HA : σ2
β 6= 0

AB interaction effect:

H0 : σ2
τβ = 0

HA : σ2
τβ 6= 0

The ANOVA table needs some modifications. This is seen examining the expected mean squares.

E(MSA) = σ2 + nσ2
τβ + bnσ2

τ

E(MSB) = σ2 + nσ2
τβ + anσ2

β

E(MSAB) = σ2 + nσ2
τβ

E(MSE) = σ2

Therefore, the two-factor random effects ANOVA table is:

Source df SS MS F -statistic

A a− 1 SSA MSA FA = MSA
MSAB

B b− 1 SSB MSB FB = MSB
MSAB

AB (a− 1)(b− 1) SSAB MSAB FAB = MSAB
MSE

Error ab(n− 1) SSE MSE

Total abn− 1 SST

From the expected mean squares, we get the estimates of the variance components as

σ̂2 = MSE

σ̂2
τβ =

MSAB −MSE

n

σ̂2
τ =

MSA −MSAB

bn

σ̂2
β =

MSB −MSAB

an
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Example

Consider the battery life example once again. This time assume that the material types and temperatures
are randomly selected out of several possibilities. We may then use the RANDOM statement in PROC
GLM of SAS to analyze the data as a random effects model. Here are the SAS code and associated output.

OPTIONS LS=80 PS=66 NODATE;

DATA BATTERY;
INPUT MAT TEMP LIFE;
DATALINES;

1 1 130
1 1 155
.......

3 3 60
;

PROC GLM;
CLASS MAT TEMP;
MODEL LIFE=MAT TEMP MAT*TEMP;
RANDOM MAT TEMP MAT*TEMP / TEST;

RUN;
QUIT;

---------------------------------------------------------

The GLM Procedure

Source Type III Expected Mean Square

MAT Var(Error) + 4 Var(MAT*TEMP) + 12 Var(MAT)

TEMP Var(Error) + 4 Var(MAT*TEMP) + 12 Var(TEMP)

MAT*TEMP Var(Error) + 4 Var(MAT*TEMP)

The GLM Procedure
Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: LIFE

Source DF Type III SS Mean Square F Value Pr > F

MAT 2 10684 5341.861111 2.22 0.2243
TEMP 2 39119 19559 8.14 0.0389

Error: MS(MAT*TEMP) 4 9613.777778 2403.444444

Source DF Type III SS Mean Square F Value Pr > F

MAT*TEMP 4 9613.777778 2403.444444 3.56 0.0186

Error: MS(Error) 27 18231 675.212963

Notice that variability among material types is the only factor that is not significant.
The estimates of the components of variance are (values in parentheses are percent contributions of the

components)

σ̂2 = MSE = 675.21 (24.27%)

σ̂2
τβ =

MSAB −MSE

n
=

2403.44− 675.21
4

= 432.06 (15.53%)

σ̂2
τ =

MSA −MSAB

bn
=

5341.86− 2403.44
12

= 244.87 (8.80%)

σ̂2
β =

MSB −MSAB

an
=

19559− 2403.44
12

= 1429.58 (51.39%)
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Mixed Models

Let us now consider the case where one factor is fixed and the other is random. Without loss of generality,
assume that factor A is fixed and factor B is random. When a factor is random, its interaction with any
other factor is also random.

The statistical model, once again, has the same form given in (3.1). This time we assume that

• τi are fixed effects such that
∑

τi = 0,

• βj ∼iid N(0, σ2
β), (τβ)ij ∼iid N(0, a−1

a σ2
τβ), and εijk ∼iid N(0, σ2).

The hypotheses of interest are

H0 : τ1 = · · · = τa = 0, H0 : σ2
β = 0, H0 : σ2

τβ = 0

The expected mean squares are given by

E(MSA) = σ2 + nσ2
τβ +

bn
∑

τ2
i

a− 1
E(MSB) = σ2 + anσ2

β

E(MSAB) = σ2 + nσ2
τβ

E(MSE) = σ2

The fixed factor effects are estimated the usual way as

µ̂ = ȳ..., τ̂i = ȳi.. − ȳ...

and the variance components are estimated as

σ̂2 = MSE , σ̂2
τβ =

MSAB −MSE

n
, and σ̂2

β =
MSB −MSE

an

The ANOVA table for the mixed model is

Source df SS MS F -statistic

A (fixed) a− 1 SSA MSA FA = MSA
MSAB

B (random) b− 1 SSB MSB FB = MSB
MSE

AB (a− 1)(b− 1) SSAB MSAB FAB = MSAB
MSE

Error ab(n− 1) SSE MSE

Total abn− 1 SST

Example

Consider the battery life example and assume that temperature is a random factor while material type is a
fixed factor. We use PROC MIXED in SAS to generate the output. PROC GLM does not provide the
correct analysis!

OPTIONS LS=80 PS=66 NODATE;

DATA BATTERY;
INPUT MAT TEMP LIFE;
DATALINES;

1 1 130
1 1 155
.......

3 3 60
;

PROC MIXED COVTEST;
CLASS MAT TEMP;
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MODEL LIFE=MAT;
RANDOM TEMP MAT*TEMP;

RUN;
QUIT;

-----------------------------------------------------------------------

The Mixed Procedure

Model Information

Data Set WORK.BATTERY
Dependent Variable LIFE
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

MAT 3 1 2 3
TEMP 3 1 2 3

Dimensions

Covariance Parameters 3
Columns in X 4
Columns in Z 12
Subjects 1
Max Obs Per Subject 36
Observations Used 36
Observations Not Used 0
Total Observations 36

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 352.41258855
1 1 327.91147422 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Standard Z
Cov Parm Estimate Error Value Pr Z

TEMP 1429.66 1636.09 0.87 0.1911
MAT*TEMP 432.06 427.35 1.01 0.1560
Residual 675.21 183.77 3.67 0.0001

Fit Statistics

-2 Res Log Likelihood 327.9
AIC (smaller is better) 333.9
AICC (smaller is better) 334.7
BIC (smaller is better) 331.2

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

MAT 2 4 2.22 0.2243
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From the output we observe that the fixed effect (MAT) is not significant. Neither of the random effects
are significant (p-values of 0.1911 and 0.1560).

Proc Mixed uses the restricted maximum likelihood (REML) technique to estimate the variance compo-
nents. In a balanced design the REML method gives identical estimates as those obtained using the expected
mean squares. When there is imbalance, however, the results are not the same.

Exercise: For this example, show that the estimates of the variance components obtained here are identical
to those using the expected mean squares.
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3.3 Blocking in Factorial Designs

Blocking may be implemented in factorial designs using the same principles. In a randomized block design,
every block contains all possible treatment combinations.

The statistical model for a two-factor blocked factorial design with 1 replication per block is

yijk = µ + τi + βj + (τβ)ij + δk + εijk

where i = 1, · · · , a, j = 1, · · · , b, and k = 1, · · · , n. δk is the effect of the kth block.
The model assumes that treatment-block interactions are negligible. The ANOVA table for a random

effects model is

Source df SS MS F -statistic
A a− 1 SSA MSA FA = MSA

MSAB

B b− 1 SSB MSB FB = MSB

MSAB

AB (a− 1)(b− 1) SSAB MSAB FAB = MSAB

MSE

Blocks n− 1 SSBlocks MSBlocks
Error (ab− 1)(n− 1) SSE MSE

Total abn− 1 SST

where

SSBlocks = ab

n∑

k=1

(ȳ..k − ȳ...)2 .

Example

An agronomist wanted to study the effect of different rates of phosphorous fertilizer on two types of broad
bean plants. He thought that the plant types might respond differently to fertilization; so, he decided to do
a factorial experiment with two factors:

1. Plant type (T ) at two levels

• T1 = short, bushy
• T2 = tall, erect

2. Phosphorous rate (P ) at three levels

• P1 = none
• P2 = 25kg/ha

• P3 = 50kg/ha

Using the full factorial set of combinations he had six treatments:

T1P1, T1P2, T1P3, T2P1, T2P2, T2P3

He conducted the experiment using a randomized block design with four blocks of six plots each. The
field layout and the yield in kg/ha are shown below:

BLOCK
I II III IV

T2P2(8.3) T2P1(11.2) T1P2(17.6) T1P3(18.9)
T2P1(11.0) T2P2(10.5) T1P1(14.3) T2P2(12.8)
T1P1(11.5) T2P3(16.7) T2P1(12.1) T2P3(17.5)
T2P3(15.7) T1P2(17.6) T1P3(18.2) T2P1(12.6)
T1P3(18.2) T1P1(13.6) T2P3(16.6) T1P2(18.1)
T1P2(17.1) T1P3(17.6) T2P2(9.1) T1P1(14.5)
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The data layout is (observations in a cell are in increasing block order I, II, III, IV)

Phosphorous
Type P1 P2 P3

T1 11.5, 13.6, 14.3, 14.5 17.1, 17.6, 17.6, 18.1 18.2, 17.6, 18.2, 18.9
T2 11.0, 11.2, 12.1, 12.6 8.3, 10.5, 9.1, 12.8 15.7, 16.7, 16.6, 17.5

The following SAS code and output give the analysis.
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OPTIONS LS=80 PS=66 NODATE;

DATA FERT;
INPUT TYPE PH BLOCK YIELD;
DATALINES;

1 1 1 11.5
1 1 2 13.6
1 1 3 14.3
1 1 4 14.5
1 2 1 17.1
1 2 2 17.6
1 2 3 17.6
1 2 4 18.1
1 3 1 18.2
1 3 2 17.6
1 3 3 18.2
1 3 4 18.9
2 1 1 11.0
2 1 2 11.2
2 1 3 12.1
2 1 4 12.6
2 2 1 8.3
2 2 2 10.5
2 2 3 9.1
2 2 4 12.8
2 3 1 15.7
2 3 2 16.7
2 3 3 16.6
2 3 4 17.5

;

PROC GLM;
CLASS TYPE PH BLOCK;
MODEL YIELD=BLOCK TYPE|PH;

RUN;
QUIT;
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-------------------------------------------------

The GLM Procedure

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 8 234.7000000 29.3375000 50.72 <.0001

Error 15 8.6762500 0.5784167

Corrected Total 23 243.3762500

R-Square Coeff Var Root MSE YIELD Mean

0.964350 5.195813 0.760537 14.63750

Source DF Type I SS Mean Square F Value Pr > F

BLOCK 3 13.32125000 4.44041667 7.68 0.0024
TYPE 1 77.40041667 77.40041667 133.81 <.0001
PH 2 99.87250000 49.93625000 86.33 <.0001
TYPE*PH 2 44.10583333 22.05291667 38.13 <.0001

Source DF Type III SS Mean Square F Value Pr > F

BLOCK 3 13.32125000 4.44041667 7.68 0.0024
TYPE 1 77.40041667 77.40041667 133.81 <.0001
PH 2 99.87250000 49.93625000 86.33 <.0001
TYPE*PH 2 44.10583333 22.05291667 38.13 <.0001

The interaction between plant type and phosphorous level is significant. This means that all comparisons
of means of one factor would have to be done within the levels of the other factor. Different plant types
respond differently to different levels of the fertilizer. Short, bushy plants seem to show their greatest yield
increase with the first increment of added phosphorous, while tall, erect plants seem to show no yield increase
with 25kg/ha of phosphorous.

Blocking seems to be working here judging from the corresponding F value. The efficiency needs to be
investigated further.

The main effects are also significant. The rates of phosphorous fertilizer and the type of plant both affect
yield significantly.
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A Factorial Experiment with Two Blocking Factors

This is dealt with by implementing a Latin square design in a similar manner as one factor experiments.
The only difference here is that every factor combination is considered to be a treatment. To illustrate this,
consider a two-factor factorial experiment with 3 levels of factor A and 2 levels of factor B. We will use
Latin letters to represent the 3× 2 = 6 treatment combinations.

A B Treatment
A1 B1 A
A1 B2 B
A2 B1 C
A2 B2 D
A3 B1 E
A3 B2 F

We then form the 6× 6 basic Latin square cyclically as

Column
Row 1 2 3 4 5 6

1 A B C D E F
2 B C D E F A
3 C D E F A B
3 D E F A B C
3 E F A B C D
3 F A B C D E

We then randomize the rows and the columns.
In general, consider two factors : factor A with a levels and factor B with b levels. The statistical model

is

yijkl = µ + τi + βj + γk + δl + (τβ)ij + εijkl

where

• τi, i = 1, · · · , a is the effect of the ith level of factor A,

• βj , j = 1, · · · , b is the effect of the jth level of factor B,

• γk and δl, k, l = 1, · · · , ab, are the effects of the kth row and the lth column, respectively.

3.4 The General Factorial Design

Consider an experiment in which we have t factors F1, · · · , Ft with f1, · · · , ft levels, respectively. The
statistical model is

yi1i2···itl = µ + τ1i1
+ τ2i2

+ · · ·+ τtit

+ (τ1τ2)i1i2 + · · · (τt−1τt)it−1it

+ · · ·+ (τ1τ2 · · · τt)i1i2···it + εi1i2···itl

where i1 = 1, · · · , f1; i2 = 1, · · · , f2, etc.
A special case is the 3 factor factorial design with factors A, B, and C with levels a, b, and c, respectively.

We need two or more replications to be able to test for all possible interactions. The statistical model is

yijkl = µ + τi + βj + γk + (τβ)ij + (τγ)ik + (βγ)jk + (τβγ)ijk + εijkl

where i = 1, · · · , a; j = 1, · · · , b; k = 1, · · · , c; and l = 1, · · · , n.
Considering a fixed effects model, the ANOVA table is
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Source df SS MS F -statistic

A a− 1 SSA MSA FA = MSA
MSE

B b− 1 SSB MSB FB = MSB
MSE

C c− 1 SSC MSC FC = MSC
MSE

AB (a− 1)(b− 1) SSAB MSAB FAB = MSAB
MSE

AC (a− 1)(c− 1) SSAC MSAC FAC = MSAC
MSE

BC (b− 1)(c− 1) SSBC MSBC FBC = MSBC
MSE

ABC (a− 1)(b− 1)(c− 1) SSABC MSABC FABC = MSABC
MSE

Error abc(n− 1) SSE MSE

Total abcn− 1 SST

The following example is taken from Montgomery : Design and Analysis of Experiments

Example

A soft drink bottler is studying the effect of percent carbonation (A), operating pressure (B), and line speed
(C) on the volume of beverage packaged in each bottle. Three levels of A, two levels of B and two levels of
C are considered to set up a 3× 2× 2 factorial experiment. This experiment is run twice and the deviations
from the target volume are recorded. The data are given below.

Pressure (B)
25 psi 30 psi

Line Speed (C) Line Speed (C)
Carbonation (A) 200 250 200 250

10 -3, -1 -1, 0 -1, 0 1, 1
12 0, 1 2, 1 2, 3 6, 5
14 5, 4 7, 6 7, 9 10, 11

We will use SAS to analyze the data. The SAS code and output are as follows:

OPTIONS LS=80 PS=66 NODATE;
DATA BOTTLE;
INPUT CARB PRES SPEED VOL;
CARDS;

1 1 1 -3
1 1 1 -1
1 1 2 -1
1 1 2 0
1 2 1 -1
1 2 1 0
1 2 2 1
1 2 2 1
2 1 1 0
2 1 1 1
2 1 2 2
2 1 2 1
2 2 1 2
2 2 1 3
2 2 2 6
2 2 2 5
3 1 1 5
3 1 1 4
3 1 2 7
3 1 2 6
3 2 1 7
3 2 1 9
3 2 2 10
3 2 2 11

;

PROC GLM;
CLASS CARB PRES SPEED;
MODEL VOL = CARB|PRES|SPEED;

RUN;
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QUIT;

-------------------------------------------------------------

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 328.1250000 29.8295455 42.11 <.0001
Error 12 8.5000000 0.7083333
Corrected Total 23 336.6250000

Source DF Type I SS Mean Square F Value Pr > F

CARB 2 252.7500000 126.3750000 178.41 <.0001
PRES 1 45.3750000 45.3750000 64.06 <.0001
CARB*PRES 2 5.2500000 2.6250000 3.71 0.0558
SPEED 1 22.0416667 22.0416667 31.12 0.0001
CARB*SPEED 2 0.5833333 0.2916667 0.41 0.6715
PRES*SPEED 1 1.0416667 1.0416667 1.47 0.2486
CARB*PRES*SPEED 2 1.0833333 0.5416667 0.76 0.4869

As we can see, none of the interactions is significant. However, all the main effects appear to be significant.
One may perform multiple comparisons at the highest level of the factors. As an example we will run the
Tukey-Kramer procedure on factor A. PROC GLM of SAS is modified as follows:

PROC GLM;
CLASS CARB PRES SPEED;
MODEL VOL = CARB|PRES|SPEED;
LSMEANS CARB/PDIFF ADJUST=TUKEY;

RUN;
QUIT;
---------------------------------------------------------------

Adjustment for Multiple Comparisons: Tukey

LSMEAN
CARB VOL LSMEAN Number

1 -0.50000000 1
2 2.50000000 2
3 7.37500000 3

Least Squares Means for effect CARB
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: VOL

i/j 1 2 3
1 <.0001 <.0001
2 <.0001 <.0001
3 <.0001 <.0001

Thus, all pairwise comparisons comparisons of the levels of factor A, percent carbonation, are significantly
different at MEER = 0.05.
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Chapter 4

2k and 3k Factorial Designs

4.1 Introduction

Often we consider general factorial designs with k factors each with 2 levels, denoted by + and −. This
involves a 2×2×· · ·×2 = 2k factorial experiment. This is known as a 2k factorial design. A similar situation
where each of the k factors has three levels (0, 1, 2) is known as a 3k factorial design.

4.2 The 2k Factorial Design

This is particularly useful in the early stages of an experiment as a factor screening mechanism, i.e. to
identify important factors. Every interaction term has only 1 degree of freedom. We shall consider special
cases where k = 2, 3 before looking at the general 2k factorial design.

4.2.1 The 22 Design

Let A and B denote the two factors of interest with two levels (”low (−)” and ”high (+)”) each. There are
22 = 4 treatments designated as:

Treatment A B
(1) − −
a + −
b − +
ab + +

The presence of a letter indicates that the factor is at a high level. The absence of letter indicates the
factor is at a low level. The symbol (1) is used to represent the treatment where every factor is at a low
level.

As an example consider an experiment where the time a chemical reaction takes is investigated. The two
factors of interest are reactant concentration (A at 15% (−) and 25% (+)) and catalyst (B with absence (−)
and presence (+)). The experiment is replicated three times.

Factor Replicate
A B Treatment 1 2 3 Total
− − (1) 28 25 27 80
+ − a 36 32 32 100
− + b 18 19 23 60
+ + ab 31 30 29 90

83
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Let ȳ(A+) denote the mean of the response where factor A is at high level. A similar notation is use for
all the other means. For example, ȳ(A−B+) is the mean of the response in the case where factor A is at low
level and factor B is at high level.

We can now define the main effects of a factor. The main effect of A is

ȳ(A+)− ȳ(A−)

This is equivalent to

1
2
{ȳ(A+B+) + ȳ(A+B−)} − 1

2
{ȳ(A−B+) + ȳ(A−B−)} = 8.33

Using the treatment means, this may be given as a contrast with coefficients (−.5, .5,−.5, .5).
Similarly, the main effect of B is given by

ȳ(B+)− ȳ(B−)

which is equivalent to

1
2
{ȳ(A+B+) + ȳ(A−B+)} − 1

2
{ȳ(A+B−) + ȳ(A−B−)} = −5.00

Now the contrast coefficients are (−.5,−.5, .5, .5).
The AB interaction effect is the average difference between the effect of A at the high level of B and the

effect of A at the low level of B

1
2
{ȳ(A+B+)− ȳ(A−B+)} − 1

2
{ȳ(A+B−)− ȳ(A−B−)} = 1.67

Using the treatment means, the contrast coefficients become (.5,−.5,−.5, .5).
The sum of squares for each factor and the interaction may be obtained in a very simple manner. Let n

be the number of replicates in the study.

SSA = n× (Main effect of A)2

SSB = n× (Main effect of B)2

SSAB = n× (Interaction effect of AB)2

The total sum of squares is defined as usual

SST =
2∑

i=1

2∑

j=1

n∑

k=1

(yijk − ȳ...)2

and the error sum of squares is obtained by subtraction as

SSE = SST − SSA − SSB − SSAB .

For the example above these yield

SSA = 208.33, SSB = 75.00, SSAB = 8.33, SST = 323.00, SSE = 31.34

The ANOVA table is

Source df SS MS F -statistic

A 1 SSA = 208.33 MSA = 208.33 FA = MSA
MSE

= 53.15

B 1 SSB = 75.00 MSB = 75.00 FB = MSB
MSE

= 19.13

AB 1 SSAB = 8.33 MSAB = 8.33 FAB = MSAB
MSE

= 2.13

Error 4(n− 1) = 8 SSE = 31.34 MSE = 3.92

Total 4n− 1 = 11 SST = 323.00



4.2. THE 2K FACTORIAL DESIGN 85

Using SAS

OPTIONS LS=80 PS=66 NODATE;
DATA BOTTLE;
INPUT A B Y @@;
CARDS;

-1 -1 28 -1 -1 25 -1 -1 27
1 -1 36 1 -1 32 1 -1 32
-1 1 18 -1 1 19 -1 1 23
1 1 31 1 1 30 1 1 29

;

PROC GLM;
CLASS A B;
MODEL Y = A|B;

RUN;
QUIT;

-----------------------------------------------

Source DF Type I SS Mean Square F Value Pr > F

A 1 208.3333333 208.3333333 53.19 <.0001
B 1 75.0000000 75.0000000 19.15 0.0024
A*B 1 8.3333333 8.3333333 2.13 0.1828

One may use a multiple regression model to estimate the effects in a 22 design. This is done by forming
two variables (x1, x2) as

A− x1 = −.5
A+ x1 = .5
B− x2 = −.5
B+ x2 = .5

and fitting the regression model

y = β0 + β1x1 + β2x2 + β12(2x1x2) + ε .

The estimated model coefficient are now

β̂0 = ȳ...

β̂1 = Main effect of A

β̂2 = Main effect of B

β̂12 = AB Interaction effect

Using SAS

OPTIONS LS=80 PS=66 NODATE;
DATA BOTTLE;
INPUT A B Y @@;
X1 = A/2;
X2 = B/2;
X1X2 = 2*X1*X2;
CARDS;

-1 -1 28 -1 -1 25 -1 -1 27
1 -1 36 1 -1 32 1 -1 32
-1 1 18 -1 1 19 -1 1 23
1 1 31 1 1 30 1 1 29

;

PROC GLM;
MODEL Y = X1 X2 X1X2;

RUN;
QUIT;

----------------------------------------



86 CHAPTER 4. 2K AND 3K FACTORIAL DESIGNS

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 291.6666667 97.2222222 24.82 0.0002

Error 8 31.3333333 3.9166667

Corrected Total 11 323.0000000

R-Square Coeff Var Root MSE Y Mean

0.902993 7.196571 1.979057 27.50000

Source DF Type I SS Mean Square F Value Pr > F

X1 1 208.3333333 208.3333333 53.19 <.0001
X2 1 75.0000000 75.0000000 19.15 0.0024
X1X2 1 8.3333333 8.3333333 2.13 0.1828

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 27.50000000 0.57130455 48.14 <.0001
X1 8.33333333 1.14260910 7.29 <.0001
X2 -5.00000000 1.14260910 -4.38 0.0024
X1X2 1.66666667 1.14260910 1.46 0.1828

4.2.2 The 23 Design

In this subsection we consider 3-factor factorial experiments each with two levels. This setup uses a total of
23 = 8 experiments that are represented as

Treatment A B C Treatment A B C
(1) − − − c − − +
a + − − ac + − +
b − + − bc − + +
c − c + abc + + +

The following table gives the contrast coefficients for calculating the effects.

Factorial Effects
Treatment I A B AB C AC BC ABC

(1) 1/4 -1/4 -1/4 1/4 -1/4 1/4 1/4 -1/4
a 1/4 1/4 -1/4 -1/4 -1/4 -1/4 1/4 1/4
b 1/4 -1/4 1/4 -1/4 -1/4 1/4 -1/4 1/4
ab 1/4 1/4 1/4 1/4 -1/4 -1/4 -1/4 -1/4
c 1/4 -1/4 -1/4 1/4 1/4 -1/4 -1/4 1/4
ac 1/4 1/4 -1/4 -1/4 1/4 1/4 -1/4 -1/4
bc 1/4 -1/4 1/4 -1/4 1/4 -1/4 1/4 -1/4
abc 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4

For example, the main effect of A is

1
4
[−ȳ(A−B−C−) + ȳ(A+B−C−)− ȳ(A−B+C−) + ȳ(A+B+C−)

−ȳ(A−B−C+) + ȳ(A+B−C+)− ȳ(A−B+C+) + ȳ(A+B+C+)]

The sum of squares are
SSeffect = 2n(effect)2

Consider the bottling experiment in Chapter 3. With only the first two levels of factor A, the data is
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Pressure (B)
25 psi 30 psi

Line Speed (C) Line Speed (C)
Carbonation (A) 200 250 200 250

10 (1): -3, -1 c: -1, 0 b: -1, 0 bc: 1, 1
12 a: 0, 1 ac: 2, 1 ab: 2, 3 abc: 6, 5

The SAS analysis is given below:

OPTIONS LS=80 PS=66 NODATE;
DATA BOTTLE;
INPUT A B C VOL;
CARDS;

-1 -1 -1 -3
-1 -1 -1 -1
-1 -1 1 -1
-1 -1 1 0
-1 1 -1 -1
-1 1 -1 0
-1 1 1 1
-1 1 1 1
1 -1 -1 0
1 -1 -1 1
1 -1 1 2
1 -1 1 1
1 1 -1 2
1 1 -1 3
1 1 1 6
1 1 1 5

;

PROC GLM;
CLASS A B C;
MODEL VOL = A|B|C;

RUN;
QUIT;

---------------------------------------------------

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 73.00000000 10.42857143 16.69 0.0003
Error 8 5.00000000 0.62500000

Corrected Total 15 78.00000000

R-Square Coeff Var Root MSE VOL Mean
0.935897 79.05694 0.790569 1.000000

Source DF Type I SS Mean Square F Value Pr > F

A 1 36.00000000 36.00000000 57.60 <.0001
B 1 20.25000000 20.25000000 32.40 0.0005
A*B 1 2.25000000 2.25000000 3.60 0.0943
C 1 12.25000000 12.25000000 19.60 0.0022
A*C 1 0.25000000 0.25000000 0.40 0.5447
B*C 1 1.00000000 1.00000000 1.60 0.2415
A*B*C 1 1.00000000 1.00000000 1.60 0.2415

To employ multiple regression, one may consider the following coding:

A− x1 = −.5
A+ x1 = .5
B− x2 = −.5
B+ x2 = .5
C− x3 = −.5
C+ x3 = .5
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The regression model is

y = β0 + β1x1 + β2x2 + β3x3 + β12(2x1x2) + β13(2x1x3)

+β23(2x2x3) + β123(4x1x2x3) + ε

Once again, the estimate of the regression coefficients correspond to the effects of the factors. For
example, β̂12 is the AB interaction effect. Considering the bottling experiment, the following SAS code is
an implementation the regression approach.
OPTIONS LS=80 PS=66 NODATE;
DATA BOTTLE;
INPUT A B C VOL;
X1 = A/2;
X2 = B/2;
X3 = C/2;
X1X2 = 2*X1*X2;
X1X3 = 2*X1*X3;
X2X3 = 2*X2*X3;
X1X2X3 = 4*X1*X2*X3;
CARDS;

-1 -1 -1 -3
-1 -1 -1 -1
-1 -1 1 -1
-1 -1 1 0
-1 1 -1 -1
-1 1 -1 0
-1 1 1 1
-1 1 1 1
1 -1 -1 0
1 -1 -1 1
1 -1 1 2
1 -1 1 1
1 1 -1 2
1 1 -1 3
1 1 1 6
1 1 1 5

;

PROC REG;
MODEL VOL = X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3;

RUN;
QUIT;

---------------------------------------------------
Dependent Variable: VOL

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 7 73.00000 10.42857 16.69 0.0003
Error 8 5.00000 0.62500
Corrected Total 15 78.00000

Root MSE 0.79057 R-Square 0.9359
Dependent Mean 1.00000 Adj R-Sq 0.8798
Coeff Var 79.05694

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.00000 0.19764 5.06 0.0010
X1 1 3.00000 0.39528 7.59 <.0001
X2 1 2.25000 0.39528 5.69 0.0005
X3 1 1.75000 0.39528 4.43 0.0022
X1X2 1 0.75000 0.39528 1.90 0.0943
X1X3 1 0.25000 0.39528 0.63 0.5447
X2X3 1 0.50000 0.39528 1.26 0.2415
X1X2X3 1 0.50000 0.39528 1.26 0.2415
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One may obtain sums of squares using

SS = 2n(effect)2 .

For example, in the bottling experiment,

SSA = 2× 2× 32 = 36 .

4.2.3 The General 2k Design

Consider k factors F1, · · · , Fk each with 2 levels. Suppose the experiment is replicated n times. There are
k =

(
k
1

)
main effects,

(
k
2

)
two-factor interaction effects,

(
k
3

)
three-factor interaction effects, . . . ,

(
k
k

)
= 1

k-factor interaction. Each main effect as well as interaction effect has one degree of freedom. Thus the sum
of the degrees of freedom due to the factors (main and interaction) is

k∑

i=1

(
k

i

)
= 2k − 1

and the total degrees of freedom are 2kn− 1. Thus we get the error degrees of freedom to be

(2kn− 1)− (2k − 1) = 2k(n− 1) .

The partial ANOVA table for the 2k design is

Source df SS

k main effects
F1 1 SSF1

F1 1 SSF1

...
...

...
Fk 1 SSFk�

k
2

�
two-factor interactions

F1F2 1 SSF1F2

F1F3 1 SSF1F3

...
...

...
Fk−1Fk 1 SSFk−1Fk

...
...

...�
k
k

�
= 1 k-factor interaction

F1F2 · · ·Fk 1 SSF1F2···Fk

Error 2k(n− 1) SSE

Total 2kn− 1 SST

We denote the 2k treatments using the standard notation, i.e.

(1), f1, · · · , f1 . . . fk .

As always contrasts are of interest since they represent factor effects. We will use contrast coefficients
±21−k to linearly combine the 2k cell means. For instance, in the 22 design (k = 2), the coefficients are
±21−2 = ±2−1 = ±1/2. Similarly, in the 23 design, the coefficients become ±1/4 as expected.

The sums of squares are now
SSeffect = n× 2k−2 × (effect)2 .

We will use the regression approach to estimate the effects. We will now create k variables x1, · · · , xk

each taking values ±1/2 depending on whether the corresponding factor is at high or low level. We then fit
the regression equation

y = β0 + β1x1 + · · ·+ βkxk + β12(2x1x2) + · · ·+ βk−1,k(2xk−1xk) + . . .
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+β12···k(2k−1x1x2 · · ·xk) + ε .

The multiplier is obtained as
2(number of factors in interaction−1) .

Now the estimates, β̂’s, are the effects of the corresponding factor.

4.2.4 The Unreplicated 2k Design

Since the number of factor level combinations in a 2k design may be large, it is often impossible to find
enough subjects to replicate the design. In such a situation it is impossible to estimate the error; which in
turn means that hypotheses cannot be tested. An approach is to ignore some high-order interactions, i.e.
assume that interactions with three or higher factors do not exist. Another approach is to use a QQ-plot to
identify the significant factors.

The following example, taken from Petersen : Design and Analysis of Experiments, illustrates these
approaches.

Example

A research chemist wanted to study the effect of a number of factors on the yield of a new high-impact
plastic. The plastic is produced by mixing resin with an extender in a solvent. The process takes place in a
heated reaction vat. The materials are allowed to react for a period of time, and the plastic settles to the
bottom of the vat, filtered on a screen, and dried.

The chemist worked in a laboratory that contained 32 experimental vats and a filter and dryer with each
vat. He knew that he could run one trial per day in each vat. He decided to study five factors using a single
replication of a 25 design. He selected the following factors:

• A = reaction temperature : 300◦C, 150◦C

• B = reaction time : 4hr, 2hr

• C = filter pressure : 1atm, 2atm

• D = drying temperature : 200◦C, 100◦C

• E = resin/extender ratio : 2/1, 1/1

The following table gives the results:

A B C D E Yield

-1 -1 -1 -1 -1 246
1 -1 -1 -1 -1 303
-1 1 -1 -1 -1 276
1 1 -1 -1 -1 336
-1 -1 1 -1 -1 258
1 -1 1 -1 -1 344
-1 1 1 -1 -1 265
1 1 1 -1 -1 313
-1 -1 -1 1 -1 249
1 -1 -1 1 -1 310
-1 1 -1 1 -1 318
1 1 -1 1 -1 363
-1 -1 1 1 -1 212
1 -1 1 1 -1 249
-1 1 1 1 -1 283
1 1 1 1 -1 219
-1 -1 -1 -1 1 379
1 -1 -1 -1 1 326
-1 1 -1 -1 1 344
1 1 -1 -1 1 349
-1 -1 1 -1 1 389
1 -1 1 -1 1 359
-1 1 1 -1 1 283
1 1 1 -1 1 363
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-1 -1 -1 1 1 313
1 -1 -1 1 1 336
-1 1 -1 1 1 370
1 1 -1 1 1 336
-1 -1 1 1 1 322
1 -1 1 1 1 352
-1 1 1 1 1 367
1 1 1 1 1 374

We will fit the following regression model to estimate the effects:

y = β0 + β1x1 + · · ·+ β12345(24x1x2x3x4x5) + ε

We save the above data as it is in a file called chem.dat, without the line which contains the names of
the variables, and we call the file using the SAS command infile. The following code gives the analysis:

OPTIONS LS=80 PS=66 NODATE;

DATA CHEM;

INFILE "C:\ASH\S7010\SAS\CHEM.DAT";

INPUT A B C D E YIELD;

RUN;

QUIT;

DATA CHEM2;

SET CHEM;

AB=A*B; AC=A*C; AD=A*D; AE=A*E;

BC=B*C; BD=B*D; BE=B*E;

CD=C*D; CE=C*E;

DE=D*E;

ABC=A*B*C; ABD=A*B*D; ABE=A*B*E; ACD=A*C*D; ACE=A*C*E; ADE=A*D*E;

BCD=B*C*D; BCE=B*C*E; BDE=B*D*E;

CDE=C*D*E;

ABCD = A*B*C*D; ABCE=A*B*C*E; ABDE=A*B*D*E; ACDE=A*C*D*E;

BCDE = B*C*D*E;

ABCDE=A*B*C*D*E;

RUN;

QUIT;

PROC REG;

MODEL YIELD = A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE;

RUN;

QUIT;

-----------------------------------------------------

The SAS System 61

The REG Procedure
Model: MODEL1

Dependent Variable: YIELD

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 31 73807 2380.86694 . .
Error 0 0 .
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Corrected Total 31 73807

Root MSE . R-Square 1.0000
Dependent Mean 315.81250 Adj R-Sq .
Coeff Var .

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 315.81250 . . .
A 1 11.18750 . . .
B 1 6.62500 . . .
C 1 -6.31250 . . .
D 1 -5.00000 . . .
E 1 31.81250 . . .
AB 1 -2.00000 . . .
AC 1 0.93750 . . .
AD 1 -4.62500 . . .
AE 1 -9.43750 . . .
BC 1 -7.75000 . . .
BD 1 11.31250 . . .
BE 1 -6.00000 . . .
CD 1 -7.25000 . . .
CE 1 9.81250 . . .
DE 1 3.62500 . . .
ABC 1 -1.25000 . . .
ABD 1 -10.31250 . . .
ABE 1 7.50000 . . .
ACD 1 -6.25000 . . .
ACE 1 8.18750 . . .
ADE 1 6.12500 . . .
BCD 1 3.31250 . . .
BCE 1 2.75000 . . .
BDE 1 3.56250 . . .
CDE 1 11.25000 . . .
ABCD 1 -1.93750 . . .
ABCE 1 6.62500 . . .
ABDE 1 -5.18750 . . .
ACDE 1 3.12500 . . .
BCDE 1 2.93750 . . .
ABCDE 1 0.81250 . . .

The estimates of the effects are now the parameter estimate multiplied by 2. For instance, the ABE effect
is 2 ∗ 7.5 = 15.
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We will now analyze the data ignoring 3 and higher factor interactions. The following partial SAS code
follows the one given above.

PROC GLM;
CLASS A B C D E AB AC AD AE BC BD BE CD CE DE;
MODEL YIELD = A B C D E AB AC AD AE BC BD BE CD CE DE;
RUN;
QUIT;

----------------------------------------------------------
Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 15 55913.37500 3727.55833 3.33 0.0111
Error 16 17893.50000 1118.34375

Corrected Total 31 73806.87500

Source DF Type I SS Mean Square F Value Pr > F

A 1 4005.12500 4005.12500 3.58 0.0767
B 1 1404.50000 1404.50000 1.26 0.2790
C 1 1275.12500 1275.12500 1.14 0.3015
D 1 800.00000 800.00000 0.72 0.4101
E 1 32385.12500 32385.12500 28.96 <.0001
AB 1 128.00000 128.00000 0.11 0.7395
AC 1 28.12500 28.12500 0.03 0.8760
AD 1 684.50000 684.50000 0.61 0.4454
AE 1 2850.12500 2850.12500 2.55 0.1300
BC 1 1922.00000 1922.00000 1.72 0.2084
BD 1 4095.12500 4095.12500 3.66 0.0737
BE 1 1152.00000 1152.00000 1.03 0.3252
CD 1 1682.00000 1682.00000 1.50 0.2378
CE 1 3081.12500 3081.12500 2.76 0.1164
DE 1 420.50000 420.50000 0.38 0.5484

Source DF Type III SS Mean Square F Value Pr > F

A 1 4005.12500 4005.12500 3.58 0.0767
B 1 1404.50000 1404.50000 1.26 0.2790
C 1 1275.12500 1275.12500 1.14 0.3015
D 1 800.00000 800.00000 0.72 0.4101
E 1 32385.12500 32385.12500 28.96 <.0001
AB 1 128.00000 128.00000 0.11 0.7395
AC 1 28.12500 28.12500 0.03 0.8760
AD 1 684.50000 684.50000 0.61 0.4454
AE 1 2850.12500 2850.12500 2.55 0.1300
BC 1 1922.00000 1922.00000 1.72 0.2084
BD 1 4095.12500 4095.12500 3.66 0.0737
BE 1 1152.00000 1152.00000 1.03 0.3252
CD 1 1682.00000 1682.00000 1.50 0.2378
CE 1 3081.12500 3081.12500 2.76 0.1164
DE 1 420.50000 420.50000 0.38 0.5484

The only significant factor appears to be resin/extender ratio.
Let us now plot the QQ-plot of the effects in the full model in an effort to identify the important factors.

The following SAS code that provides the QQ-plot continues the above:

PROC REG OUTEST=EFFECTS;
MODEL YIELD = A B C D E
AB AC AD AE BC BD BE CD CE DE
ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE
ABCD ABCE ABDE ACDE BCDE
ABCDE;
RUN;
QUIT;

DATA EFFECTS;
SET EFFECTS;
DROP YIELD INTERCEPT _RMSE_;

RUN;
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QUIT;

PROC TRANSPOSE DATA=EFFECTS OUT=EFFECTS;
RUN;
QUIT;

DATA EFFECTS;
SET EFFECTS;
EFFECT = COL1*2;
DROP COL1;

RUN;
QUIT;

PROC SORT DATA=EFFECTS;
BY EFFECT;

RUN;
QUIT;

PROC RANK DATA=EFFECTS NORMAL=BLOM;
VAR EFFECT;
RANKS RANKEFF;

RUN;
QUIT;

GOPTION COLORS=(NONE);
SYMBOL V=CIRCLE;

PROC GPLOT;
PLOT RANKEFF*EFFECT=_NAME_;

RUN;
QUIT;
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Once again the only variable that appears to be significant is resin/extender ratio.
The following example is taken from Montgomery : Design and Analysis of Experiments.

Example

A chemical product is produced in a pressure vessel. A factorial experiment was conducted in the pilot plant
to study the factors thought to influence the filtration rate of this product. The four factors are temperature
(A), pressure (B), reactant concentration (C), and stirring rate (D). The data are given below:

A0 A1

B0 B1 B0 B1

C0 C1 C0 C1 C0 C1 C0 C1

D0 45 68 48 80 71 60 65 65
D1 43 75 45 70 100 86 104 96

This is an unreplicated 24 design. We start by drawing the QQ plot of the effects to identify the potentially
significant factors.

OPTIONS LS=80 PS=66 NODATE;
DATA FILTER;
INPUT A B C D Y;
CARDS;

-1 -1 -1 -1 45
-1 -1 -1 1 43
-1 -1 1 -1 68
-1 -1 1 1 75
-1 1 -1 -1 48
-1 1 -1 1 45
-1 1 1 -1 80
-1 1 1 1 70
1 -1 -1 -1 71
1 -1 -1 1 100
1 -1 1 -1 60
1 -1 1 1 86
1 1 -1 -1 65
1 1 -1 1 104
1 1 1 -1 65
1 1 1 1 96

;
RUN;
QUIT;

DATA FILTER2;
SET FILTER;
AB=A*B; AC=A*C; AD=A*D; BC=B*C; BD=B*D; CD=C*D;
ABC=A*B*C; ABD=A*B*D; ACD=A*C*D; BCD=B*C*D;
ABCD = A*B*C*D;
RUN;
QUIT;

PROC REG OUTEST=EFFECTS;
MODEL Y = A B C D
AB AC AD BC BD CD
ABC ABD ACD BCD
ABCD;
RUN;
QUIT;

DATA EFFECTS;
SET EFFECTS;
DROP Y INTERCEPT _RMSE_;

RUN;
QUIT;

PROC TRANSPOSE DATA=EFFECTS OUT=EFFECTS;
RUN;
QUIT;

DATA EFFECTS;
SET EFFECTS;
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EFFECT = COL1*2;
DROP COL1;

RUN;
QUIT;

PROC SORT DATA=EFFECTS;
BY EFFECT;

RUN;
QUIT;

PROC RANK DATA=EFFECTS NORMAL=BLOM;
VAR EFFECT;
RANKS RANKEFF;

RUN;
QUIT;

GOPTION COLORS=(NONE);
SYMBOL V=CIRCLE;

PROC GPLOT;
PLOT RANKEFF*EFFECT=_NAME_;

RUN;
QUIT;
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The QQ-plot identifies A,C, D,AC, AD as significant. Thus, ignoring factor B and any interactions
involving factor B we run the analysis. This means the resulting analysis is a 23 design with factors A,C, D
and 2 replications. The following partial SAS code performs the analysis.

PROC GLM DATA=FILTER;
CLASS A C D;
MODEL Y = A|C|D;

RUN;
QUIT;

------------------------------------------------------------

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 5551.437500 793.062500 35.35 <.0001
Error 8 179.500000 22.437500

Corrected Total 15 5730.937500

Source DF Type I SS Mean Square F Value Pr > F

A 1 1870.562500 1870.562500 83.37 <.0001
C 1 390.062500 390.062500 17.38 0.0031
A*C 1 1314.062500 1314.062500 58.57 <.0001
D 1 855.562500 855.562500 38.13 0.0003
A*D 1 1105.562500 1105.562500 49.27 0.0001
C*D 1 5.062500 5.062500 0.23 0.6475
A*C*D 1 10.562500 10.562500 0.47 0.5120

4.3 The 3k Design

We now consider the analysis of a k-factor factorial design where each factor has 3 levels: 0 (low), 1
(intermediate), and 2 (high). We now have 3k treatments which we denote by k digit combinations of
0, 1, and 2 instead of the standard notation (1), a, b, ab, . . .. For example, for a 32 design the treatments are
00, 10, 20, 01, 11, 21, 02, 12, 22. The treatment 01, for instance, is the combination of the low level of factor
A and the intermediate level of factor B. Computations of effects and sums of squares are direct extensions
of the 2k case.

The ANOVA table for a 3k design with n replications is
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Source df SS

k main effects
F1 2 SSF1

F1 2 SSF1

...
...

...
Fk 2 SSFk�

k
2

�
two-factor interactions

F1F2 4 SSF1F2

F1F3 4 SSF1F3

...
...

...
Fk−1Fk 4 SSFk−1Fk�

k
3

�
three-factor interactions

F1F2F3 8 SSF1F2F3

F1F2F4 8 SSF1F2F4

...
...

...
Fk−2Fk−1Fk 8 SSFk−2Fk−1Fk

...
...

...�
k
k

�
= 1 k-factor interaction

F1F2 · · ·Fk 2k SSF1F2···Fk

Error 3k(n− 1) SSE

Total 3kn− 1 SST



Chapter 5

Repeated Measurement Designs

5.1 Introduction

Sometimes we take observations repeatedly on the same experimental subjects under several treatments.
Such observations are rarely independent as they are measured on the same subject. These designs are
extensions of the randomized complete block design where blocks are random.

5.1.1 The Mixed RCBD

Consider a single factor experiment with a levels of the factor, say A. Suppose we have a blocking variable
B that is random. This situation is sometimes referred to as the one-way repeated measurement design.

We assume that a random sample of b blocks (subjects) is available from a large population of blocks
(subjects). Each of the a levels of factor A is observed with each subject. Let yij be the observation on level
i of A for the jth subject.

The statistical model for the mixed randomized complete block design is

yij = µ + τi + βj + εij ,

{
i = 1, · · · , a

j = 1, · · · , b

where

• ∑a
i=1 τi = 0,

• β1, · · · , βb is a random sample from a N(0, σ2
β) distribution,

• εij are ab iid N(0, σ2) random variables, and

• all the b + ab random variables (blocks and errors) are independent.

Under these conditions, one obtains
V ar(yij) = σ2 + σ2

β

and
Cov(yij , yi′j) = σ2

β , for i 6= i′ .

Thus,

ρ =
σ2

β

σ2 + σ2
β

is the common correlation of measurements made on the same subject for any pair of distinct treatment A
levels, i and i′. All variances of observations are equal within a block and all covariances within a block are
equal. The variance-covariance matrix of observations on each subject y′j = (y1j , · · · , yaj) is

101
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Σ =




σ11 σ12 · · · σ1a

σ21 σ22 · · · σ2a

...
...

...
σa1 σa2 · · · σaa




Under the assumptions of the mixed RCBD Σ satisfies compound symmetry. Compound symmetry (CS)
is the case where all variances are equal and all covariances are equal:

Σ =




σ2
y ρσ2

y · · · ρσ2
y

ρσ2
y σ2

y · · · ρσ2
y

...
...

...
ρσ2

y ρσ2
y · · · σ2

y




where σ2
y = σ2 + σ2

β .

α-level Tests

Recalling the situation in the mixed two factor analysis, we have

1. An α-level test of H0 : τ1 = · · · = τa = 0 is

MSA

MSAB
> Fa−1,(a−1)(b−1)(α)

2. An α-level test of H0 : τi = τi′ is

|ȳi. − ȳi′.|√
2MSAB

b

> t(a−1)(b−1)(α/2)

3. An α-level simultaneous Tukey-Kramer test of H0 : τi = τi′ for 1 ≤ i < i′ ≤ a is

|ȳi. − ȳi′.|√
2MSAB

b

>
qa,(a−1)(b−1)(α)√

2

4. An α-level simultaneous Dunnett test of H0 : τi = τ1 for 2 ≤ i ≤ a, where level 1 of a is control, is

|ȳi. − ȳi′.|√
2MSAB

b

> da−1,(a−1)(b−1)(α)

5. An α-level test of H0 : σ2
β = 0 is

MSB

MSAB
> Fb−1,(a−1)(b−1)(α)

It can be shown that these tests remain valid for a more general variance-covariance, Σ, structure called
the Huynh-Feldt sphericity (S) structure. RCBD’s that satisfy the (S) condition are known as one-way
repeated measurement (RM) designs. It is recommended that all mixed RCBD’s be analyzed as one-way
RM designs since we can test for the (S) condition in a similar manner as Levene’s test.
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5.2 One-Way Repeated Measurement Designs

The major difference between the mixed RCBD and the one-way RM design is in the conceptualization of a
’block’. In many cases the ’block’ is a human or an animal and all the a levels of A are observed on the same
subject. The a levels of A may be a different drugs, or a different dosages of the same drug, or measurements
of the same drug at the same dosage level over a period of a times, say t1, · · · , ta. In all these cases the drug
(dosage) mean responses are to be compared for these a levels. That is, a test of

H0 : τ1 = · · · = τa = 0

is needed.

Usually, the subjects are assumed to be randomly selected from a population of subjects. Hence, the
subject factor (B) will be considered random in RM designs.

The major difference between mixed RCBD’s and RM designs is that in RM designs the levels of factor
A cannot be observed simultaneously. The following example illustrates a typical RM design.

Example

Suppose three drugs D1, D2, and D3 are to be compared with respect to suppression of enzyme X, which is
produced and secreted by the liver. Assume each of n = 6 subjects is to be observed with each of the three
drugs.

Subject 1 takes the drugs in the order D1, D2, D3. It is assumed that D1 is administered and then enzyme
X measured (y11). After the effect of D1 is worn-off, D2 is administered and enzyme X measured, etc. Note
that y11, y21, y31 for subject 1 cannot be obtained simultaneously.

This raises another issue to be considered and controlled in RM designs. This is the order effect. If all
the six subjects are treated with D1 followed by D2 followed by D3, then how can one distinguish observed
differences between D1, D2, and D3 from the fact that the drugs were given in the order (D1, D2, D3)? Are
these differences due to true differences between the drugs or the order in which they are observed?

In RM designs, it is important to control the possible order effects. In the above example, this may be
done as follows.

Consider three orders: (D1, D2, D3), (D2, D3, D1), (D3, D1, D2) and randomly assign two subjects to
each order. The following table is one possible randomization:

subject order
1 D1 D2 D3

2 D2 D3 D1

3 D1 D2 D3

4 D3 D1 D2

5 D3 D1 D2

6 D2 D3 D1

Note that each drug is observed first by two subjects, second by two subjects, and third by two subjects.

In certain RM designs the order effect is impossible to eliminate. For example, let t1 < t2 < · · · < ta be
a times and let τi be the effect of the drug D at time ti. Assume the drug, D, is given to all subjects at the
same dosage level. The following is an example for a = 4;
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i ti time description
1 t1 start of enzyme X baseline measured prior

study to administration of drug D

2 t2 Day 1 enzyme X measured 1 day after
administration of drug D

3 t3 Day 3 enzyme X measured 3 days after
administration of drug D

4 t4 Day 7 enzyme X measured 7 days after
administration of drug D

Hence, measurements are made on each subject a = 4 times in the same order. With this type of design,
observations observed closer together in time are more highly correlated than observations further apart in
time. This correlation structure violates the (CS) structure assumed under the mixed RCBD.

The more general (S) structure for Σ is now introduced.

5.2.1 The Huynh-Feldt Sphericity (S) Structure

The Huynh-Feldt sphericity structure is given by

σii′ =

{
2γi + δ if i = i′

γi + γi′ if i 6= i′

Of course, for j 6= j′, Cov(yij , yi′j′) = 0, i.e. observations taken on different subjects are independent.
The (S) structure implies the following (prove!):

1. All pairwise comparisons of treatments have the same variance

V ar(ȳi. − ȳi′.) =
2δ

b
.

2. The variance of any sample contrast φ̂ =
∑a

i=1 ciȳi.,
∑

ci = 0, is free of γ1, · · · , γa. It is given by

V ar(φ̂) =
δ

b

a∑

i=1

c2
i .

3. The covariance between any two contrasts, φ̂c =
∑a

i=1 ciȳi. and φ̂d =
∑a

i=1 diȳi., say, is free of
γ1, · · · , γa. It is given by

Cov(φ̂c, φ̂d) =
δ

b

a∑

i=1

cidi .

5.2.2 The One-Way RM Design : (S) Structure

The statistical model for the one way RM design under the (S) structure is

yij = µ + τi + βj + εij

where

• ∑a
i=1 τi = 0,

• the b subjects are a random sample from a population of subjects following a normal distribution with
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1. E(yij) = µ + τi

2. The variance-covariance matrix of the observations on the same subject, y′j = (y1j , · · · , yaj),
satisfies the (S) condition.

Under the one-way RM model where Σ satisfies the (S) condition we have

1. an α-level test of H0 : τ1 = · · · = τa = 0 is

MSA/MSAB > Fa−1,(a−1)(b−1)(α) ;

2. an α-level test of H0 : τi = τi′ is

|ȳi. − ȳi′.|√
2MSAB

b

> t(a−1)(b−1)(α/2) ;

3. a set of (1− α)100% Tukey-Kramer confidence intervals for all
(
a
2

)
pairwise comparisons τi − τi′ is

(ȳi. − ȳi′.) ± qa,(a−1)(b−1)(α)

√
MSAB

b
,

i.e. a test of H0 : τi = τi′ at MEER=α is

|ȳi. − ȳi′.|√
2MSAB

b

>
qa,(a−1)(b−1)(α)√

2
;

and

4. a set of (1− α)100% Dunnet confidence intervals for all a− 1 comparisons τi − τ1 (treatments versus
control) is

(ȳi. − ȳ1) ± da−1,(a−1)(b−1)(α)

√
2MSAB

b
,

i.e. a test of H0 : τi = τ1 at MEER=α is

|ȳi. − ȳ1|√
2MSAB

b

> da−1,(a−1)(b−1)(α) .

These results depend on the (S) condition. Actually, in the one-way RM design, for all the tests to hold
a necessary and sufficient condition is that Σ satisfies the (S) condition. For the proof of this, please see

Huynh, H. and Feldt, L. S. (1970), ”Conditions under which the mean square ratios in the
repeated measurements designs have exact F distributions”, Journal of the American Statistical
Association, 65, 1582-1589.

The following example is taken from Mike Stoline’s class notes.

Example

In a pre-clinical trial pilot study b = 6 dogs are randomly selected and each dog is given a standard dosage of
each of 4 drugs D1, D2, D3, and D4. These drugs are compounds that are chemically quite similar and each is
hypothesized to be effective in the stabilization of the heart function. Four measures of the stabilization of the
heart function are obtained for each dog for each drug type, assuming the effect of previously-administered
drugs have worn off. These measures are differences between rates measured immediately prior the injection
of the drug and rates measured one hour after injection in all cases. The order effect was partially removed
by selecting one of the four drug orders below for each dog:
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drug order order of administration
1 D3, D4, D1, D2

2 D2, D3, D4, D1

3 D4, D1, D2, D3

4 D1, D2, D3, D4

The data are (a large entry indicates high stabilization of heart-rate)

Drug Level
Dog D1 D2 D3 D4

1 2.6 4.6 5.2 4.2
2 3.9 5.1 6.3 5.0
3 4.2 5.8 7.1 5.8
4 2.4 3.9 5.1 4.0
5 3.3 5.2 6.3 3.8
6 3.9 5.5 5.2 4.5

Assuming that the (S) condition is satisfied, we may use the following SAS code to perform the ANOVA
F -test as well as follow-up Tukey-Kramer analysis.

OPTIONS LS=80 PS=66 NODATE;
DATA RM1;
INPUT DOG DRUG Y @@;
CARDS;

1 1 2.6 1 2 4.6 1 3 5.2 1 4 4.2
2 1 3.9 2 2 5.1 2 3 6.3 2 4 5.0
3 1 4.2 3 2 5.8 3 3 7.1 3 4 5.8
4 1 2.4 4 2 3.9 4 3 5.1 4 4 4.0
5 1 3.3 5 2 5.2 5 3 6.3 5 4 3.8
6 1 3.9 6 2 5.5 6 3 5.2 6 4 4.5

;

PROC GLM;
CLASS DRUG DOG;
MODEL Y=DRUG DOG;
LSMEANS DRUG/PDIFF ADJUST=TUKEY;

RUN;
QUIT;

---------------------------------------------------------

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 8 28.20166667 3.52520833 22.71 <.0001
Error 15 2.32791667 0.15519444

Corrected Total 23 30.52958333

Source DF Type III SS Mean Square F Value Pr > F

DRUG 3 19.30458333 6.43486111 41.46 <.0001
DOG 5 8.89708333 1.77941667 11.47 0.0001

Adjustment for Multiple Comparisons: Tukey

LSMEAN
DRUG Y LSMEAN Number

1 3.38333333 1
2 5.01666667 2
3 5.86666667 3
4 4.55000000 4

Least Squares Means for effect DRUG
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y
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i/j 1 2 3 4

1 <.0001 <.0001 0.0006
2 <.0001 0.0095 0.2134
3 <.0001 0.0095 0.0002
4 0.0006 0.2134 0.0002

Thus, there is a significant difference among the four drugs (F = 41.46, p-value < .0001). From the
Tukey-Kramer procedure, we get the following:

• Drug 3 is superior to all other drugs.

• Drug 1 is inferior to the other drugs.

• Drugs 2 and 4 are the same.

5.2.3 One-way RM Design : General

An estimate of the departure of Σ from the (S) structure is

e =
a2(σ̄· − σ̄··)2

(a− 1)[
∑∑

σ2
ij − 2a

∑
σ̄2

j + a2σ̄2··]

where

• σ̄·· is the mean of all a2 entries of Σ.

• σ̄· is the mean of the diagonal entries of Σ.

• σ̄j is the mean of row j entries of Σ.

The value of e satisfies 1/(a− 1) ≤ e ≤ 1.0. The (S) condition is satisfied if and only if e = 1.0.
The question now is ”How can it be determined whether Σ satisfies (S), i.e. e = 1?” The answer to this

question is the Huynh-Feldt modification of the Mauchly (1940) test for sphericity.
Whenever the (S) condition is not met we use the Greenhouse-Geisser (G-G) e-adjusted test of

H0 : τ1 = · · · = τa = 0

given by
MSA

MSAB
> F(a−1)ê,(a−1)(b−1)ê(α) .

The G-G e-adjusted test reduces to the usual F -test if ê = 1. Hence, in this class, we will always use the
G-G e-adjusted test regardless of the result of Mauchly’s test.

Example

We will reconsider the dogs’ heart-rate example once more. The following SAS code produces Mauchly’s
test as well as the G-G e-adjusted F -test.

OPTIONS LS=80 PS=66 NODATE;
DATA RM2;
INPUT D1 D2 D3 D4;
CARDS;

2.6 4.6 5.2 4.2
3.9 5.1 6.3 5.0
4.2 5.8 7.1 5.8
2.4 3.9 5.1 4.0
3.3 5.2 6.3 3.8
3.9 5.5 5.2 4.5

;

PROC GLM;
MODEL D1-D4 = /NOUNI;
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REPEATED DRUG/PRINTE NOM;
RUN;
QUIT;

----------------------------------------------------

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.1627138 6.7586721 0.2392
Orthogonal Components 5 0.426476 3.1720748 0.6735

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

DRUG 3 19.30458333 6.43486111 41.46 <.0001
Error(DRUG) 15 2.32791667 0.15519444

Adj Pr > F
Source G - G H - F

DRUG <.0001 <.0001
Error(DRUG)

Greenhouse-Geisser Epsilon 0.7576
Huynh-Feldt Epsilon 1.4225

Thus the test for H0 : e = 1 is not rejected using Mauchly’s criterion (p-value = 0.6735). The G-G
estimate of e is ê = 0.7576. The G-G e-adjusted test for H0 : τ1 = τ1 = τ3 = τ4 = 0 is rejected with p-value
< .0001.

Follow-up t-tests may be performed without assuming equality of variances. This is done using PROC
MEANS in SAS to get pairwise t-test statistics.

OPTIONS LS=80 PS=66 NODATE;
DATA RM2;
INPUT D1 D2 D3 D4;
D12 = D2-D1;
D13 = D3-D1;
D14 = D4-D1;
D23 = D3-D2;
D24 = D4-D2;
D34 = D4-D3;
CARDS;

2.6 4.6 5.2 4.2
3.9 5.1 6.3 5.0
4.2 5.8 7.1 5.8
2.4 3.9 5.1 4.0
3.3 5.2 6.3 3.8
3.9 5.5 5.2 4.5

;

PROC MEANS N MEAN STDERR T PRT;
VAR D12 D13 D14 D23 D24 D34;

RUN;
QUIT;

--------------------------------------------

The MEANS Procedure

Variable N Mean Std Error t Value Pr > |t|
--------------------------------------------------------------------
D12 6 1.6333333 0.1173788 13.92 <.0001
D13 6 2.4833333 0.2522124 9.85 0.0002
D14 6 1.1666667 0.2108185 5.53 0.0026
D23 6 0.8500000 0.2513298 3.38 0.0196
D24 6 -0.4666667 0.2472066 -1.89 0.1177
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D34 6 -1.3166667 0.2535306 -5.19 0.0035
--------------------------------------------------------------------

Once again the only drugs that are not significantly different are D2 and D4.

5.3 Two-Way Repeated Measurement Designs

In this section we will consider the two-way RM model with repeated measures on one factor. We will define
the model for the general unbalanced cased but we will confine our attention to the balanced case as it is the
most common design. Let A be the between-subject factor with a fixed levels and B be the within-subject
(repeated) factor with b levels. A random sample of ni subjects are selected and assigned to the ith level of
A. The b levels of B are observed for each subject in each A group. This is known as the classic two-way
RM design.

The layout for the classic two-way RM design looks like the following:

Treatments (B)
Groups Group

(A) subjects 1 · · · b Means
S1 y111 y1b1

1
...

... · · · ... ȳ1..

Sn1 y11n1 y1bn1

S1 y211 y2b1

2
...

... · · · ... ȳ2..

Sn2 y21n2 y2bn2

...
...

...
...

...

S1 ya11 yab1

a
...

... · · · ... ȳa..

Sna ya1na yabna

Treatment Means ȳ.1. · · · ȳ.b. ȳ...

This is a very widely used design. Between group comparisons involve distinct subjects and hence are
similar to such comparisons in the single factor CRD model. Within treatment comparisons involve the same
subjects and are analyzed similarly to the one-way RM design.

Sometimes it is important to consider an unbalanced case. For instance, suppose the groups are 3 clinics
serving different subjects in different cities. Suppose that two of the three clinics serve cities that are medium-
sized while the third clinic is serving a large metropolitan population. Suppose that the third clinic services
a population that is four times as large as the other two. The recommended sample sizes are : n1 = n2 = n
and n3 = 4n.

The classic two-way RM model is

yijk = µ + τi + βj + (τβ)ij + πk(i) + (βπ)jk(i) + εijk,





i = 1, . . . , a

j = 1, . . . , b

k = 1, . . . , ni

where

• τi is the ith group effect (
∑

i τi = 0)

• βj is the jth treatment effect (
∑

j βj = 0)
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• (τβ)ij is the interaction of the ith group and the jth treatment (
∑

i(τβ)ij =
∑

j(τβ)ij = 0)

• πk(i) is the random effect of subject k nested within group i. The N =
∑a

i=1 ni πk(i) random variables
are assumed to follow a N(0, σ2

π) distribution.

• (βπ)jk(i) is the random joint interaction effect of subject k and treatment j nested within group i.
(βπ)’s are assumed to satisfy

1. (βπ)jk(i) follows a N(0, b−1
b σ2

βπ).

2. Cov((βπ)jk(i), (βπ)j′k(i)) = −σ2
βπ

b for j 6= j′.

3. Cov((βπ)jk(i), (βπ)j′k′(i′)) = 0 if k 6= k′ or i 6= i′.

• εijk is a random error term which is assumed to follow a N(0, σ2) distribution.

• The πk(i), (βπ)jk(i), and εijk are mutually independent.

Note that the variables (βπ)jk(i) have a (CS) structure similar to the (CS) structure of (τβ)ij in the
mixed two factor model:

yijk = µ + τi + βj + (τβ)ij + εijk

where τi is fixed and βj is random. In this model we have

V ar((τβ)ij) =
a− 1

a
σ2

τβ and Cov((τβ)ij , (τβ)i′j) =
−σ2

τβ

a
.

Let N =
∑a

i=1 ni, df1 = N − a, and df2 = (N − a)(b− 1). Further, let

MS1 =
a∑

i=1

ni∑

k=1

b(ȳi.k − ȳi..)2

df1

and

MS2 =
a∑

i=1

b∑

j=1

ni∑

k=1

(yijk − ȳi.k − ȳij. + ȳi..)2

df2
.

The ANOVA table for the classic two-way RM design is

Source of variation df MS E(MS) F
Between Subjects N − 1

A a− 1 MSA σ2 + bσ2
π +

b
Pa

i=1 niτ2
i

a−1
MSA/MS1

Subjects within groups df1 MS1 σ2 + bσ2
π

Within Subjects N(b− 1)

B b− 1 MSB σ2 + σ2
βπ +

N
Pa

i=1 β2
i

b−1
MSB/MS2

AB (a− 1)(b− 1) MSAB σ2 + σ2
βπ +

Pa
i=1

Pb
j=1 ni(τβ)2ij

(a−1)(b−1)
MSAB/MS2

B× Subjects within groups df2 MS2 σ2 + σ2
βπ

Comparisons of means may be in order if the main effects are significant. If the interaction effect is not
significant, then we have the following α-level tests:

1. A test of H0 : τi = τi′ is
|ȳi.. − ȳi′..|√

MS1
b

(
1
ni

+ 1
ni′

) > tdf1(α/2)
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2. A test of H0 : βj = βj′ is
|ȳ.j. − ȳ.j′.|√

2MS2
a2

(∑a
i=1

1
ni

) > tdf2(α/2)

One may make simultaneous comparisons by making the appropriate adjustments in the above tests.
If the AB interaction effect is significant, comparisons of the means of one factor needs to be performed

within the levels of the other factor. Let µij be the mean of cell (i, j). The estimator of µij is ȳij..
Since

V ar(ȳij. − ȳij′.) =
2MS2

ni

the α-level test of H0 : µij = µij′ (comparison of treatments j and j′ within Group i)

|ȳij. − ȳij′.|√
2MS2

ni

> tdf2(α/2) .

The comparison of groups i and i′ is, however, slightly more problematic since

V ar(ȳij. − ȳi′j.) =
( 1

ni
+

1
ni′

)(
σ2 + σ2

π +
b− 1

b
σ2

βπ

)
=:

( 1
ni

+
1

ni′

)
M

and M cannot be unbiasedly estimated by either MS1 or MS2. However,

MS3 =
(df1)(MS1) + (df2)(MS2)

df1 + df2

is an unbiased estimate of M . Using the Satterthwaite approximation formula, we get the degrees of freedom
associated with MS3 as

df3 =
[(df1)(MS1) + (df2)(MS2)]2

(df1)(MS1)2 + (df2)(MS2)2

Thus an α-level test of H0 : µij = µi′j is

|ȳij. − ȳij′.|√
MS3

(
1
ni

+ 1
ni′

) > tdf3(α/2) .

For the balanced case, i.e. n1 = n2 = · · · = na = n, N = na and the ANOVA table is

Source of variation df MS F
Between Subjects N − 1

A (Groups) a− 1 MSA FA = MSA/MS1

Subjects within groups a(n− 1) MS1

Within Subjects N(b− 1)

B b− 1 MSB FB = MSB/MS2

AB (a− 1)(b− 1) MSAB FAB = MSAB/MS2

B× Subjects within groups a(n− 1)(b− 1) MS2

Comparisons of means in the balanced case are summarized in the following table:

Parameter Estimator Standard Error of Estimator df

τi − τi′ ȳi.. − ȳi′..

√
2MS1

bn df1

βj − βj′ ȳ.j. − ȳ.j′.

√
2MS2

an df2

µij − µij′ ȳij. − ȳij′.

√
2MS2

n df2

µij − µi′j ȳij. − ȳi′j.

√
2MS3

n df3
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In the balanced case MS3 and df3 are given by

MS3 =
MS1 + (b− 1)MS2

b

and

df3 =
a(n− 1)[MS1 + (b− 1)MS2]2

MS2
1 + (b− 1)MS2

2

The following example is taken from Milliken and Johnson : The Analysis of Messy Data (Vol 1)

Example

An experiment involving d drugs was conducted to study each drug effect on the heart rate of humans. After
the drug was administered, the heart rate was measured every five minutes for a total of t times. At the start
of the study, n female human subjects were randomly assigned to each drug. The following table contains
results from one such study.

DRUG

Person AX23 BWW9 CONTROL
within
drug T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

1 72 86 81 77 85 86 83 80 69 73 72 74
2 78 83 88 81 82 86 80 84 66 62 67 73
3 71 82 81 75 71 78 70 75 84 90 88 87
4 72 83 83 69 83 88 79 81 80 81 77 72
5 66 79 77 66 86 85 76 76 72 72 69 70
6 74 83 84 77 85 82 83 80 65 62 65 61
7 62 73 78 70 79 83 80 81 75 69 69 68
8 69 75 76 70 83 84 78 81 71 70 65 65

The following SAS code performs the analyses:

OPTIONS LS=80 PS=66 NODATE;
DATA RM;

INPUT S @;
DO A=1,2,3;

DO B = 1,2,3,4;
INPUT Y @@;
OUTPUT;

END;
END;

CARDS;
1 72 86 81 77 85 86 83 80 69 73 72 74
2 78 83 88 81 82 86 80 84 66 62 67 73
3 71 82 81 75 71 78 70 75 84 90 88 87
4 72 83 83 69 83 88 79 81 80 81 77 72
5 66 79 77 66 86 85 76 76 72 72 69 70
6 74 83 84 77 85 82 83 80 65 62 65 61
7 62 73 78 70 79 83 80 81 75 69 69 68
8 69 75 76 70 83 84 78 81 71 70 65 65

;

PROC SORT DATA=RM;
BY A B S;

RUN;
QUIT;

PROC MEANS MEAN NOPRINT;
VAR Y;
BY A B;
OUTPUT OUT=OUTMEAN MEAN=YM;

RUN;
QUIT;
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GOPTIONS DISPLAY;
PROC GPLOT DATA=OUTMEAN;

PLOT YM*B=A;
SYMBOL1 V=DIAMOND L=1 I=JOIN CV=BLUE;
SYMBOL2 V=TRIANGLE L=1 I=JOIN CV=BLACK;
SYMBOL3 V=CIRCLE L=1 I=JOIN CV=ORANGE;
TITLE3 ’DRUG BY TIME’;

RUN;
QUIT;

TITLE1 ’HEART RATE DATA’;
PROC GLM DATA=RM;

CLASS A B S;
MODEL Y = A S(A) B A*B B*S(A);
TEST H=A E=S(A);
TEST H=B A*B E=B*S(A);
LSMEANS A*B;

RUN;
QUIT;

--------------------------------------------------------------------------------

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 95 4907.489583 51.657785 . .
Error 0 0.000000 .

Corrected Total 95 4907.489583

Source DF Type III SS Mean Square F Value Pr > F

A 2 1315.083333 657.541667 . .
S(A) 21 2320.156250 110.483631 . .
B 3 282.614583 94.204861 . .
A*B 6 531.166667 88.527778 . .
B*S(A) 63 458.468750 7.277282 . .

Tests of Hypotheses Using the Type III MS for S(A) as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

A 2 1315.083333 657.541667 5.95 0.0090

Tests of Hypotheses Using the Type III MS for B*S(A) as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

B 3 282.6145833 94.2048611 12.95 <.0001
A*B 6 531.1666667 88.5277778 12.16 <.0001

--------------------------------------------------------------------------------

Least Squares Means

A B Y LSMEAN

1 1 70.5000000
1 2 80.5000000
1 3 81.0000000
1 4 73.1250000
2 1 81.7500000
2 2 84.0000000
2 3 78.6250000
2 4 79.7500000
3 1 72.7500000
3 2 72.3750000
3 3 71.5000000
3 4 71.2500000
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The interaction plot as well as the F -test show a significant interaction.

Compare times within drugs

The common standard error is

se(ȳij. − ȳij′.) =

√
2MS2

n
=

√
(2)(7.28)

8
= 1.35

The least significant difference (LSD) is

LSD = t63(.025)

√
2MS2

n
= 2.00(1.35) = 2.70 .

Thus any |ȳij. − ȳij′.| that exceeds 2.70 indicates a significant difference between µij and µij′ .
This gives us the following set of underlining patterns:

DRUG 1 : AX23

T1 T4 T2 T3
70.5 73.1 80.5 81.0
------------ ------------

DRUG 2 : BWW9

T3 T4 T1 T2
78.6 79.8 81.8 84.0
------------

------------
------------

DRUG 3 : CONTROL

T4 T3 T2 T1
71.3 71.5 72.4 72.8
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----------------------------

Compare drugs within times

The common standard error is

se(ȳij. − ȳij′.) =

√
2MS3

n
=

√
2(MS1 + (b− 1)MS2)

nb
=

√
2(110.5 + (3)(7.28))

(2)(8)
= 2.876

with

df3 =
a(n− 1)[MS1 + (b− 1)MS2]2

MS2
1 + (b− 1)MS2

2

=
3(7)[110.5 + (3)(7.28)]2

(110.5)2 + (3)(7.28)2
= 29.7 ≈ 30

The least significant difference (LSD) is

LSD = t30(.025)

√
2MS3

n
= 2.042(2.876) = 5.87 .

Thus any |ȳij. − ȳi′j.| that exceeds 5.87 indicates a significant difference between µij and µi′j .
This gives us the following set of underlining patterns:

TIME 1
AX23 CONTROL BWW9
70.5 72.8 81.75
--------------

TIME 2
CONTROL AX23 BWW9
72.4 80.5 84.0

------------

TIME 3
CONTROL BWW9 AX23
71.5 78.6 81.0

------------

TIME 4
CONTROL AX23 BWW9
71.3 73.1 79.8
----------------

The following example taken from Milliken and Johnson illustrates how SAS can be used to make com-
parisons of means in the absence of a significant interaction.

Example

This experiment involved studying the effect of a dose of a drug on the growth of rats. The data set consists
of the growth of 15 rats, where 5 rats were randomly assigned to each of the 3 doses of the drug. The weights
were obtained each week for 4 weeks.
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Week
Dose Rat 1 2 3 4

1 1 54 60 63 74
2 69 75 81 90
3 77 81 87 94
4 64 69 77 83
5 51 58 62 71

2 1 62 71 75 81
2 68 73 81 91
3 94 102 109 112
4 81 90 95 104
5 64 69 72 78

3 1 59 63 66 75
2 56 66 70 81
3 71 77 84 80
4 59 64 69 76
5 65 70 73 77

The SAS code and output are given below:

OPTIONS LS=80 PS=66 NODATE;
DATA RM1;

DO A=1,2,3;
DO S=1,2,3,4,5;

DO B = 1,2,3,4;
INPUT Y @@;
OUTPUT;

END;
END;

END;
CARDS;
54 60 63 74
69 75 81 90
77 81 87 94
64 69 77 83
51 58 62 71
62 71 75 81
68 73 81 91
94 102 109 112
81 90 95 104
64 69 72 78
59 63 66 75
56 66 70 81
71 77 84 80
59 64 69 76
65 70 73 77
;

PROC SORT DATA=RM1;
BY A B S;

RUN;
QUIT;

PROC MEANS MEAN NOPRINT;
VAR Y;
BY A B;
OUTPUT OUT=OUTMEAN MEAN=YM;

RUN;
QUIT;

GOPTIONS DISPLAY;
PROC GPLOT DATA=OUTMEAN;

PLOT YM*B=A;
SYMBOL1 V=DIAMOND L=1 I=JOIN CV=BLUE;
SYMBOL2 V=TRIANGLE L=1 I=JOIN CV=BLACK;
SYMBOL3 V=CIRCLE L=1 I=JOIN CV=ORANGE;
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TITLE3 ’DOSE BY TIME’;
RUN;
QUIT;

TITLE1 ’RAT BODY WEIGHT DATA’;
PROC GLM DATA=RM1;

CLASS A B S;
MODEL Y = A S(A) B A*B B*S(A);
TEST H=A E=S(A);
TEST H=B A*B E=B*S(A);
LSMEANS A/PDIFF E=S(A);
LSMEANS B/PDIFF E=B*S(A);

RUN;
QUIT;

----------------------------------------------------------

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 59 10440.18333 176.95226 . .

Error 0 0.00000 .

Corrected Total 59 10440.18333

Source DF Type III SS Mean Square F Value Pr > F

A 2 2146.433333 1073.216667 . .
S(A) 12 5405.500000 450.458333 . .
B 3 2678.183333 892.727778 . .
A*B 6 32.366667 5.394444 . .
B*S(A) 36 177.700000 4.936111 . .

Tests of Hypotheses Using the Type III MS for S(A) as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

A 2 2146.433333 1073.216667 2.38 0.1345

Tests of Hypotheses Using the Type III MS for B*S(A) as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

B 3 2678.183333 892.727778 180.86 <.0001
A*B 6 32.366667 5.394444 1.09 0.3854

The GLM Procedure
Least Squares Means

Standard Errors and Probabilities Calculated Using the Type III MS
for S(A) as

an Error Term

LSMEAN
A Y LSMEAN Number

1 72.0000000 1
2 83.6000000 2
3 70.0500000 3

Least Squares Means for effect A
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3

1 0.1095 0.7764
2 0.1095 0.0664
3 0.7764 0.0664
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Least Squares Means
Standard Errors and Probabilities Calculated Using the Type III MS for B*S(A)

as an Error Term

LSMEAN
B Y LSMEAN Number

1 66.2666667 1
2 72.5333333 2
3 77.6000000 3
4 84.4666667 4

Least Squares Means for effect B
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3 4

1 <.0001 <.0001 <.0001
2 <.0001 <.0001 <.0001
3 <.0001 <.0001 <.0001
4 <.0001 <.0001 <.0001

Since there is no significant interaction, the means of A and B can be compared at the highest level.
Using the output from LSMEANS one obtains the following underlining patterns:

DOSES : D3 D1 D2
70.1 72.0 83.6
--------------------

WEEKS : W1 W2 W3 W4
66.3 72.5 77.6 84.5

Two-Way RM Design : General Case

So far, we have considered the analysis of the classic two-way RM design under the assumption that the (S)
condition is satisfied for each level of A. Here we consider the analysis of a two-way RM design where the
(S) condition may not hold.
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The analysis strategy will be as follows:

1. Test the B main effect and the AB interaction effect using the G-G e-adjusted F -test.

2. Run a complete one-way ANOVA of the the levels of A within each level of B. That is, for level j of
B, we test H0 : µ1j = · · · = µaj and make multiple comparisons of means using the data

A
1 · · · i · · · a

y1j1 · · · yij1 · · · yaj1

...
...

...
y1jn1 · · · yijni

· · · yajna

3. Run a complete one-way RM analysis of the levels of B within each level of A using the G-G e-
adjusted one-way RM F -tests followed by multiple comparisons of means. That is, for level i of A, we
test H0 : µi1 = · · · = µib using the data

B
Subject 1 · · · j · · · a

1 yi11 · · · yij1 · · · yib1

...
...

...
...

k yi1k · · · yijk · · · yibk

...
...

...
...

ni yi1ni · · · yijni · · · yibni

Example

We will revisit the body weight of rats data considered above. The following SAS code is used to get the
tests for B and AB effects.

OPTIONS LS=80 PS=66 NODATE;
DATA RM3;
INPUT A Y1 Y2 Y3 Y4;
CARDS;
1 54 60 63 74
1 69 75 81 90
1 77 81 87 94
1 64 69 77 83
1 51 58 62 71
2 62 71 75 81
2 68 73 81 91
2 94 102 109 112
2 81 90 95 104
2 64 69 72 78
3 59 63 66 75
3 56 66 70 81
3 71 77 84 80
3 59 64 69 76
3 65 70 73 77
;

TITLE1 ’RAT BODY WEIGHT DATA : 2’;
PROC GLM DATA=RM3;

CLASS A;
MODEL Y1-Y4 = A;
REPEATED B 4/ PRINTE;

RUN;
QUIT;

--------------------------------------------------------------
SELECTED OUTPUT
--------------------------------------------------------------

RAT BODY WEIGHT DATA : 2 117
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Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.0459293 33.031436 <.0001
Orthogonal Components 5 0.3345438 11.740697 0.0385

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

A 2 2146.433333 1073.216667 2.38 0.1345
Error 12 5405.500000 450.458333

RAT BODY WEIGHT DATA : 2 118

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

B 3 2678.183333 892.727778 180.86 <.0001
B*A 6 32.366667 5.394444 1.09 0.3854
Error(B) 36 177.700000 4.936111

Adj Pr > F
Source G - G H - F

B <.0001 <.0001
B*A 0.3811 0.3846
Error(B)

Greenhouse-Geisser Epsilon 0.6058
Huynh-Feldt Epsilon 0.8269

Using the G-G e-adjusted tests one observes that the AB interaction effect is not significant while the B
main effect is significant both at α = .05. Mauchly’s test for the (S) condition is significant indicating that
the analyses run earlier may not be the appropriate ones.

We now run one-way RM analyses of B within each level of A.

PROC SORT DATA=RM3;
BY A;

RUN;
QUIT;

PROC GLM DATA=RM3;
MODEL Y1-Y4=/NOUNI;
REPEATED B 4/PRINTE;
BY A;

RUN;
QUIT;

-----------------------------------------------------------------
SELECTED OUTPUT
-----------------------------------------------------------------

RAT BODY WEIGHT DATA : 2 119

------------------------------------- A=1 --------------------------------------

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.1626147 4.9445682 0.4227
Orthogonal Components 5 0.27398 3.5244612 0.6197



5.3. TWO-WAY REPEATED MEASUREMENT DESIGNS 121

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

B 3 1023.600000 341.200000 284.33 <.0001
Error(B) 12 14.400000 1.200000

Adj Pr > F
Source G - G H - F

B <.0001 <.0001
Error(B)

Greenhouse-Geisser Epsilon 0.6286
Huynh-Feldt Epsilon 1.1713

------------------------------------- A=2 --------------------------------------

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.0706227 7.2149884 0.2051
Orthogonal Components 5 0.3812237 2.6252267 0.7575

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

B 3 1014.000000 338.000000 78.00 <.0001
Error(B) 12 52.000000 4.333333

Adj Pr > F
Source G - G H - F

B <.0001 <.0001
Error(B)

Greenhouse-Geisser Epsilon 0.6370
Huynh-Feldt Epsilon 1.2055

------------------------------------- A=3 --------------------------------------

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.0055188 14.15447 0.0147
Orthogonal Components 5 0.052686 8.0126045 0.1555

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

B 3 672.9500000 224.3166667 24.19 <.0001
Error(B) 12 111.3000000 9.2750000

Adj Pr > F
Source G - G H - F

B 0.0021 0.0004
Error(B)

Greenhouse-Geisser Epsilon 0.4800
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Huynh-Feldt Epsilon 0.6772

Sphericity is satisfied in all the three cases. The repeated factor B is also significant in all the cases.
Thus, we may compare the means of B using the MSE as a denominator. In the situation where the (S)
condition is not satisfied in one or more of the groups, one uses Welch t-tests, as shown in the last example
of Section 5.2, to compare the means of B in the particular group which does not satisfy the (S) condition.

The following SAS code re-creates the data as A, B, S, Y columns and runs:

• the one-way ANOVA for the factor A within each level of B;

• comparisons of the A means for each level of B; and

• comparisons of the B means within each level of A.

DATA RM4;
SET RM3;
ARRAY Z Y1-Y4;
DO B=1,2,3,4;

S = _N_;
Y = Z(B);
OUTPUT;

END;
DROP Y1-Y4;

RUN;
QUIT;

PROC SORT DATA=RM4;
BY B;

RUN;
QUIT;

PROC GLM DATA=RM4;
CLASS A;
MODEL Y=A;
LSMEANS A/PDIFF;
BY B;

RUN;
QUIT;

PROC SORT DATA=RM4;
BY A;

RUN;
QUIT;

PROC GLM DATA=RM4;
CLASS B S;
MODEL Y=B S;
LSMEANS B/ PDIFF;
BY A;

RUN;
QUIT;

-------------------------------------------------------------
SELECTED OUTPUT
-------------------------------------------------------------

RAT BODY WEIGHT DATA : 2 140

------------------------------------- B=1 --------------------------------------
The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 428.133333 214.066667 1.93 0.1876
Error 12 1330.800000 110.900000
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Corrected Total 14 1758.933333

Source DF Type III SS Mean Square F Value Pr > F

A 2 428.1333333 214.0666667 1.93 0.1876

The GLM Procedure
Least Squares Means

LSMEAN
A Y LSMEAN Number

1 63.0000000 1
2 73.8000000 2
3 62.0000000 3

Least Squares Means for effect A
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3

1 0.1309 0.8831
2 0.1309 0.1018
3 0.8831 0.1018

------------------------------------- B=2 --------------------------------------
The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 538.533333 269.266667 2.41 0.1319
Error 12 1341.200000 111.766667

Corrected Total 14 1879.733333

Source DF Type III SS Mean Square F Value Pr > F

A 2 538.5333333 269.2666667 2.41 0.1319

The GLM Procedure
Least Squares Means

LSMEAN
A Y LSMEAN Number

1 68.6000000 1
2 81.0000000 2
3 68.0000000 3

Least Squares Means for effect A
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3

1 0.0884 0.9300
2 0.0884 0.0757
3 0.9300 0.0757

------------------------------------- B=3 --------------------------------------
The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F
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Model 2 587.200000 293.600000 2.15 0.1589
Error 12 1636.400000 136.366667

Corrected Total 14 2223.600000

Source DF Type III SS Mean Square F Value Pr > F

A 2 587.2000000 293.6000000 2.15 0.1589

The GLM Procedure
Least Squares Means

LSMEAN
A Y LSMEAN Number

1 74.0000000 1
2 86.4000000 2
3 72.4000000 3

Least Squares Means for effect A
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3

1 0.1190 0.8321
2 0.1190 0.0824
3 0.8321 0.0824

------------------------------------- B=4 --------------------------------------
The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 624.933333 312.466667 2.94 0.0913
Error 12 1274.800000 106.233333

Corrected Total 14 1899.733333

The GLM Procedure
Least Squares Means

LSMEAN
A Y LSMEAN Number

1 82.4000000 1
2 93.2000000 2
3 77.8000000 3

Least Squares Means for effect A
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3

1 0.1235 0.4939
2 0.1235 0.0359
3 0.4939 0.0359

RAT BODY WEIGHT DATA : 2 152

------------------------------------- A=1 --------------------------------------
The GLM Procedure

Dependent Variable: Y

Sum of
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Source DF Squares Mean Square F Value Pr > F

Model 7 2733.600000 390.514286 325.43 <.0001
Error 12 14.400000 1.200000

Corrected Total 19 2748.000000

Source DF Type III SS Mean Square F Value Pr > F

B 3 1023.600000 341.200000 284.33 <.0001
S 4 1710.000000 427.500000 356.25 <.0001

The GLM Procedure
Least Squares Means

LSMEAN
B Y LSMEAN Number

1 63.0000000 1
2 68.6000000 2
3 74.0000000 3
4 82.4000000 4

Least Squares Means for effect B
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3 4

1 <.0001 <.0001 <.0001
2 <.0001 <.0001 <.0001
3 <.0001 <.0001 <.0001
4 <.0001 <.0001 <.0001

------------------------------------- A=2 --------------------------------------
The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 4326.800000 618.114286 142.64 <.0001
Error 12 52.000000 4.333333

Corrected Total 19 4378.800000

Source DF Type III SS Mean Square F Value Pr > F

B 3 1014.000000 338.000000 78.00 <.0001
S 4 3312.800000 828.200000 191.12 <.0001

The GLM Procedure
Least Squares Means

LSMEAN
B Y LSMEAN Number

1 73.8000000 1
2 81.0000000 2
3 86.4000000 3
4 93.2000000 4

Least Squares Means for effect B
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3 4

1 0.0001 <.0001 <.0001
2 0.0001 0.0015 <.0001
3 <.0001 0.0015 0.0002
4 <.0001 <.0001 0.0002
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------------------------------------- A=3 --------------------------------------
The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 1055.650000 150.807143 16.26 <.0001
Error 12 111.300000 9.275000

Corrected Total 19 1166.950000

Source DF Type III SS Mean Square F Value Pr > F

B 3 672.9500000 224.3166667 24.19 <.0001
S 4 382.7000000 95.6750000 10.32 0.0007

The GLM Procedure
Least Squares Means

LSMEAN
B Y LSMEAN Number

1 62.0000000 1
2 68.0000000 2
3 72.4000000 3
4 77.8000000 4

Least Squares Means for effect B
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3 4

1 0.0089 0.0002 <.0001
2 0.0089 0.0414 0.0003
3 0.0002 0.0414 0.0159
4 <.0001 0.0003 0.0159

Using underlining to summarize the results

Group(A) B levels
--------- --------------

1 B1 B2 B3 B4
2 B1 B2 B3 B4
3 B1 B2 B3 B4

Treatment(B) A levels
------------ ------------------

1 A3 A1 A2
------------------

2 A3 A1 A2
------------------

3 A3 A1 A2
------------------

4 A3 A1 A2
----------

----------
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Chapter 6

More on Repeated Measurement
Designs

In this chapter we will further investigate one- and two-way repeated measurement designs. Since RM designs
usually involve a time factor, one may be interested in the pattern of the response variable over time. Thus,
we shall consider trend analysis in one- and two-way RM designs as our first section. Later sections consider
special cases of the two-way RM design.

6.1 Trend Analyses in One- and Two-way RM Designs

6.1.1 Regression Components of the Between Treatment SS (SSB)

Often the treatments in an experiment consist of levels of a quantitative variable. For instance, in a one-way
CRD model, the treatments may be several dosages of the same drug. One is usually interested in developing
an equation for a curve that describes the dose-response relationship. This may be used to find the optimal
dosage level. To this end we want to consider applications of regression procedures within the ANOVA
framework.

As an illustration, consider the fabric strength experiment considered in Chapter 1. The treatment
consists of five different levels of cotton percentages and the response is the strength of the fabric produced.
Each percentage of cotton is randomly assigned to five randomly selected experimental units. This is the
usual CRD framework that is represented by the model

yij = µ + τi + εij , i = 1, · · · , 5, j = 1, · · · , 5 ,

where our interest lies in testing

H0 : τ1 = τ2 = · · · = τ5 = 0
HA : τi 6= 0 for at least one i

which is tested using F0 = MSB/MSW .
We can get more insight into the nature of the relationship of the response, y, and the levels of the

treatment variable, x, if we consider a regression type relationship between x and y; i.e

y = f(x) + ε

For example, one may consider the simple linear regression model

y = β0 + β1x + ε

and test
H0 : β1 = 0

to determine if the response is linearly related to the levels of the treatment.

129
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Partitioning SSB

The variability in the response that is explained by the treatment may now be partitioned into that due to
the linear regression and that due to the remainder that cannot be explained by the regression model. Thus,

SSB = SSR + SSL

where SSR is the sum of squares due to the linear regression and SSL is the sum of squares due to lack of
fit (i.e failure of the linear regression to describe the relationship between x and y).

The ANOVA table for the CRD is

Source df SS MS F0

Between k − 1 SSB MSB F0 = MSB/MSW

Linear Regression 1 SSR MSR FR = MSR/MSW

Lack of Fit k − 2 SSL MSL FL = MSL/MSW

Within (Error) n− k SSW MSW

Total n− 1 SST

One may obtain SSR by fitting an ordinary linear regression model of y on x. This, however, seems
to be the hard way as the F values may have to be computed by hand. An easier way is to find a set of
coefficients to define a contrast among the treatment means. To use this approach we may define contrasts
using the deviations of the treatment levels from the treatment mean as our contrast coefficients. Without
loss of generality, assume that we have a balanced CRD model where r represents the number of replications
per treatment level. Assume also that we have k treatment levels. Then

φR =
k∑

i=1

(xi − x̄)µi

is a contrast (
∑k

i=1(xi − x̄) = 0) whose estimator is

φ̂R =
k∑

i=1

(xi − x̄)ȳi

From φ̂R we get

SSR =
rφ̂2

R∑k
i=1(xi − x̄)2

and
SSL = SSB − SSR .

The F ratios in the above ANOVA table are used to test the following hypotheses:

1. F0 is a test statistic for testing
H0 : τ1 = · · · = τk = 0 ,

the hypothesis that all the treatment means are the same against the alternative that at least two are
different.

2. FR is a test statistic for testing
H0 : β1 = 0 ,

the hypothesis that there is no linear relationship between the response and the levels of the treatment
against the alternative that there is a significant linear relationship.

3. FL is the test statistic for testing
H0 : E(y) = β0 + β1x ,

the hypothesis that the simple linear regression model describes the data against the alternative that
a simple linear model is not sufficient.
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Orthogonal Polynomials

The fitting of curves within the ANOVA framework can be greatly simplified if

1. the design is balanced; and,

2. the treatment levels are equally spaced.

In such a case we may replace (xi − x̄) by a simple set of multipliers known as orthogonal polynomial
coefficients. These coefficients are extensively tabulated but we will use Proc IML in SAS to generate
them. These coefficients enable us to partition SSB into orthogonal linear, quadratic, cubic, quartic, etc.
components each with one degree of freedom. This means that SSB can be completely decomposed using
a polynomial of degree k − 1 with no lack of fit term. The usual procedure is to fit successive terms of the
polynomial starting with the linear term until lack of fit becomes non-significant. This is very widely used
in practice even though it sometimes entail premature stopping.

Assume that cij , i = 1, . . . , k−1, j = 1, . . . , k be the ith order polynomial coefficient for the jth treatment
level. Then

Li =
k∑

j=1

cij ȳj

is the contrast of means associated with the ith order term of the polynomial, and

S2
i =

rL2
i∑k

j=1 c2
ij

is the 1 df sum of squares associated with the ith term.
Proc IML in SAS may be used to generate orthogonal polynomial coefficients. For instance, consider a

case where the treatment has k = 4 levels, say, 10, 20, 30, 40, and 50. The orthogonal polynomial coefficients
for all four terms of the polynomial

y = β0 + β1x + β11x
2 + β111x

3 + β1111x
4

are computed as

proc iml;
x={10 20 30 40 50};
xp=orpol(x,4);
print xp;
run;
quit;

The output is

0.4472136 -0.632456 0.5345225 -0.316228 0.1195229
0.4472136 -0.316228 -0.267261 0.6324555 -0.478091
0.4472136 3.588E-18 -0.534522 1.86E-16 0.7171372
0.4472136 0.3162278 -0.267261 -0.632456 -0.478091
0.4472136 0.6324555 0.5345225 0.3162278 0.1195229

The first column represents the intercept term.
Note that in SAS the treatment levels need not be equally spaced. For example

proc iml;
x={0 25 75 100};
xp=orpol(x,3);
print xp;
run;
quit;
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gives

0.5 -0.632456 0.5 -0.316228
0.5 -0.316228 -0.5 0.6324555
0.5 0.3162278 -0.5 -0.632456
0.5 0.6324555 0.5 0.3162278

The following code and associated plot show how the contrast coefficients are related to the polynomial
terms.

Title1 "Orthogonal Polynomials";
Title2 "5 Equallyspaced Levels";
Data Five;
Length Trend $9;
Input Trend @;
Do X=4,5,6,7,8;
Input Coef @;
Output;
End;
Datalines;
linear -0.632456 -0.316228 1.969E-17 0.3162278 0.6324555
quadratic 0.5345225 -0.267261 -0.534522 -0.267261 0.5345225
cubic -0.316228 0.6324555 6.501E-17 -0.632456 0.3162278
quartic 0.1195229 -0.478091 0.7171372 -0.478091 0.1195229
;

proc print;
run;
quit;

Proc GPlot Data=Five;
Plot Coef*X=Trend / VAxis=Axis1;
Axis1 Label=(A=90 "Coefficient") Order=(-1 To 1 By .1);
Symbol1 C=Black V=Triangle L=1 I=Spline;
Symbol2 C=Black V=Square L=1 I=Spline;
Symbol3 C=Black V=Diamond L=1 I=Spline;
Symbol4 C=Black V=Circle L=1 I=Spline;
Run;
Quit;
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EXAMPLE: An experiment was conducted to determine the effect of storage temperature on potency of
an antibiotic. Fifteen samples of the antibiotic were obtained and three samples, selected at random, were
stored at each of five temperatures. After 30 days of storage the samples were tested for potency. The results
are given below:

Temperature
10◦ 30◦ 50◦ 70◦ 90◦

62 26 16 10 13
55 36 15 11 11
57 31 23 18 9

The contrast coefficients in the following code were generated using Proc IML in SAS.

data potency;
input temp pot @@;
cards;

10 62 10 55 10 57
30 26 30 36 30 31
50 16 50 15 50 23
70 10 70 11 70 18
90 13 90 11 90 9

;

proc glm;
class temp;
model pot = temp;
contrast ’linear’ temp -0.632456 -0.316228 1.969E-17 0.3162278 0.6324555;
contrast ’quadratic’ temp 0.5345225 -0.267261 -0.534522 -0.267261 0.5345225;
contrast ’cubic’ temp -0.316228 0.6324555 6.501E-17 -0.632456 0.3162278;
contrast ’quartic’ temp 0.1195229 -0.478091 0.7171372 -0.478091 0.1195229;

run; quit;

proc glm;
model pot=temp temp*temp;
output out=quadmod p=p;

run;
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quit;

proc gplot data=quadmod;
plot p*temp/ vaxis=axis1;
axis1 label=(A=90 "Y");
symbol1 c=black V=square L=1 I=spline;

run;
quit;

The following is the ANOVA table that is produced by SAS:

Source DF Type I SS Mean Square F Value Pr > F

temp 4 4520.400000 1130.100000 70.63 <.0001
linear 1 3763.199609 3763.199609 235.20 <.0001
quadratic 1 720.859329 720.859329 45.05 <.0001
cubic 1 36.300220 36.300220 2.27 0.1629
quartic 1 0.042866 0.042866 0.00 0.9597

Error 10 160.000000 16.000000
Corrected Total 14 4680.400000

Over the 30 day storage period used in this study temperature had a highly significant effect on the
potency of the antibiotic (P < .0001). The linear and quadratic terms are the only significant trend com-
ponents. So we will fit a quadratic model using SAS’ Proc GLM. Over the temperature range 10◦ to 90◦,
potency may be described by the equation

ŷ = 71.80− 1.60x + .01x2

where ŷ is the expected potency and x is the 30-day storage temperature.
The issue of trend analysis involving more than one independent variable, and response surface method-

ology in general, will be investigated in a greater detail in a later chapter.

6.1.2 RM Designs

Consider those cases where the within subject factor, denoted by B hereafter, involves b time measurements
at times t1 < t2 < . . . < tb. Let φ =

∑b
i=1 cjµ.j or φ =

∑b
i=1 cjµij be a polynomial contrast of the main B

means or the simple B means specific to Group i, respectively. Let φ1, φ2, . . . , φb−1 be the b− 1 orthogonal
polynomial contrasts, where φi is degree i.

One may use the POLYNOMIAL transformation option of SAS to obtain trend analysis. In the following
we will consider two examples: one- and two-way RM designs.

The following is due to Michael Stoline, Personal Communication.

Example : One-way RM Design

In a small pilot clinical trial dose-response drug study, a pharmaceutical company research team is concerned
with the quickness that a new drug can sedate a person so that they can go to sleep. A sample b = 8 people
is selected from a population of insomniacs, who have no medically-diagnosed physical or mental disease or
symptoms, which may cause or explain the insomnia. A Likert scale is used to determine ease in going to
sleep. The scale used in the study is:
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Scale Time to go to sleep (in minutes)
1 < 10
2 10− 20
3 20− 40
4 > 40

Each of the subjects in the insomniac population has chronic sleep difficulties, and each consistently scores
a value of 4 in their daily evaluation of time required to go to sleep, using the above instrument. A standard
dosage of the new drug is administered daily to each of the eight subjects under the care of a physician.
Sleep difficulty, in the above Likert scale, is measured for each patient after one, two, four, and eight weeks.
The goal of the study is to assess the relationship of the ease of going to sleep as a function of the length of
time under medication. In particular we would like to test the significance of the linear quadratic and cubic
orthogonal trend components of sleep difficulty as a function of time. The data are given below:

Sleep Difficulty Scale
Subject 1 week 2 weeks 4 weeks 8 weeks

1 4 2 2 1
2 2 2 1 1
3 2 2 2 2
4 4 3 3 2
5 3 2 1 1
6 3 1 2 1
7 1 1 2 1
8 2 2 1 2

The following SAS code is used to perform orthogonal trend analysis.

DATA RM1;

INPUT B1 B2 B3 B4;

CARDS;

4 2 2 1

2 2 1 1

2 2 2 2

4 3 3 2

3 2 1 1

3 1 2 1

1 1 2 1

2 2 1 2

;

TITLE ’ONE-WAY RM TREND’; PROC GLM DATA=RM1;

MODEL B1-B4 = / NOUNI;

REPEATED TIME 4 (1 2 4 8) POLYNOMIAL / PRINTM SUMMARY;

RUN; QUIT;

The related output is

-------------------------------------------------------------------------------

TIME_N represents the nth degree polynomial contrast for TIME

M Matrix Describing Transformed Variables

B1 B2 B3 B4

TIME_1 -.5128776445 -.3263766829 0.0466252404 0.7926290870

TIME_2 0.5296271413 -.1059254283 -.7679593549 0.3442576419

TIME_3 -.4543694674 0.7951465679 -.3975732840 0.0567961834
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The GLM Procedure

Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F

TIME 3 6.59375000 2.19791667 5.66 0.0053

Error(TIME) 21 8.15625000 0.38839286

Adj Pr > F

Source G - G H - F

TIME 0.0153 0.0061

Error(TIME)

Greenhouse-Geisser Epsilon 0.6766

Huynh-Feldt Epsilon 0.9549

The GLM Procedure

Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

TIME_N represents the nth degree polynomial contrast for TIME

Contrast Variable: TIME_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 4.95244565 4.95244565 9.75 0.0168

Error 7 3.55407609 0.50772516

Contrast Variable: TIME_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 0.82477209 0.82477209 2.78 0.1391

Error 7 2.07354488 0.29622070

Contrast Variable: TIME_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 0.81653226 0.81653226 2.26 0.1764

Error 7 2.52862903 0.36123272

-------------------------------------------------------------------------------

The linear trend is the only significant trend (P = .0168).
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Example : Two-way RM Design

Consider again the experiment involving d drugs was conducted to study each drug effect on the heart rate
of humans. After the drug was administered, the heart rate was measured every five minutes for a total
of t times. At the start of the study, n female human subjects were randomly assigned to each drug. The
following table contains results from one such study.

DRUG

Person AX23 BWW9 CONTROL
within
drug T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

1 72 86 81 77 85 86 83 80 69 73 72 74
2 78 83 88 81 82 86 80 84 66 62 67 73
3 71 82 81 75 71 78 70 75 84 90 88 87
4 72 83 83 69 83 88 79 81 80 81 77 72
5 66 79 77 66 86 85 76 76 72 72 69 70
6 74 83 84 77 85 82 83 80 65 62 65 61
7 62 73 78 70 79 83 80 81 75 69 69 68
8 69 75 76 70 83 84 78 81 71 70 65 65

The profile plot (given below) indicates that the trend patterns may be different for all the three levels of A.
The significance of the AB interaction implies that the three levels of A must be treated separately.

An inspection of the above profile plot shows that:

1. AX23 may have a quadratic trend

2. BWW9 may have a cubic trend

3. Control may have a constant trend

The following is the SAS analysis of the trend components:

OPTIONS LS=80 PS=66 NODATE;

DATA RM1;
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INPUT A Y1 Y2 Y3 Y4 @@;

CARDS;

1 72 86 81 77 2 85 86 83 80 3 69 73 72 74

1 78 83 88 81 2 82 86 80 84 3 66 62 67 73

1 71 82 81 75 2 71 78 70 75 3 84 90 88 87

1 72 83 83 69 2 83 88 79 81 3 80 81 77 72

1 66 79 77 66 2 86 85 76 76 3 72 72 69 70

1 74 83 84 77 2 85 82 83 80 3 65 62 65 61

1 62 73 78 70 2 79 83 80 81 3 75 69 69 68

1 69 75 76 70 2 83 84 78 81 3 71 70 65 65

;

TITLE1 ’HEART RATE DATA : TREND’;

PROC SORT DATA=RM1;

BY A;

RUN;

QUIT;

PROC GLM DATA=RM1;

CLASS A;

MODEL Y1-Y4 = /NOUNI;

REPEATED B 4 POLYNOMIAL/ PRINTM SUMMARY;

BY A;

RUN;

QUIT;

Selected output

------------------------------------- A=1 --------------------------------------

B_N represents the nth degree polynomial contrast for B

Contrast Variable: B_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 28.05625000 28.05625000 4.37 0.0748

Error 7 44.89375000 6.41339286

Contrast Variable: B_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 639.0312500 639.0312500 109.86 <.0001

Error 7 40.7187500 5.8169643

Contrast Variable: B_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 0.50625000 0.50625000 0.10 0.7564

Error 7 34.04375000 4.86339286

------------------------------------- A=2 --------------------------------------

Contrast Variable: B_1

Source DF Type III SS Mean Square F Value Pr > F
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Mean 1 51.75625000 51.75625000 5.18 0.0570

Error 7 69.99375000 9.99910714

Contrast Variable: B_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 2.53125000 2.53125000 2.16 0.1855

Error 7 8.21875000 1.17410714

Contrast Variable: B_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 79.80625000 79.80625000 11.65 0.0112

Error 7 47.94375000 6.84910714

------------------------------------- A=3 --------------------------------------

Contrast Variable: B_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 11.5562500 11.5562500 0.62 0.4566

Error 7 130.2937500 18.6133929

Contrast Variable: B_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 0.03125000 0.03125000 0.00 0.9511

Error 7 54.21875000 7.74553571

Contrast Variable: B_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 0.50625000 0.50625000 0.13 0.7332

Error 7 28.14375000 4.02053571

The results match our prior expectations:

1. AX23 - quadratic

2. BWW9 - cubic

3. Control - No trend
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6.2 The Split-Plot Design

In some multi-factor designs that involve blocking, we may not be able to completely randomize the order
of runs within each block. This results in a design known as the split-plot design which is a generalization of
the RCBD (or a subset of the classic two-way RM design, as we shall see later).

We shall only consider the simplest split-plot design that involves two factors and an incomplete block.
There are two sizes of experimental units: whole plots are the larger units and subplots or split-plots are
the smaller units. The levels of one factor are assigned at random to large experimental units within blocks
of such units. The large units are then divided into smaller units, and the levels of the second factor are
assigned at random to the small units within the larger units.

An agronomist may be interested in the effect of tillage treatments and fertilizers on yield. Tillage
machinery requires large plots while fertilizers can be applied to small plots. One such experiment considers
three methods of seedbed preparation (S1, S2, S3) as a whole-plot factor and four rates of nitrogen fertilizer
applied by hand (N0, N1, N2, N3) as the subplot factor. The analysis is divided into two parts: whole plot
and subplot. The three methods of land preparation are applied to the whole plots in random order. Then
each plot is divided into four subplots and the four different fertilizers are applied in random order.

Whole Plots
S3 S1 S2 S1 S3 S2

N3 N2 N0 N3 N0 N1

N2 N3 N3 N2 N1 N0

N1 N0 N2 N0 N3 N3

N0 N1 N1 N1 N2 N2

The statistical model associated with the split-plot design is

yijk = µ + τi + εij + βj + (τβ)ij + eijk,





i = 1, · · · , a

j = 1, · · · , b

k = 1, · · · , r

where µ + τi + εij is the whole plot part of the model and βj + (τβ)ij + eijk is the subplot part. Here a is
the number of levels of the whole plot factor, b is the number of levels of the subplot factor, and r is the
number of times a whole plot factor is repeated. Notice that our design restricts the number of whole plots
to be a multiple of a. We may have unequal number of repetitions of the whole plot factor if the number of
whole plots is not a multiple of a.

The ANOVA table for this split-plot design is

Source of Variation df
Whole Plot Analysis

A a− 1
Error(Whole Plot) a(r − 1)

Subplot Analysis
B b− 1
AB (a− 1)(b− 1)
Error(Subplot) a(b− 1)(r − 1)

Notice that the ANOVA table looks like a two-way RM design ANOVA where the whole plot analysis
here corresponds to the between subject analysis of the RM design and the subplot analysis corresponds to
the within subject analysis of the RM design.

The following example is taken from Milliken and Johnson.
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Example

The following data are taken from an experiment where the amount of dry matter was measured on wheat
plants grown in different levels of moisture and different amounts of fertilizer. There where 48 different peat
pots and 12 plastic trays; 4 pots could be put into each tray. The moisture treatment consisted of adding
10, 20, 30, or 40 ml of water per pot per day to the tray, where the water was absorbed by the peat pots.
The levels of moisture were randomly assigned to the trays. The levels of fertilizer were 2, 4, 6, or 8 mg per
pot. The four levels of fertilizer were randomly assigned to the four pots in each tray so that each fertilizer
occurred once in each tray. The wheat seeds were planted in each pot and after 30 days the dry matter of
each pot was measured.

Level of Level of Fertilizer
Moisture Tray 2 4 6 8

1 3.3458 4.3170 4.5572 5.8794
10 2 4.0444 4.1413 6.5173 7.3776

3 1.97584 3.8397 4.4730 5.1180
4 5.0490 7.9419 10.7697 13.5168

20 5 5.91310 8.5129 10.3934 13.9157
6 6.95113 7.0265 10.9334 15.2750
7 6.56933 10.7348 12.2626 15.7133

30 8 8.29741 8.9081 13.4373 14.9575
9 5.27853 8.6654 11.1372 15.6332
10 6.8393 9.0842 10.3654 12.5144

40 11 6.4997 6.0702 10.7486 12.5034
12 4.0482 3.8376 9.4367 10.2811

The data was placed in a file called ”split2.dat” in the following format:

moist fert tray yield
10 2 1 3.3458
10 2 2 4.0444
10 2 3 1.97584
10 4 1 4.3170
10 4 2 4.1413
10 4 3 3.8397

...

40 8 10 12.5144
40 8 11 12.5034
40 8 12 10.2811

The following SAS code uses two ways (PROC GLM and PROC MIXED) to perform the split-plot
analysis.

OPTIONS LINESIZE=80 PAGESIZE=37; /* SPLIT PLOT MJ 24.2 */
DATA EXPT;

INFILE ’C:\ASH\S7010\SAS\SPLIT2.DAT’ FIRSTOBS=2;
INPUT MOIST FERT TRAY YIELD;

RUN;
QUIT;

PROC GLM; /* SPLIT PLOT USING GLM */
CLASS TRAY FERT MOIST;
MODEL YIELD = MOIST TRAY(MOIST) FERT MOIST*FERT / SS1;
RANDOM TRAY(MOIST) / TEST; /* TESTS USING RANDOM STATEMENT */
TEST H = MOIST E = TRAY(MOIST); /* TESTS USING TEST STATEMENT */
MEANS MOIST / LSD E = TRAY(MOIST); /* MEANS OK FOR BALANCED DATA */
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MEANS FERT / LSD;
LSMEANS MOIST*FERT / PDIFF STDERR OUT=LSM; /* SAVE LS MEANS DATASET */

RUN;
QUIT;

PROC PLOT DATA=LSM; /* INTERACTION PLOTS FROM GLM */
PLOT LSMEAN*FERT=MOIST;
PLOT LSMEAN*MOIST=FERT;

RUN;
QUIT;

PROC MIXED DATA=EXPT; /* SPLIT PLOT USING MIXED */
CLASS TRAY FERT MOIST;
MODEL YIELD = MOIST | FERT;
RANDOM TRAY(MOIST);

RUN;
QUIT;

----------------------------------------------------------------
Sum of

Source DF Squares Mean Square F Value Pr > F

Model 23 631.5513647 27.4587550 36.51 <.0001
Error 24 18.0513405 0.7521392

Corrected Total 47 649.6027051

Source DF Type I SS Mean Square F Value Pr > F

moist 3 269.1895496 89.7298499 119.30 <.0001
tray(moist) 8 27.2515182 3.4064398 4.53 0.0019
fert 3 297.0540027 99.0180009 131.65 <.0001
fert*moist 9 38.0562942 4.2284771 5.62 0.0003

Plot of LSMEAN*moist. Symbol is value of fert.

LSMEAN |
17.5 |

|
|
| 8

15.0 |
| 8
|
|

12.5 | 6
| 8
|
| 6

10.0 | 6
| 4
|
| 4

7.5 |
| 2
| 8 2 4
| 2

5.0 | 6
| 4
|
| 2

2.5 |
------------------------------------------------------------

10 20 30 40

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

moist 3 8 26.34 0.0002
fert 3 24 131.65 <.0001
fert*moist 9 24 5.62 0.0003
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We may add grouping in the split-plot design to reduce the whole plot variability. Consider once again
the land preparation and fertilizers example. Now a block of land is divided into three whole-plots and the
three methods of land preparation are applied to the plots in random order. Then each plot is divided into
four subplots and the four different fertilizers are applied in random order. This is done (replicated) for two
blocks of land. The following table shows the experimental plan:

Block
I II

S3 S1 S2 S1 S3 S2

N3 N2 N0 N3 N0 N1

N2 N3 N3 N2 N1 N0

N1 N0 N2 N0 N3 N3

N0 N1 N1 N1 N2 N2

The following rearrangement of the above table shows that a split-plot design is analyzed as a classic
two-way RM design with blocks treated as ”subjects”:

S1 S2 S3

I II I II I II
N2 N3 N0 N1 N3 N0

N3 N2 N3 N0 N2 N1

N0 N0 N2 N3 N1 N3

N1 N1 N1 N2 N0 N2

The model for such designs is

yijk = µ + τi + βj + eij } whole plot part of the model
+ πk + (τπ)ik + εijk} subplot part of the model

where τi is the effect of the ith level of the whole plot factor, βj is the effect of the jth block, and πk is the
effect of the kth level of the subplot factor.

The ANOVA table for this split-plot design is

Source of Variation df
Replication r − 1
A a− 1
Error(Whole Plot) (a− 1)(r − 1)
B b− 1
AB (a− 1)(b− 1)
Error(Subplot) a(b− 1)(r − 1)

One final note here is that there is no appropriate error term to test for significance of replication effect.

Example

Two varieties of wheat (B) are grown in two different fertility regimes (A). The field was divided into two
blocks with four whole plots. Each of the four fertilizer levels was randomly assigned to one whole plot
within a block. Each whole plot was divided into two subplots, and each variety of wheat was randomly
assigned to one subplot within each whole plot.
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Block 1
Variety

Fertility B1 B2

A1 35.4 37.9
A2 36.7 38.2
A3 34.8 36.4
A4 39.5 40.0

Block 2
Variety

Fertility B1 B2

A1 41.6 40.3
A2 42.7 41.6
A3 43.6 42.8
A4 44.5 47.6

SAS was used to analyze the data.

OPTIONS NOCENTER PS=64 LS=76; /* SPLIT PLOT MJ 24.1 */
DATA SPLIT;

INPUT FERT N1 N2 N3 N4;
CARDS;

1 35.4 37.9 41.6 40.3
2 36.7 38.2 42.7 41.6
3 34.8 36.4 43.6 42.8
4 39.5 40 44.5 47.6
;
DATA B; SET SPLIT;

YIELD = N1; BLOCK=1; VAR=1; OUTPUT;
YIELD = N2; BLOCK=1; VAR=2; OUTPUT;
YIELD = N3; BLOCK=2; VAR=1; OUTPUT;
YIELD = N4; BLOCK=2; VAR=2; OUTPUT;
DROP N1--N4;

RUN;
QUIT;

PROC GLM;
CLASS BLOCK VAR FERT;
MODEL YIELD = BLOCK FERT BLOCK*FERT VAR VAR*FERT;
RANDOM BLOCK BLOCK*FERT;
TEST H = BLOCK FERT E = BLOCK*FERT;
LSMEANS FERT / PDIFF STDERR E = BLOCK*FERT;
LSMEANS VAR VAR*FERT / PDIFF STDERR;

RUN;
QUIT;

PROC MIXED;
CLASS BLOCK VAR FERT;
MODEL YIELD = FERT VAR VAR*FERT;
RANDOM BLOCK BLOCK*FERT;
LSMEANS FERT | VAR;

RUN;
QUIT;

--------------------------------------------------------------

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 182.0200000 16.5472727 7.85 0.0306
Error 4 8.4300000 2.1075000

Corrected Total 15 190.4500000

Source DF Type III SS Mean Square F Value Pr > F

BLOCK 1 131.1025000 131.1025000 62.21 0.0014
FERT 3 40.1900000 13.3966667 6.36 0.0530
BLOCK*FERT 3 6.9275000 2.3091667 1.10 0.4476
VAR 1 2.2500000 2.2500000 1.07 0.3599
VAR*FERT 3 1.5500000 0.5166667 0.25 0.8612

Tests of Hypotheses Using the Type III MS for BLOCK*FERT as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

BLOCK 1 131.1025000 131.1025000 56.77 0.0048
FERT 3 40.1900000 13.3966667 5.80 0.0914
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We may reorganize the ANOVA table in the output as

Source DF SS Mean Square F Value Pr > F

BLOCK 1 131.1025000 131.1025000
FERT 3 40.1900000 13.3966667 5.80 0.0914
BLOCK*FERT=Error(Whole plot) 3 6.9275000 2.3091667
VAR 1 2.2500000 2.2500000 1.07 0.3599
VAR*FERT 3 1.5500000 0.5166667 0.25 0.8612
Error(Subplot) 4 8.4300000 2.1075000

There is no significant difference among fertilizers. If this test were significant, them multiple comparisons
would have to be carried out to determine the significant differences. A slight modification of the SAS code
above will provide the necessary tests. This is left as an exercise.
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6.3 Crossover Designs

A crossover design is a two-way RM design in which the order (A) of administration of the repeated levels
of a single factor (B) is accounted for as a between subject factor in the design. Hence, a crossover design is
a basic one-way RM design on the levels of B that has been analyzed as a two way RM design to account for
the order or sequence effect caused by the fact that the B levels are given one at a time in different orders.

A Latin square type design approach is used in the construction of the order effects so that each level j
of B occurs equally often as the ith observation for i = 1, · · · , b.

We will only consider the two-period crossover design as an illustration. Here the repeated factor B has
two levels b1 and b2 which are observed in the order b1, b2 by subjects in sequence level 1 (a1) and in the
order b2, b1 by subjects in sequence level 2 (a2) as shown below:

Period: C
Sequence: A c1 c2

a1 b1 b2

a2 b2 b1

There are three factors: sequence A (a1 and a2), period C (c1 and c2), and treatment B (b1 and b2) in the
experiment. Let βj be the jth treatment effect, j = 1, 2, and γk be the kth period effect, k = 1, 2. Further, let
τ1 be the effect on the second observation if b1 is observed first and τ2 be the effect on the second observation
if b2 is observed first. Thus τ1 and τ2 are the carry-over effects observed in the second observation whenever
b1 and b2 are observed first, respectively. Let Yijk be the random variable which represents the observation
corresponding to sequence i, treatment j and period k. The following table gives the observations:

Period: C
Sequence: A c1 c2 Mean
a1 = (b1, b2) Y111 Y122 Ȳ1..

a2 = (b2, b1) Y221 Y212 Ȳ2..

Mean Ȳ..1 Ȳ..2

The model incorporates carry-over effects in the second observations but not in the observations made
first.

E(Y111) = µ + β1 + γ1 E(Y221) = µ + β2 + γ1

E(Y122) = µ + τ1 + β2 + γ2 E(Y212) = µ + τ2 + β1 + γ2

One can show that

E(Ȳ1.. − Ȳ2..) =
τ1 − τ2

2

E(Ȳ.1. − Ȳ.2.) = (β1 − β2)− τ1 − τ2

2
E(Ȳ111 − Ȳ221) = β1 − β2

E(Ȳ..1 − Ȳ..2) = E

(
Y111 − Y122

2
− Y212 − Y221

2

)
= (τ1 − τ2)− τ1 + τ2

2

The last expression shows that the AB and C effects are identical, i.e. AB and C are confounded.
If there is no sequence effect (H0 : τ1 = τ2), then

A : E(Ȳ1.. − Ȳ2..) =
τ1 − τ2

2
= 0

B : E(Ȳ.1. − Ȳ.2.) = (β1 − β2)
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Thus, the B main effect is a valid test if there is no sequence effect. Otherwise, E(Ȳ.1. − Ȳ.2.) is a biased
estimate of β1−β2. In this case the test H0 : µ111 = µ221 of the simple B effects is a valid test of H0 : β1 = β2

since E(Ȳ111 − Ȳ221) = β1 − β2 even when H0 : τ1 = τ2 is not true.
Now assume that there are n1 + n2 subjects available, and n1 are randomly assigned to sequence 1 while

the remaining n2 are assigned to sequence 2. The data layout is

Treatment : B
Sequence : A Subject b1 b2

1 y111 y121

a1 = (b1, b2)
...

...
...

n1 y11n1 y12n1

1 y211 y221

a2 = (b2, b1)
...

...
...

n2 y21n2 y22n2

One can immediately observe that this is a classic two-way RM layout discussed in Chapter 5. The
ANOVA table is

Source of variation df MS F

A : Sequence 1 MSA FA = MSA/MS1

Subjects within A n1 + n2 − 2 MS1

B 1 MSB FB = MSB/MS2

AB 1 MSAB FAB = MSAB/MS2

B× Subjects within A n1 + n2 − 2 MS2

The recommended analysis strategy is

Step 1: Test for sequence effects H0 : µ1. = µ2. using FA.

• If FA is not significant, then go to Step 2A.

• If FA is significant, then go to Step 2B.

Step 2A: Test for B main effects using µ.1 − µ.2

1. An α level test rejects H0 if FB > F1,n1+n2−2(α) using SAS Type III SS.

2. A 100(1− α)% confidence interval for µ.1 − µ.2 is

(ȳ.1. − ȳ.2.) ± tn1+n2−2(α/2)

√
MS2

2

(
1
n1

+
1
n2

)

where ȳ.1. = (ȳ11. + ȳ21.)/2, the unweighted mean.

Step 2B: Test for B main effects using µ11 − µ22

The standard error of the estimator of µ11 − µ22 is

se(ȳ11. − ȳ22.) =

√(
MS1 + MS2

2

)(
1
n1

+
1
n2

)

with the approximate degrees of freedom

dfw =
(n1 + n2 − 2)(MS1 + MS2)2

(MS1)2 + (MS2)2
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1. An α-level test of H0 : µ11 = µ22 rejects H0 if

|ȳ11. − ȳ22.|
se(ȳ11. − ȳ22.)

> tdfw
(α/2)

2. A 100(1− α)% confidence interval for µ11 − µ22 is

(ȳ11. − ȳ22.) ± tdfw(α/2)se(ȳ11. − ȳ22.)

Example

The following data are taken from Grizzle - Biometrics - 1965, pp 467-480. The responses are differences
between pre-treatment and post-treatment hemoglobin levels.

Treat- Subject
Period ment 11 12 13 14 15 16 Total Mean

1 A 0.2 0.0 -0.8 0.6 0.3 1.5 1.8 .3000
2 B 1.0 -0.7 0.2 1.1 0.4 1.2 3.2 .5333

Total 1.2 -0.7 -0.6 1.7 0.7 2.7 5.0

Treat- Subject
Period ment 21 22 23 24 25 26 27 28 Total Mean

1 B 1.3 -2.3 0.0 -0.8 -0.4 -2.9 -1.9 -2.9 -9.9 -1.2375
2 A 0.9 1.0 0.6 -0.3 -1.0 1.7 -0.3 0.9 3.5 0.4375

Total 2.2 -1.3 0.6 -1.1 -1.4 -1.2 -2.2 -2.0 -6.4

The SAS code and partial output are given below

OPTIONS LINESIZE=80 PAGESIZE=66;
DATA CROSS;
INPUT SEQ PERSON A B;

CARDS;
1 1 .2 1
1 2 0 -.7
1 3 -.8 .2
1 4 .6 1.1
1 5 .3 .4
1 6 1.5 1.2
2 1 .9 1.3
2 2 1 -2.3
2 3 .6 0
2 4 -.3 -.8
2 5 -1 -.4
2 6 1.7 -2.9
2 7 -.3 -1.9
2 8 .9 -2.9
;

DATA CROSS2;
SET CROSS;
TRT = ’A’; Y = A; OUTPUT;
TRT = ’B’; Y = B; OUTPUT;
DROP A B;

RUN;
QUIT;

PROC GLM;
CLASS TRT SEQ PERSON;
MODEL Y = SEQ PERSON(SEQ) TRT TRT*SEQ;
RANDOM PERSON(SEQ) / TEST;
TEST H=SEQ E=PERSON(SEQ);
LSMEANS SEQ / E=PERSON(SEQ);
LSMEANS TRT TRT*SEQ;

RUN;
QUIT;

------------------------------------------------------
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Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 15 27.96583333 1.86438889 1.50 0.2435
Error 12 14.94416667 1.24534722

Corrected Total 27 42.91000000

Source DF Type III SS Mean Square F Value Pr > F

SEQ 1 4.57333333 4.57333333 3.67 0.0794
PERSON(SEQ) 12 12.00666667 1.00055556 0.80 0.6446
TRT 1 3.56297619 3.56297619 2.86 0.1165
TRT*SEQ 1 6.24297619 6.24297619 5.01 0.0449

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Y

Source DF Type III SS Mean Square F Value Pr > F
* SEQ 1 4.573333 4.573333 4.57 0.0538

Error 12 12.006667 1.000556
Error: MS(PERSON(SEQ))
* This test assumes one or more other fixed effects are zero.

Least Squares Means

SEQ Y LSMEAN

1 0.41666667
2 -0.40000000

Least Squares Means

TRT Y LSMEAN

A 0.36875000
B -0.35208333

TRT SEQ Y LSMEAN

A 1 0.30000000
A 2 0.43750000
B 1 0.53333333
B 2 -1.23750000

Using SAS Type III analysis we get the following summary for α = .05 and α = .10 (for illustrative
purposes):

α = .05 : Sequence effects are not significant (p-value = .0538). Analyze treatment effects using ȳ.1. = .3688
and ȳ.2. = −.3521. The difference is not significant (p-value = .1165). Therefore, there are no treatment
effects at α = .05 level of significance.

α = .10 : Sequence effects are significant (p-value = .0538). Analyze treatment effects at time period 1 using
ȳ11. = .3000 and ȳ22. = −1.2375. We have

se(ȳ11. − ȳ22.) =

√(
1
6

+
1
8

)
1.000 + 1.245

2
= 0.572 ,

and

dfw =
12(1 + 1.245)2

(1)2 + (1.245)2
= 23.7 ≈ 24 .

Therefore, the t-statistic is
.3000− (−1.2375)

.572
= 2.69
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which has a two-sided p-value of 0.0128.

Thus, the difference is significant at α = .10. Therefore, there are treatment effects at α = .10 level of
significance.
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6.4 Two-Way Repeated Measurement Designs with Repeated Mea-
sures on Both Factors

Consider a design where factors B and C are within subject factors with levels b and c, respectively. Assume
that a random sample of n subjects are observed on each of the bc crossed levels of B and C. The following
table gives the data layout of such designs.

Treatments (B)
B1 Bb

Subjects C1 · · · Cc · · · C1 · · · Cc

1 y111 y1c1 yb11 ybc1

...
...

...
...

...

n y11n y1cn yb1n ybcn

The statistical model for such designs is

yjkl = µ + βj + γk + (βγ)jk + Sl + (βS)jl + (γS)kl + (βγS)jkl + ejkl

for j = 1, . . . , b, k = 1, . . . , c, and l = 1, . . . , n, where

Fixed Effects :

• βj and γk ate the Bj and Ck main effects and

• (βγ)jk is the BjCk interaction effect.

Random Effects :

• Sl ∼ N(0, σ2
1) = subject l effect

• (βS)jl ∼ N(0, d2σ
2
2) = Bj by subject l interaction.

• (γS)kl ∼ N(0, d3σ
2
3) = Ck by subject l interaction.

• (βγS)jkl ∼ N(0, d4σ
2
4) = Bj by Ck by subject l interaction.

• ejkl ∼ N(0, σ2).

We assume that the random effects interactions satisfy some (CS) conditions while all other random
variables are assumed to be independent. One should notice that the ejkl are confounded with (βγS)jkl and
hence cannot be estimated.

The following table contains the expected MS for the two-way RM design with repeated measures on
both factors. These are used in the construction of F tests.

Source df MS E(MS)
Between Subjects

Subjects (S) n− 1 MSS σ2 + bcσ2
1

Within Subjects
B b− 1 MSb σ2 + cσ2

2 + nc
b−1

∑
β2

j

B × S (b− 1)(n− 1) MS1 σ2 + cσ2
2

C c− 1 MSc σ2 + bσ2
3 + nb

c−1

∑
γ2

k

C × S (c− 1)(n− 1) MS2 σ2 + bσ2
3

BC (b− 1)(c− 1) MSbc σ2 + σ2
4 + n

(b−1)(c−1)

∑∑
(βγ)jk

BC × S (b− 1)(c− 1)(n− 1) MS3 σ2 + σ2
4

The following ANOVA table gives the F tests to test for main effects:
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Source df MS F
Between Subjects

Subjects (S) n− 1 MSS

Within Subjects
B b− 1 MSb Fb = MSb/MS1

B × S (b− 1)(n− 1) = df1 MS1

C c− 1 MSc Fc = MSc/MS2

C × S (c− 1)(n− 1) = df2

BC (b− 1)(c− 1) MSbc Fbc = MSbc/MS3

BC × S (b− 1)(c− 1)(n− 1) = df3 MS3

Mean comparisons are made using the following standard errors:

Parameter Estimate Standard Error df
Main Effects

βj − βj′ ȳj.. − ȳj′..

√
2MS1

cn df1

γk − γk′ ȳ.k. − ȳ.k′.

√
2MS2

bn df2

Simple Main Effects

µjk − µj′k ȳjk. − ȳj′k.

√
2
n

(df1MS1+df3MS3)
(df1+df3

df4

µjk − µjk′ ȳjk. − ȳjk′.

√
2
n

(df2MS2+df3MS3)
(df2+df3

df5

The degrees of freedoms for the simple main effects are approximated using Satterthwaite approximation
formulae:

df4 =
(df1MS1 + df3MS3)2

df1(MS1)2 + df3(MS3)2

df5 =
(df2MS2 + df3MS3)2

df2(MS2)2 + df3(MS3)2

Three sphericity conditions corresponding to Fb, Fc, and Fbc need to be checked. If the (S) condition
is not satisfied, then G-G e-adjusted F tests followed by paired t tests for mean comparisons need to be
performed.

The generic SAS Proc GLM code for analyzing two-way repeated measurement designs with repeated
measures on both subjects is

PROC GLM;
MODEL Y11 Y12 ... Ybc = / NOUNI;
REPEATED B b, C c;

The following is part of an example taken from Milliken and Johnson, The Analysis of Messy Data, Vol. I.
The attitiudes of families were measured every six months for three time periods. The data were obtained

for seven families, each family consisting of a son, father, and mother. The data are given as follows:

Person
Son Father Mother

Family T1 T2 T3 T1 T2 T3 T1 T2 T3

1 12 11 14 18 19 22 16 16 19
2 13 13 17 18 19 22 16 16 19
3 12 13 16 19 18 22 17 16 20
4 18 18 21 23 23 26 23 22 26
5 15 14 16 15 15 19 17 17 20
6 6 6 10 15 16 19 18 19 21
7 16 17 18 17 17 21 18 20 23
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The SAS analysis of the data is given as follows:

DATA RM;

INPUT Y1-Y9;

CARDS;

12 11 14 18 19 22 16 16 19

13 13 17 18 19 22 16 16 19

12 13 16 19 18 22 17 16 20

18 18 21 23 23 26 23 22 26

15 14 16 15 15 19 17 17 20

6 6 10 15 16 19 18 19 21

16 17 18 17 17 21 18 20 23

;

PROC GLM;

MODEL Y1--Y9 = / NOUNI;

REPEATED B 3, C 3/ PRINTE NOM;

RUN;

QUIT;

DATA RM2;

SET RM;

ARRAY Z Y1--Y9;

DO I=1 TO 9;

Y = Z[I];

S = _N_;

IF (MOD(I,3) = 0) THEN DO;

B = ROUND(I/3);

C = ROUND(I/B);

OUTPUT;

END;

ELSE DO;

B = FLOOR(I/3) + 1;

C = MOD(I,3);

OUTPUT;

END;

END;

DROP Y1-Y9;

RUN;

QUIT;

PROC GLM DATA = RM2;

CLASS S B C;

MODEL Y = B|C|S;

TEST H=B E=B*S;

TEST H=C E=C*S;

TEST H=B*C E=B*C*S;

LSMEANS B/ PDIFF E=B*S;

LSMEANS C/PDIFF E=C*S;

LSMEANS B*C/PDIFF E=B*C*S;

RUN;

QUIT;

Some selected output from a run of the above program is:

Sphericity Tests(B)
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Mauchly’s

Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 2 0.6961315 1.8110836 0.4043

Orthogonal Components 2 0.8660974 0.7187896 0.6981

Sphericity Tests(C)

Mauchly’s

Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 2 0.947328 0.2705497 0.8735

Orthogonal Components 2 0.6578854 2.0936229 0.3511

Sphericity Tests(BC)

Mauchly’s

Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 9 0.0508148 13.159756 0.1555

Orthogonal Components 9 0.0948413 10.403681 0.3188

The GLM Procedure

Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Adj Pr > F

Source DF Type III SS Mean Square F Value Pr > F G - G H - F

B 2 350.3809524 175.1904762 14.35 0.0007 0.0012 0.0007

Error(B) 12 146.5079365 12.2089947

Greenhouse-Geisser Epsilon 0.8819

Huynh-Feldt Epsilon 1.2212

Adj Pr > F

Source DF Type III SS Mean Square F Value Pr > F G - G H - F

C 2 144.8571429 72.4285714 258.28 <.0001 <.0001 <.0001

Error(C) 12 3.3650794 0.2804233

Greenhouse-Geisser Epsilon 0.7451

Huynh-Feldt Epsilon 0.9348

Adj Pr > F

Source DF Type III SS Mean Square F Value Pr > F G - G H - F

B*C 4 1.33333333 0.33333333 0.82 0.5262 0.4780 0.5237

Error(B*C) 24 9.77777778 0.40740741
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LSMEAN

B Y LSMEAN Number

1 14.0952381 1

2 19.1904762 2

3 19.0000000 3

Least Squares Means for effect B

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3

1 0.0005 0.0007

2 0.0005 0.8627

3 0.0007 0.8627

LSMEAN

C Y LSMEAN Number

1 16.2857143 1

2 16.4285714 2

3 19.5714286 3

Least Squares Means for effect C

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3

1 0.3992 <.0001

2 0.3992 <.0001

3 <.0001 <.0001

LSMEAN

B C Y LSMEAN Number

1 1 13.1428571 1

1 2 13.1428571 2

1 3 16.0000000 3

2 1 17.8571429 4

2 2 18.1428571 5

2 3 21.5714286 6

3 1 17.8571429 7

3 2 18.0000000 8

3 3 21.1428571 9
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Least Squares Means for effect B*C

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Y

i/j 1 2 3 4 5 6 7 8 9

1 1.0000 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

2 1.0000 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

3 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

4 <.0001 <.0001 <.0001 0.4106 <.0001 1.0000 0.6791 <.0001

5 <.0001 <.0001 <.0001 0.4106 <.0001 0.4106 0.6791 <.0001

6 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.2212

7 <.0001 <.0001 <.0001 1.0000 0.4106 <.0001 0.6791 <.0001

8 <.0001 <.0001 <.0001 0.6791 0.6791 <.0001 0.6791 <.0001

9 <.0001 <.0001 <.0001 <.0001 <.0001 0.2212 <.0001 <.0001

The following is a summary of the results:

1. The (S) condition is satisfied for all three tests B, C, and BC.

2. The BC(Person by Time) interaction is not significant (P = 0.5262).

3. The BC interaction is not significant (P = 0.5262).

4. The B(Person) main effect is significant (P = .0007)

5. Comparison of B(Person) means

B1 B3 B2
14.1 19.0 19.2

--------------

6. The C(Time) main effect is significant (P < .0001)

7. Comparison of C(Time) means

C1 C2 C3
16.3 16.4 19.6
--------------



Chapter 7

Introduction to the Analysis of
Covariance

Analysis of covariance (ANCOVA) methods combine regression and ANOVA techniques to investigate the
relationship of a response variable with a set of ’treatments’ as well as other additional ’background’ variables.

7.1 Simple Linear Regression

Let y be a measured response variable that is believed to depend on a predictor x up to a random error;
that is,

y = f(x) + ε; .

In a data setting, suppose we have n experimental units giving rise to observations (x1, y1), (x2, y2), · · · , (xn, yn).
Then our model becomes

yi = f(xi) + εi, i = 1, 2, · · · , n .

In this chapter we will focus our attention to situations where y depends on x in a linear fashion; that is,

f(x) = β0 + β1x ,

where β0 is the intercept and β1 is the slope. In a data setting,

yi = β0 + β1xi + εi, i = 1, 2, · · · , n ,

where β0 and β1 are unknown. We will assume that the random errors, εi, are independent random variables
with mean 0 and constant variance σ2.

Our goal is to estimate and make inferences about the unknown regression coefficients, β0 and β1.

7.1.1 Estimation : The Method of Least Squares

The least squares (LS) estimators β̂0 and β̂1 of β0 and β1, respectively, are the values of β0 and β1 that
minimize

L(β0, β1) =
n∑

i=1

ε2
i =

n∑

i=1

(yi − β0 − β1xi)2 .

Thus the observation yi is estimated by the fitted value

ŷi = β̂0 + β̂1xi .

In other words, the method of least squares gives the least possible sum of squared residuals, yi − ŷi.
Using differential calculus, we get the LS estimators as

157
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β̂1 =
Sxy

Sxx
, and β̂0 = ȳ − β1x̄ ,

where

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) and Sxx =
n∑

i=1

(xi − x̄)2 .

7.1.2 Partitioning the Total SS

Similar to ANOVA models, the total sum of squares
∑

(yi − ȳ)2 partitions into smaller variabilities: the
variability in the response explained by the regression model and the unexplained variability. This is done
as

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷ)2

i.e.,
SST = SSR + SSE .

Here SSR represents the sum of squares due to regression while SST and SSE are the familiar SS’s due to
total and error, respectively. As before the degrees of freedom for SST partitions into regression df and error
df as

n− 1 = 1 + (n− 2) .

7.1.3 Tests of Hypotheses

One very important question is ”Does x truly influence y?”. Since this is under an assumption of a linear
relationship, another way to pose the question will be ”Is there a significant linear relationship between x
and y?” In terms of statistical hypotheses, we are interested in testing

H0 : β1 = 0
HA : β1 6= 0

The rejection of H0 indicates that there is a significant linear relationship between x and y. It does not,
however, imply that the model is ”good”.

Using the partition of the total variability, one may set up an ANOVA table as follows:

Source df SS MS F
Regression 1 SSR MSR = SSR/1 F = MSR/MSE

Residual n− 2 SSE MSE = SSE/(n− 2)

Total n− 1 SST

We reject the null if the F -test is significant at the desired level of significance.

Example

Let X be the length (cm) of a laboratory mouse and let Y be its weight (gm). Consider the data for X and
Y given below.

X Y
16 32
15 26
20 40
13 27
15 30
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17 38
16 34
21 43
22 64
23 45
24 46
18 39

The following SAS code is used to perform the simple linear regression.

DATA SLR;

INPUT X Y;

CARDS;

16 32

15 26

20 40

13 27

15 30

17 38

16 34

21 43

22 64

23 45

24 46

18 39

;

SYMBOL V=CIRCLE I=NONE;

PROC GPLOT;

TITLE1 ’SCATTER PLOT OF Y VS X’;

PLOT Y*X;

RUN;

QUIT;

PROC GLM;

TITLE1 ’REGRESSION OF Y ON X’;

MODEL Y = X;

OUTPUT OUT=REGOUT R=R P=P;

RUN;

QUIT;

SYMBOL V=CIRCLE I=R;

PROC GPLOT DATA=SLR;

TITLE1 ’SCATTER PLOT OF Y VS X OVERLAYED WITH REGRESSION FIT’;

PLOT Y*X;

RUN;

QUIT;

PROC GPLOT DATA=REGOUT;

TITLE1 ’RESIDUAL PLOT’;

PLOT R*P;

RUN;

QUIT;

Selected output from SAS is given below:
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Dependent Variable: Y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 813.763823 813.763823 21.36 0.0009

Error 10 380.902844 38.090284

Corrected Total 11 1194.666667

R-Square Coeff Var Root MSE Y Mean

0.681164 15.96138 6.171733 38.66667

Source DF Type I SS Mean Square F Value Pr > F

X 1 813.7638231 813.7638231 21.36 0.0009

Source DF Type III SS Mean Square F Value Pr > F

X 1 813.7638231 813.7638231 21.36 0.0009

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -5.428909953 9.70503506 -0.56 0.5882

X 2.405213270 0.52036911 4.62 0.0009
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The fitted regression line is
y = −5.43 + 2.41x

The length of a mouse is significantly linearly related to the weight of a mouse (P = 0.0009). From the
scatter plot and the fitted line, one observes that the relationship between length and weight is an increasing
relationship.
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7.2 Single Factor Designs with One Covariate

Analysis of Covariance (ANCOVA) unites analysis of variance (ANOVA) and regression. In the one-way
ANOVA model, suppose that for each experimental a covariate, Xij , is measured along with the response
variable, Yij . A covariate is a variable that is thought to have an effect on the response. The ANCOVA
model which includes the covariate in a linear model is

Yij = µ + τi + β(Xij − X̄..) + εij

This model may be written as
Yij = µi + β(Xij − X̄..) + εij

where µi = µ + τi is the mean of treatment i.
The data layout for a single factor ANCOVA model is

Treatment
1 2 · · · k

Y X Y X · · · Y X
Y11 X11 Y21 X21 · · · Yk1 Xk1

Y12 X12 Y22 X22 · · · Yk2 Xk2

...
...

...
...

Y1n1 X1n1 Y2n2 X2n2 · · · Yknk
Xknk

In the one-way ANOVA model, µi is unbiasedly estimated by µ̂i = ȳi.. However, in the ANCOVA model
ȳi. is an unbiased estimator of µi + β(X̄i. − X̄..). Thus, µ̂i,adj = ȳi. − β̂(X̄i. − X̄..) is the adjusted estimator
of µi in the ANCOVA model, where β̂ is the least squares estimator of the common slope parameter, β.

An essential assumption in the ANCOVA is that there is a common slope parameter, β. This says that if
we were to fit regression lines for each one of the k groups independently, then these lines would be parallel
to each other. This assumption is known as the parallelism assumption. The homogeneity of the group slope
parameters is an assumption that needs to be tested, i.e. H0 : β1 = β2 = · · · = βk. If this hypothesis is true,
then we need a follow up test of the importance of the covariate variable as a predictor, i.e., H0 : β = 0.

Let A denote the factor of interest. The following is the analysis strategy to follow:

1. Test whether the covariate X is important:

(a) Assuming heterogeneous slopes, we test

H0 : β1 = β2 = · · · = βk = 0 .

In SAS

PROC GLM;
CLASS A;
MODEL Y = A A*X /NOINT;

The P -value corresponding to A ∗X is the P -value for the test of interest.

(b) Assuming homogeneous slopes, we test

H0 : β = 0 .

In SAS

PROC GLM;
CLASS A;
MODEL Y = A X;
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If both are non-significant, then the covariate X is not needed. If either one of the tests is significant,
the we use the ANCOVA model. Go to Step 2.

2. Test whether there is a common slope:
We test

H0 : β1 = β2 = · · · = βk

using

PROC GLM;
CLASS A;
MODEL Y = A X A*X;

The P -value of interest corresponds to the A ∗X term.

(a) If the test is significant, then we follow a Johnson-Neyman analysis. This will be addressed in a
later section.

(b) If the test is not significant, then we perform the ANCOVA analysis. Using SAS

PROC GLM;
CLASS A;
MODEL Y = A X;

fits the classic ANCOVA model

Yij = µ + τi + β(Xij − X̄..) + εij

and tests H0 : τ1 = τ2 = · · · = τk = 0.
Follow-up pairwise comparisons (H0 : τi = τj) may be performed by including

LSMEANS A/PDIFF;

in the preceding SAS code.

The following example is adapted from Snedecor and Cochran (1967) (See also SAS Online Documenta-
tion).

Example

Ten patients are selected for each treatment (Drug), and six sites on each patient are measured for leprosy
bacilli. The variables in the study are

• Drug - two antibiotics (A and D) and a control (F)

• PreTreatment - a pre-treatment score of leprosy bacilli

• PostTreatment - a post-treatment score of leprosy bacilli

The covariate (a pretreatment score) is included in the model for increased precision in determining the
effect of drug treatments on the posttreatment count of bacilli.

The following is the SAS code used to analyze the data. It is given along with a partial output.

DATA DRUGTEST;
input DRUG $ PRE POST @@;
CARDS;

A 11 6 A 8 0 A 5 2 A 14 8 A 19 11
A 6 4 A 10 13 A 6 1 A 11 8 A 3 0
D 6 0 D 6 2 D 7 3 D 8 1 D 18 18
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D 8 4 D 19 14 D 8 9 D 5 1 D 15 9
F 16 13 F 13 10 F 11 18 F 9 5 F 21 23
F 16 12 F 12 5 F 12 16 F 7 1 F 12 20

;

PROC GLM;
CLASS DRUG;
MODEL POST = DRUG DRUG*PRE / NOINT;

RUN;
QUIT;

PROC GLM;
CLASS DRUG;
MODEL POST = DRUG PRE DRUG*PRE;

RUN;
QUIT;

PROC GLM;
CLASS DRUG;
MODEL POST = DRUG PRE;
MEANS DRUG;
LSMEANS DRUG/ STDERR PDIFF TDIFF;

RUN;
QUIT;

---------------------------------------------------------------------------

Dependent Variable: POST
Sum of

Source DF Squares Mean Square F Value Pr > F
DRUG 3 2165.900000 721.966667 43.58 <.0001
PRE*DRUG 3 597.542048 199.180683 12.02 <.0001
Error 24 397.557952 16.564915
Total 30 3161.000000

Dependent Variable: POST
Sum of

Source DF Squares Mean Square F Value Pr > F
DRUG 2 293.6000000 146.8000000 8.86 0.0013
PRE 1 577.8974030 577.8974030 34.89 <.0001
PRE*DRUG 2 19.6446451 9.8223226 0.59 0.5606
Error 24 397.557952 16.564915
Total 29 1288.700000

Dependent Variable: POST
Sum of

Source DF Squares Mean Square F Value Pr > F
DRUG 2 293.6000000 146.8000000 9.15 0.0010
PRE 1 577.8974030 577.8974030 36.01 <.0001
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Error 26 417.202597 16.046254
Total 29 1288.700000

Level of -------------POST------------ -------------PRE-------------
DRUG N Mean Std Dev Mean Std Dev

A 10 5.3000000 4.64399254 9.3000000 4.76211904
D 10 6.1000000 6.15449249 10.0000000 5.24933858
F 10 12.3000000 7.14998057 12.9000000 3.95671019

Standard LSMEAN
DRUG POST LSMEAN Error Pr > |t| Number
A 6.7149635 1.2884943 <.0001 1
D 6.8239348 1.2724690 <.0001 2
F 10.1611017 1.3159234 <.0001 3

Least Squares Means for Effect DRUG
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: POST

i/j 1 2 3

1 -0.0607 -1.82646
0.9521 0.0793

2 0.060704 -1.80011
0.9521 0.0835

3 1.826465 1.800112
0.0793 0.0835

An observation is that the results of MEANS and LSMEANS are quite different. LSMEANS gives the
adjusted means while MEANS gives the raw means. Here is a summary of the results:

1. Is the covariate important?

(a) The hypothesis H0 : β1 = β2 = β3 = 0 is rejected (F = 12.02, P < 0.0001).

(b) The hypothesis H0 : β = 0 is rejected (F = 36.01, P < 0.0001).

Thus, the covariate is important and needs to be included in the model.

2. Do we have a common slope?
We fail to reject the hypothesis H0 : β1 = β2 = β3 (F = 0.59, P = 0.5606). Thus, the assumption of a
common slope is a valid assumption.

The test for treatment effects, H0 : τ1 = τ2 = τ3 = 0, is significant (F = 9.15, P = 0.0010).

None of the pairwise differences is significant at α = .05.
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7.3 ANCOVA in Randomized Complete Block Designs

We will consider the case where a single covariate is observed along with the response in a RCBD. The
analysis of such a design proceeds in the same manner as the single factor design considered above.

The statistical model for the RCBD ANCOVA is

Yij = µ + τi + γj + β(Xij − X̄..) + εij

where i = 1, · · · , k, j = 1, · · · , n, and γj is the effect of the jth block of n blocks.
Let A denote the factor of interest and B be the blocking factor. The following is the analysis strategy

to follow:

1. Test whether the covariate X is important:

(a) Assuming heterogeneous slopes, we test

H0 : β1 = β2 = · · · = βk = 0 .

In SAS

PROC GLM;
CLASS A;
MODEL Y = A B A*X /NOINT;

The P -value corresponding to A ∗X is the P -value for the test of interest.

(b) Assuming homogeneous slopes, we test

H0 : β = 0 .

In SAS

PROC GLM;
CLASS A;
MODEL Y = A B X;

If both are non-significant, then the covariate X is not needed. If either one of the tests is significant,
the we use the ANCOVA model. Go to Step 2.

2. Test whether there is a common slope:
We test

H0 : β1 = β2 = · · · = βk

using

PROC GLM;
CLASS A;
MODEL Y = A B X A*X;

The P -value of interest corresponds to the A ∗X term.

(a) If the test is significant, then we follow a Johnson-Neyman type analysis.

(b) If the test is not significant, then we perform the ANCOVA analysis. Using SAS

PROC GLM;
CLASS A;
MODEL Y = A B X;
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fits the RCBD ANCOVA model

Yij = µ + τi + γj + β(Xij − X̄..) + εij

and tests H0 : τ1 = τ2 = · · · = τk = 0.
Follow-up pairwise comparisons (H0 : τi = τj) may be performed by including

LSMEANS A/PDIFF;

in the preceding SAS code.

The following example is taken from Wishart (1949).

Example

Yields for 3 varieties of a certain crop in a randomized complete block design with 4 blocks are considered.
The variables of interest are

• X = yield of a plot in a previous year

• Y = yield on the same plot for the experimental year

The data are as follows:

Varieties
Block A B C
1 X 54 51 57

Y 64 65 72

2 X 62 64 60
Y 68 69 70

3 X 51 47 46
Y 54 60 57

4 X 53 50 41
Y 62 66 61

The SAS analysis of the data is as follows:

DATA CROP;
INPUT A $ B Y X;
CARDS;

A 1 64 54
A 2 68 62
A 3 54 51
A 4 62 53
B 1 65 51
B 2 69 64
B 3 60 47
B 4 66 50
C 1 72 57
C 2 70 60
C 3 57 46
C 4 61 41

;
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PROC GLM;
CLASS A B;
MODEL Y = A B A*X/ NOINT;

RUN;
QUIT;

PROC GLM;
CLASS A B;
MODEL Y = A B X A*X;

RUN;
QUIT;

PROC GLM;
CLASS A B;
MODEL Y = A B X;
LSMEANS A/ STDERR PDIFF TDIFF;

RUN;
QUIT;

-----------------------------------------------------------------------
Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F
A 3 49176.00000 16392.00000 8503.32 <.0001
B 3 252.00000 84.00000 43.57 0.0057
X*A 3 42.21685 14.07228 7.30 0.0684
Error 3 5.78315 1.92772
Total 12 49476.00000

Dependent Variable: Y
Sum of

Source DF Squares Mean Square F Value Pr > F
A 2 24.0000000 12.0000000 6.22 0.0856
B 3 252.0000000 84.0000000 43.57 0.0057
X 1 24.6046512 24.6046512 12.76 0.0375
X*A 2 17.6121953 8.8060976 4.57 0.1229
Error 3 5.7831535 1.9277178
Total 11 324.0000000

Dependent Variable: Y
Sum of

Source DF Squares Mean Square F Value Pr > F
A 2 24.0000000 12.0000000 2.56 0.1712
B 3 252.0000000 84.0000000 17.95 0.0042
X 1 24.6046512 24.6046512 5.26 0.0704
Error 5 23.3953488 4.6790698
Total 11 324.0000000
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Least Squares Means

Standard LSMEAN
A Y LSMEAN Error Pr > |t| Number

A 60.9302326 1.1778789 <.0001 1
B 65.0000000 1.0815579 <.0001 2
C 66.0697674 1.1778789 <.0001 3

Least Squares Means for Effect A
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: Y

i/j 1 2 3

1 -2.54501 -2.86858
0.0516 0.0351

2 2.545014 -0.66898
0.0516 0.5332

3 2.868582 0.668975
0.0351 0.5332

The covariate X does not appear to be very important (P = 0.0684 for heterogeneous slopes and P =
0.0704 for a single slope). However, we will keep it in the analysis for the sake of illustration. Besides, with
P -values close to 0.05, this is the conservative route to follow.

The test for the equality of slopes is not rejected (P = 0.1229). Thus, the assumption of a common slope
is justified.

The test for treatment effect is not significant. Hence, we fail to detect any difference in yield among the
3 different crop varieties after adjusting for yield differences of the previous year.

The results of the pairwise testing are summarized below using underlining.

Group A B C
60.9302326 65.0000000 66.0697674

--------------------------



170 CHAPTER 7. INTRODUCTION TO THE ANALYSIS OF COVARIANCE

7.4 ANCOVA in Two-Factor Designs

We will start by recalling the balanced two-factor fixed effects analysis of variance model

yijk = µ + τi + γj + (τγ)ij + εijk,





i = 1, . . . , a

j = 1, . . . , b

k = 1, . . . , n

where
a∑

i=1

τi =
b∑

j=1

γj =
a∑

i=1

(τγ)ij =
b∑

j=1

(τγ)ij = 0 .

and εijk ∼iid N(0, σ2).
We shall consider the case where a covariate xijk is observed along with the response for each experimental

unit. The corresponding two-factor fixed effects ANCOVA model is

yijk = µ + τi + γj + (τγ)ij + β(xijk − x̄...) + εijk,





i = 1, . . . , a

j = 1, . . . , b

k = 1, . . . , n

under the same assumptions.
As in the one-way model, the means µi., µ.j , and µij are estimated by the adjusted means

µ̂i. = ȳi.. − β̂(x̄i.. − x̄...)

µ̂.j = ȳ.j. − β̂(x̄.j. − x̄...)

µ̂ij = ȳij. − β̂(x̄ij. − x̄...)

The major assumption, once again, is the homogeneity of the slopes. If that assumption is not satisfied,
then our model may be written as

yijk = µ + τi + γj + (τγ)ij + βij(xijk − x̄...) + εijk,





i = 1, . . . , a

j = 1, . . . , b

k = 1, . . . , n

under the same assumptions as above. Thus, the hypothesis

H0 : β11 = . . . = βab = β

is of interest. We may use the one-way ANCOVA methods to perform the test by rewriting the model as

ysk = µs + βs(xsk − x̄...) + εsk,

{
s = 1, . . . , ab

k = 1, . . . , n

which is obtained by ”rolling-out” the cells into one big vector as

(i,j) (1,1) (1,2) · · · (a, b-1) (a,b)
s 1 2 · · · ab - 1 ab

The correspondence between s and (i, j) is according to the formula

s = b(i− 1) + j .

The analysis of two-way ANCOVA is performed as follows:

1. Test for the homogeneity of the slopes.

2. If the slopes are not heterogeneous, test main and simple effects using the adjusted means. If the slopes
are heterogeneous, use a Johnson-Neyman analysis.

The following example is taken from Neter, Kutner, Nachtsheim, and Wasserman. Applied Linear Sta-
tistical Models.
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Example

A horticulturist conducted an experiment to study the effects of flower variety (factor A) and moisture level
(factor B) on yield of salable flowers (Y ). Because the plots were not of the same size, the horticulturist
wished to use plot size (X) as the concomitant variable. Six replications were made for each treatment. The
data are presented below:

Factor B
B1 (low) B2 (high)

Factor A Yi1k Xi1k Yi2k Xi2k

A1 (variety LP) 98 15 71 10
60 4 80 12
77 7 86 14
80 9 82 13
95 14 46 2
64 5 55 3

A2 (variety WB) 55 4 76 11
60 5 68 10
75 8 43 2
65 7 47 3
87 13 62 7
78 11 70 9

The following SAS code is used to analyze the above example. A partial output is given following the
code:

DATA FLOWERS;
INPUT A B Y X @@;
C = 2*(A-1)+B;
CARDS;

1 1 98 15 1 2 71 10
1 1 60 4 1 2 80 12
1 1 77 7 1 2 86 14
1 1 80 9 1 2 82 13
1 1 95 14 1 2 46 2
1 1 64 5 1 2 55 3
2 1 55 4 2 2 76 11
2 1 60 5 2 2 68 10
2 1 75 8 2 2 43 2
2 1 65 7 2 2 47 3
2 1 87 13 2 2 62 7
2 1 78 11 2 2 70 9

;

PROC GLM;
TITLE1 ’HOMOGENEITY OF SLOPES’;
CLASS C;
MODEL Y = C X C*X;

RUN;
QUIT;

PROC GLM;
TITLE1 ’TWO-WAY ANCOVA’;
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CLASS A B;
MODEL Y = A B A*B X;
LSMEANS A B A*B / STDERR PDIFF TDIFF;

RUN;
QUIT;

-----------------------------------------------------------------------------
HOMOGENEITY OF SLOPES

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F
C 3 87.399785 29.133262 4.29 0.0212
X 1 3703.309097 3703.309097 544.87 <.0001
X*C 3 10.733375 3.577792 0.53 0.6704
Error 16 108.747808 6.796738
Total 23 5086.000000

TWO-WAY ANCOVA
Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F
A 1 96.601826 96.601826 15.36 0.0009
B 1 323.849473 323.849473 51.50 <.0001
A*B 1 16.042244 16.042244 2.55 0.1267
X 1 3994.518817 3994.518817 635.21 <.0001
Error 19 119.481183 6.288483
Total 23 5086.000000

Least Squares Means

Standard H0:LSMEAN=0 H0:LSMean1=LSMean2
A Y LSMEAN Error Pr > |t| t Value Pr > |t|
1 72.0423387 0.7304444 <.0001 3.92 0.0009
2 67.9576613 0.7304444 <.0001

Standard H0:LSMEAN=0 H0:LSMean1=LSMean2
B Y LSMEAN Error Pr > |t| t Value Pr > |t|
1 73.6807796 0.7246356 <.0001 7.18 <.0001
2 66.3192204 0.7246356 <.0001

Standard LSMEAN
A B Y LSMEAN Error Pr > |t| Number
1 1 76.5423387 1.0283916 <.0001 1
1 2 67.5423387 1.0283916 <.0001 2
2 1 70.8192204 1.0242739 <.0001 3
2 2 65.0961022 1.0365780 <.0001 4

Least Squares Means for Effect A*B
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t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: Y

i/j 1 2 3 4

1 6.216274 3.937098 7.781373
<.0001 0.0009 <.0001

2 -6.21627 -2.25426 1.662999
<.0001 0.0362 0.1127

3 -3.9371 2.254261 3.937098
0.0009 0.0362 0.0009

4 -7.78137 -1.663 -3.9371
<.0001 0.1127 0.0009

Thus

1. The parallelism hypothesis
H0 : β11 = β12 = β21 = β22 = β

is not rejected (P = 0.6704). The ANCOVA model with a common slope is valid.

2. Comparisons of means results:

(a) The AB interaction effect fails to be significant (P = 0.1267). We may compare A and B means
at the main effect level.

(b) The A main effect is significant (P = 0.0009).

(c) The B main effect is significant (P < 0.0001).

(d) The hypothesis H0 : β = 0 is rejected (P < 0.0001). Thus the inclusion of the covariate is justified.
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7.5 The Johnson-Neyman Technique: Heterogeneous Slopes

7.5.1 Two Groups, One Covariate

We shall now consider ANCOVA designs where the assumption of equal slopes is not satisfied. This happens
when the treatment effect is dependent upon the value of the covariate, X. In other words, there is a
significant interaction between the levels of the treatment and the covariate variable. Heterogeneous slopes
present a problem in ANCOVA in that it is impossible to claim significance or non-significance of the
treatment effect throughout the range of the covariate under consideration.

The following plot gives a case where the heterogeneity of the slopes is clear. The difference between the
two lines is clearly not significant for values of X near 6.5; however, there may be a significant difference
between the lines for values of X around 2.

Thus we wish to test if there is a significant treatment effect for a chosen value of the covariate X. The
Johnson-Neyman procedure generalizes this process by identifying the values of the covariate for which there
is a significant difference between the levels of the treatment.

The following example is taken from Huitema (1980) : The Analysis of Covariance and Alternatives.

Example

Suppose that the data in the following table are based on an experiment in which the treatments consist of
two methods of therapy. Scores on a sociability scale are employed as a covariate. The dependent variable
is the aggressiveness score on a behavioral checklist.
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Therapy 1 Therapy 1
X Y X Y
1 10 1 5
2 10 1.5 6
2 11 2.5 6
3 10 3.5 7
4 11 4.5 8
5 11 4.5 9
5 10 5 9
6 11 6 9
6 11.5 6 10.5
7 12 7 11
8 12 7 12.5
8 11 7.5 12.5
9 11 8 14
10 12.5 9 14.5
11 12 10 16

Using SAS, we get the following two regression lines:

The slopes are heterogeneous. The following SAS code may be used to fit the heterogeneous slope
ANCOVA and test for significance of the difference between the two methods of therapy on a case by case
basis. A partial output is given following the code.

data jn;
input grp x y;
cards;

1 1 10
1 2 10
1 2 11
1 3 10
1 4 11
1 5 11
1 5 10
1 6 11



176 CHAPTER 7. INTRODUCTION TO THE ANALYSIS OF COVARIANCE

1 6 11.5
1 7 12
1 8 12
1 8 11
1 9 11
1 10 12.5
1 11 12
2 1 5
2 1.5 6
2 2.5 6
2 3.5 7
2 4.5 8
2 4.5 9
2 5 9
2 6 9
2 6 10.5
2 7 11
2 7 12.5
2 7.5 12.5
2 8 14
2 9 14.5
2 10 16

;

goptions reset=symbol;
symbol1 c=black v=dot l=1 i=r;
symbol2 c=black v=square l=1 i=r;

proc gplot;
plot y*x=grp;

run;
quit;

PROC GLM DATA=JN;
CLASS GRP;
MODEL Y = GRP X GRP*X;
LSMEANS GRP/ AT X=5 PDIFF;
LSMEANS GRP/ AT X=6.5 PDIFF TDIFF;
LSMEANS GRP/ AT X=6.7 PDIFF TDIFF;
LSMEANS GRP/ AT X=8 PDIFF TDIFF;

RUN;
QUIT;

--------------------------------------------------------------------------
Sum of

Source DF Squares Mean Square F Value Pr > F
grp 1 64.1707155 64.1707155 152.79 <.0001
x 1 117.7551731 117.7551731 280.37 <.0001
x*grp 1 59.5963693 59.5963693 141.90 <.0001
Error 26 10.9199841 0.4199994
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Total 29 176.9666667

Least Squares Means at x=5
H0:LSMean1=

LSMean2
grp y LSMEAN Pr > |t|
1 10.8997955 <.0001
2 9.3402754

Least Squares Means at x=6.5
H0:LSMean1=LSMean2

grp y LSMEAN t Value Pr > |t|
1 11.2126789 0.07 0.9461
2 11.1957508

Least Squares Means at x=6.7
H0:LSMean1=LSMean2

grp y LSMEAN t Value Pr > |t|
1 11.2543967 -0.74 0.4636
2 11.4431475

Least Squares Means at x=8
H0:LSMean1=LSMean2

grp y LSMEAN t Value Pr > |t|
1 11.5255624 -4.89 <.0001
2 13.0512261

Thus, there is a significant difference between the two methods of therapy for an individual with a
sociability scale of 5 (P < 0.0001), while we fail to find a significant treatment effect for an individual with
a sociability scale of 6.5 (P = 0.9461).

Let the regression lines fitted individually for groups 1 and 2 be Ŷ1 = α̂1 + β̂1X1 and Ŷ2 = α̂2 + β̂2X2,
respectively. Let X̄1 and X̄2 be the sample means of the covariate associated with the two groups while

SXX1 =
n1∑

i=1

(X1i − X̄1)2, and SXX2 =
n2∑

i=1

(X2i − X̄2)2

where n1 and n2 are the respective sample sizes.
We can identify the lower and upper limits, XL and XU , of the region of non-significance on X using the

following formulæ:

XL =
−B −√B2 −AC

A

XU =
−B +

√
B2 −AC

A

where

A = −d

(
1

SXX1

+
1

SXX2

)
+ (β̂1 − β̂2)2

B = d

(
X̄1

SXX1

+
X̄2

SXX2

)
+ (α̂1 − α̂2)(β̂1 − β̂2)

C = −d

(
1
n1

+
1
n2

+
X̄2

1

SXX1

+
X̄2

2

SXX2

)
+ (α̂1 − α̂2)2
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Here
d = (tn1+n2−4(α/2))2s2

p

where

s2
p =

(n1 − 2)s2
1 + (n2 − 2)s2

2

n1 + n2 − 4

is the pooled variance. The values of s2
1 and s2

2 represent the error mean of squares when the two individual
regression lines are fit.

Example

Consider the preceding example. The following SAS code can be used to compute the quantities in the
formula.

PROC SORT;
BY GRP;

RUN;
QUIT;

PROC MEANS MEAN CSS N;
VAR X;
BY GRP;

RUN;
QUIT;

PROC GLM DATA=JN;
MODEL Y = X;
BY GRP;

RUN;
QUIT;

/* Get t value squared from the T-table*/
DATA T;

TVAL = TINV(.975, 26);
TVAL = TVAL*TVAL;

RUN;
QUIT;

PROC PRINT DATA=T;
RUN;
QUIT;

-------------------------------------------------------------------------------
--------------------------------------------- grp=1 ---------------------------

Analysis Variable : x

Mean Corrected SS N

5.8000000 130.4000000 15

--------------------------------------------- grp=2 ---------------------------
Analysis Variable : x
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Mean Corrected SS N

5.5333333 99.2333333 15

--------------------------------------------- grp=1 ---------------------------
Sum of

Source DF Squares Mean Square F Value Pr > F
x 1 5.67361963 5.67361963 19.62 0.0007
Error 13 3.75971370 0.28920875
Total 14 9.43333333

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 9.856850716 0.30641368 32.17 <.0001
x 0.208588957 0.04709414 4.43 0.0007

--------------------------------------------- grp=2 ---------------------------------------------
Sum of

Source DF Squares Mean Square F Value Pr > F
x 1 151.8397296 151.8397296 275.68 <.0001
Error 13 7.1602704 0.5507900
Total 14 159.0000000

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 3.155357743 0.45460081 6.94 <.0001
x 1.236983540 0.07450137 16.60 <.0001

Obs TVAL
1 4.22520

We may now compute XL and XU . A summary the quantities needed is

Group 1 Group 2
n1 = 15 n2 = 15
X̄1 = 5.8 X̄2 = 5.533

SXX1 = 130.4 SXX2 = 99.23
α̂1 = 9.857 α̂2 = 3.155
β̂1 = 0.209 β̂2 = 1.237
s2
1 = 0.289 s2

2 = 0.551
t26(.025) = 4.225
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The values of s2
p, d, A,B, and C are computed as

s2
p =

(13 ∗ 0.289) + (13 ∗ 0.551)
26

= 0.42

d = 4.225 ∗ 0.42 = 1.7745

A = −(1.7745) ∗
(

1
130.4

+
1

99.23

)
+ (0.209− 1.237)2 = 1.0253

B = 1.7745 ∗
(

5.8
130.4

+
5.533
99.23

)
+ (9.857− 3.155) ∗ (0.209− 1.237) = −6.712

C = −(1.7745) ∗
(

1
15

+
1
15

+
5.82

130.4
+

5.5332

99.23

)
+ (9.857− 3.155)2 = 43.675

These give

XL =
−B −√B2 −AC

A
=

6.712− 0.533
1.0253

= 6.03

XU =
−B +

√
B2 −AC

A
=

6.712 + 0.533
1.0253

= 7.07

Thus, using α = 0.05, the region of non-significance is (6.03 , 7.07). For subjects with sociability score
between 6.03 and 7.07, we fail to detect a difference between the two methods of therapy. Method 1 appears
to be superior for subjects with sociability score below 6.03, while method 2 seems to work better for subjects
above the sociability score of 7.07

7.5.2 Multiple Groups, One Covariate

Two procedures extending the Johnson-Neyman strategy to incorporate several groups were proposed by
Potthoff(1964). We shall consider the simpler of the two which uses the above technique along with a
Bonferroni correction. The idea is to make all pairwise comparisons using the Bonferroni technique.

Let a be the number of groups under consideration. There are
(
a
2

)
= a(a − 1)/2 possible pairwise

comparisons. One compares each pair of groups using a Johnson-Neyman procedure at level α/
(
a
2

)
. If the

specific value of X is known, this may be done at once using the BONFERRONI adjustment of LSMEANS
in SAS. However, to determine regions of non-significance with simultaneous confidence α, one uses the
formulægiven above.

The lower and upper limits for comparing groups r and s, XL(r, s) and XU (r, s), for 1 ≤ r < s ≤ a are:

XL(r, s) =
−Brs −

√
B2

rs −ArsCrs

Ars

XU (r, s) =
−Brs +

√
B2

rs −ArsCrs

Ars

where

Ars = −d

(
1

SXXr

+
1

SXXs

)
+ (β̂r − β̂s)2

Brs = d

(
X̄r

SXXr

+
X̄s

SXXs

)
+ (α̂r − α̂s)(β̂r − β̂s)

Crs = −d

(
1
nr

+
1
ns

+
X̄2

r

SXXr

+
X̄2

s

SXXs

)
+ (α̂r − α̂s)2 .

Here

d =
[
t(
Pa

i=1 ni−2a)

(
α

a(a− 1)

)]2

s2
p where s2

p =
∑a

i=1(ni − 2)s2
i∑a

i=1 ni − 2a
.



Chapter 8

Nested Designs

We have already seen some examples of nesting in the analysis of repeated measurement models as well
as split-plot designs. Nested designs, or hierarchical designs, are used in experiments where it is difficult
or impossible to measure response on the experimental unit. Instead, smaller sampling units (subsamples)
are selected from each experimental unit on which the response is measured. Another instance of nesting
involves two or more factors in which one or more of the factors are nested within the other structurally.

8.1 Nesting in the Design Structure

The type of nesting where there are two or more sizes of experimental units is known as nesting in the
design structure. These involve smaller sampling units obtained via subsampling. This subsampling process
introduces a new source of variability due to the subsamples within the experimental units in our model in
addition to the variation among the experimental units.

As an illustration, consider a situation where a the treatments are several diets that are taken by humans
in a completely randomized manner. The response is the level of a certain hormone in the blood of a subject’s
body. Since it is difficult to measure the level of the hormone in all of the blood of an individual, we take
several blood samples from each individual and measure the hormone in each sample. The experimental
error now consists of the variability among the blood samples per individual and the variability among the
individuals themselves.

Suppose we are interested in comparing the a levels of factor A. Assume there are r subjects available
for each level of A. Responses are measured on n subsamples for each subject. The data layout looks like
the following:

181
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Treatment
Unit Sample 1 2 · · · a

1 1 y111 y211 · · · ya11

2 y112 y212 · · · ya12

...
...

...
...

n y11n y21n · · · ya1n

2 1 y121 y221 · · · ya21

2 y122 y222 · · · ya22

...
...

...
...

n y12n y22n · · · ya2n

...
...

...
...

...

r 1 y1r1 y2r1 · · · yar1

2 y1r2 y2r2 · · · yar2

...
...

...
...

n y1rn y2rn · · · yarn

The statistical model for a one-way CRD with subsampling is

yijk = µ + τi + εj(i) + δk(ij)

where i = 1, . . . , a, j = 1, . . . , r, k = 1, . . . , n. Here µ is the overall mean, τi is the effect of level i of the
treatment, εj(i) is the random variation of the jth experimental unit on the ith treatment, and δk(ij) is the
random variation of the kth sampling unit within the jth unit on the ith treatment.

We assume that the random errors follow normal distributions with mean 0 and constant variances, i.e.

εj(i) ∼ N(0, σ2) and δk(ij) ∼ N(0, σ2
δ ) .

One can show that the expected mean squares are those given in the following table:

Source MS E(MS)
Treatment MSA σ2

δ + nσ2 + (rn
∑

τ2
i )/(a− 1)

Experimental Error MSE σ2
δ + nσ2

Sampling Error MSS σ2
δ

Using the expected MS, we find the following ANOVA table

Source df MS F
Treatment a− 1 MSA FA = MSA/MSE

Experimental Error a(r − 1) MSE FE = MSE/MSS

Sampling Error ar(n− 1)
Total prn− 1

The following example is taken from Peterson: Design and Analysis of Experiments.

Example

A chemist wanted to measure the ability of three chemicals to retard the spread of fire when used to treat
plywood panels. He obtained 12 panels and sprayed 4 of the panels with each of the three chemicals. He then
cut two small pieces from each panel and measured the time required for each to be completely consumed
in a standard flame. The data is given as follows:
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Chemical
Panel Sample A B C

1 1 10.3 4.4 3.1
2 9.8 4.7 3.3

2 1 5.8 2.7 6.5
2 5.4 1.6 5.4

3 1 8.7 4.6 5.1
2 10.0 4.0 7.5

4 1 8.9 5.6 5.6
2 9.4 3.4 4.2

The SAS analysis of the data is given as follows. It is followed by the output.

DATA NEW;
INPUT TRT PANEL SUB RESP;
CARDS;

1 1 1 10.3
2 1 1 4.4
3 1 1 3.1
1 1 2 9.8
2 1 2 4.7
3 1 2 3.3
1 2 1 5.8
2 2 1 2.7
3 2 1 6.5
1 2 2 5.4
2 2 2 1.6
3 2 2 5.4
1 3 1 8.7
2 3 1 4.6
3 3 1 5.1
1 3 2 10.0
2 3 2 4.0
3 3 2 7.5
1 4 1 8.9
2 4 1 5.6
3 4 1 5.6
1 4 2 9.4
2 4 2 3.4
3 4 2 4.2

;

PROC GLM;
CLASS TRT PANEL SUB;
MODEL RESP=TRT PANEL(TRT);
TEST H=TRT E=PANEL(TRT);

RUN;
QUIT;

------------------------------------------------------------------------

Dependent Variable: RESP
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Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 137.1633333 12.4693939 16.79 <.0001
Error 12 8.9100000 0.7425000

Corrected Total 23 146.0733333

Source DF Type III SS Mean Square F Value Pr > F

TRT 2 93.63083333 46.81541667 63.05 <.0001
PANEL(TRT) 9 43.53250000 4.83694444 6.51 0.0019

Tests of Hypotheses Using the Type III MS for PANEL(TRT) as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

TRT 2 93.63083333 46.81541667 9.68 0.0057

Thus, there were highly significant differences among the three chemicals in their ability to retard the
spread of fire (P = 0.0057). There is also a significant difference among the panels treated alike (P = 0.0019).

Mean comparisons can be made by using SAS’ LSMEANS with the appropriate error term.

LSMEANS TRT / PDIFF E=PANEL(TRT);

The corresponding output is

LSMEAN
TRT RESP LSMEAN Number

1 8.53750000 1
2 3.87500000 2
3 5.08750000 3

i/j 1 2 3
1 0.0022 0.0120
2 0.0022 0.2988
3 0.0120 0.2988

Thus there is a significant difference between treatment A and the remaining two. Thus, treatment A
appears to be the most effective fire retardant.
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8.2 Nesting in the Treatment Structure

Consider two factors, A and B. The levels of factor B are nested within the levels of factor A if each level
of B occurs with only one level of A. In this case B needs to have more levels than A. The data has the
following format:

B
A 1 2 3 4 5 6 7
1 X X
2 X X X
3 X X

Assuming that factor A has a levels and the nested factor B has a total of b levels with mi levels appearing
with level i if A. Further assume that there are ni replications for each level of B nested within level i of
A. In the above representation a = 3,m1 = 2,m2 = 3,m3 = 2, b =

∑
mi = 7. A more general case that will

not be considered here is the case of unequal replications for each B nested within A.
The statistical model for this case is

yijk = µ + τi + βj(i) + εijk,





i = 1, 2, . . . , a

j = 1, 2, . . . , mi

k = 1, 2, . . . , ni

where yijk is the observed response from the kth replication of level j of B within level i of A, µ is the overall
mean, τi is the effect of the ith level of A, βj(i) is the effect of the jth level of B contained within level i of
A, and εijk ∼ N(0, σ2) are random errors.

Note that, in contrast to nesting in the design structure, there is only one error term. In the current
case, the sampling unit and the experimental unit coincide.

The total sum of squares decomposes into component sum of squares in a natural way. Let N =∑a
i=1 mini be the total number of observations. Then we have

SST = SSA + SSB(A) + SSE

where (given with the associated df)

SST =
a∑

i=1

mi∑

j=1

ni∑

k=1

(yijk − ȳ...)2 , df = N − 1

SSA =
a∑

i=1

mini(ȳi.. − ȳ...)2 , df = a− 1

SSB(A) =
a∑

i=1

mi∑

j=1

ni(yij. − ȳi..)2 , df =
a∑

i=1

(mi − 1) = b− a

SSE =
a∑

i=1

mi∑

j=1

nj(i)∑

k=1

(yijk − ȳij.)2 , df =
a∑

i=1

mi(ni − 1) = N − b

The following ANOVA table may be used to test if there are any treatment differences. The correct F is
derived using the expected mean squares. This is left as an exercise.

Source df MS F
A a− 1 MSA FA = MSA/MSB(A)

B(A) b− a MSB(A) FB(A) = MSB(A)/MSE

Error N − b MSE

Total N − 1

The following example is taken from Milliken and Johnson :The Analysis of Messy Data, Vol I.
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Example

Four chemical companies produce insecticides in the following manner:

• Company A produces three insecticides,

• Companies B and C produce two insecticides each,

• Company D produces four insecticides, and

• no company produces an insecticide exactly like that of another.

The treatment structure is a two-way with the data given as follows:

Insecticide
Company 1 2 3 4 5 6 7 8 9 10 11

A 151 118 131
135 132 137
137 135 121

B 140 151
152 132
133 139

C 96 84
108 87
94 82

D 79 67 90 83
74 78 81 89
73 63 96 94

Thus in this example

a = 4, b = 11, m1 = 3,m2 = m3 = 2,m4 = 4, n1 = n2 = n3 = n4 = 3

The following SAS code (given with edited output) may be used to analyze the data:

data insect;
input A $ B Y @@;
cards;
A 1 151 A 2 118 A 3 131
A 1 135 A 2 132 A 3 137
A 1 137 A 2 135 A 3 121
B 4 140 B 5 151
B 4 152 B 5 132
B 4 133 B 5 139
C 6 96 C 7 84
C 6 108 C 7 87
C 6 94 C 7 82
D 8 79 D 9 67 D 10 90 D 11 83
D 8 74 D 9 78 D 10 81 D 11 89
D 8 73 D 9 63 D 10 96 D 11 94
;

proc glm;
class A B;
model y = A B(A);
test H=A E=B(A);
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run;
quit;

--------------------------------------------------------------------------
Sum of

Source DF Squares Mean Square F Value Pr > F

A 3 22813.29545 7604.43182 35.47 0.0001
B(A) 7 1500.58333 214.36905 3.74 0.0081
Error 22 1260.00000 57.27273
Total 32 25573.87879

Thus there are significant differences among the companies (P = 0.0001) and there are significant differ-
ences among the insecticides produced by the same company (P = 0.0081).




