PROBLEMAS TEMA 2: MEDIDAS ESTADÍSTICAS BÁSICAS

Problema 1 Sean U_1 y U_2 dos variables aleatorias independientes con media cero y varianza 1. Se definen las variables:

$$X_1 = U_1$$
, $X_2 = U_1 + U_2$, $Y X_3 = U_1 - U_2$.

- (a) Calcular las esperanzas y las varianzas de $X_1,\,X_2$ y $X_3.$
- (b) Escribir las matrices de covarianzas y de correlaciones de (X_1, X_2, X_3) .

Problema 2 El vector de medias y la matriz de covarianzas del vector aleatorio $X = (X_1, X_2, X_3)'$ son

$$E(\mathbf{X}) = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, \quad V(\mathbf{X}) = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}.$$

Se calculan unos índices a partir de las variables anteriores, de la forma

$$Z_1 = 0.2X_1 + 0.3X_2 + 0.5X_3$$

 $Z_2 = -0.7X_1 + 0.1X_2 + 0.2X_3$

- (a) Proporcionar las medias (esperanzas) y las varianzas de Z_1 y Z_2 , así como la covarianza entre Z_1 y Z_2 a partir de $E(\mathbf{X})$ y de $V(\mathbf{X})$.
- (b) Calcular las covarianzas entre cada una de las variables originales X_1 , X_2 y X_3 y cada uno de los índices Z_1 y Z_2 .
- (c) Obtener los coeficientes de correlación lineal entre cada una de las variables originales X_1 , X_2 y X_3 y cada uno de los índices Z_1 y Z_2 .

Problema 3 Para el estudio de las ventas de una librería se seleccionan cuatro recibos. En dichos recibos aparece la cantidad total de euros, y el número de libros vendidos. Llamamos X_1 a la cantidad total en euros, y X_2 al número de unidades. Los datos aparecen en la tabla siguiente

Recibo	X_1	X_2
1	42	4
2	52	5
3	48	4
4	58	3

- (b) Representar los datos en un plano. ¿Crees que existe correlación lineal entre X_1 :cantidad total en euros y X_2 :número de unidades?
- (a) Calcular el vector de medias muestral \bar{x} , la matriz de covarianzas muestral S_X y la matrix de correlaciones muestral R_X del vector $X = (X_1, X_2)'$.

Problema 4	Los datos	de la tab	la corresponder	a chalets	s construídos	por di	ez promo-
toras que ope	ran a lo lar	go de la o	costa española.				

	X ₁ : Duración media	X ₂ : Precio medio	X_3 : Superficie media
Promotora	hipoteca (años)	(millones euros)	(m^2) de cocina
1	8.7	0.3	3.1
2	14.3	0.9	7.4
3	18.9	1.8	9.0
4	19.0	0.8	9.4
5	20.5	0.9	8.3
6	14.7	1.1	7.6
7	18.8	2.5	12.6
8	37.3	2.7	18.1
9	12.6	1.3	5.9
10	25.7	3.4	15.9

- (a) Dibujar un diagrama de dispersión entre X_1 y X_2 , otro entre X_1 y X_3 , y otro entre X_2 y X_3 .
- (b) Calcular las medias muestrales y las varianzas muestrales de X_1 , X_2 y X_3 . Decir qué par de variables está correlado linealmente.
- (c) Calcular las matrices de covarianzas y de correlaciones muestrales de (X_1, X_2, X_3) .

Problema 5 Consideremos las n = 5 observaciones

$$\begin{pmatrix}
1 & 6 \\
3 & 8 \\
-2 & 7 \\
5 & -3 \\
2 & 0
\end{pmatrix}$$

de un vector aleatorio $\mathbf{X} = (X_1, X_2)'$. Definimos las combinaciones lineales $Z_1 = \mathbf{c}' \mathbf{X}$ y $Z_2 = \mathbf{b}' \mathbf{X}$, donde $\mathbf{c} = (-2, 1)'$ y $\mathbf{b} = (-1, 3)'$.

- (a) Calcular los valores de Z_1 y de Z_2 para las 5 observaciones. Obtener las medias muestrales, las varianzas muestrales y la covarianza muestral entre los valores de Z_1 y Z_2 .
- (b) Obténganse las medias muestrales, las varianzas muestrales y la covarianza muestral entre las observaciones de Z_1 y de Z_2 , pero ahora usando las fórmulas estudiadas para combinaciones lineales de vectores aleatorios. Comparar el resultado con el obtenido en (a).