
Chapter 2

Convergence concepts

In the following, {Xn}n∈IN will be a sequence of r.v.s defined over

the same probability space (Ω,A, P ).

Definition 2.1 (Almost sure convergence)

A sequence {Xn}n∈IN is said to converge almost surely (a.s.) to

the r.v. X , represented by Xn
a.s.→ X , if and only if

P
(
{ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

Convergence “almost surely” is also called “almost everywhere”

(a.e.), “with probability 1” or “strong” convergence.

Remark 2.1 Let us define the set

C = {ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}.

Definition 2.1 has sense only if C ∈ A.

Definition 2.2 (Almost sure equality)

We say that two r.v.s X and Y are almost surely equal (X = Y

a.s.) iff P (X 6= Y ) = 0.

Theorem 2.1 (Uniqueness of limiting r.v.)

Xn
a.s.→ X ⇒

[
Xn

a.s.→ Y ⇔ X = Y a.s.
]
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Theorem 2.2 (Another characterization of a.s conver-

gence)

Xn
a.s.→ X ⇔ lim

n→∞
P ({ω ∈ Ω : |Xm(ω)−X(ω)| ≤ ε,∀m ≥ n}) = 1.

Example 2.1 Consider the probability space associated with toss-

ing a coin, (Ω,A, P ) with Ω = {H,T}, A = P(Ω) and P ({H}) =

P ({T}) = 1/2. consider also the sequence of r.v.s {Xn}n∈IN , de-

fined by

Xn({H}) = 1/n, Xn({T}) = −1/n, n ∈ IN.

Observe that Xn
a.s.→ X ≡ 0.

Definition 2.3 (Convergence in probability)

A sequence {Xn}n∈IN is said to converge in probability to the r.v.

X , represented by Xn
P→ X , if and only if

∀ε > 0, lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}) = 0.

Theorem 2.3 (Uniqueness of limiting r.v.)

Xn
P→ X ⇒

[
Xn

P→ Y ⇔ X = Y a.s.
]

Theorem 2.4 (a.s convergence implies convergence in

prob.)

Xn
a.s.→ X ⇒ Xn

P→ X.

Example 2.2 (Counterexample: reciprocal of Theorem

2.4)

We are going to build a sequence of r.v.s that converge in probabil-

ity to a r.v. X but does not converge a.s. Consider the probability

space (Ω,A, P ), with Ω = (0, 1], A = B(0,1] and P = U(0, 1].
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Consider the sequence of r.v.s:

X1 = 1(0,1], X2 = 1(0,1/2], X3 = 1(1/2,1]

X4 = 1(0,1/4], X5 = 1(1/4,1/2], X6 = 1(1/2,3/4]

X7 = 1(3/4,1], X8 = 1(0,1/8], X9 = 1(1/8,1/4], . . .

Observe that Xn
P→ X but Xn(ω) does not converge for any ω ∈

(0, 1], so that Xn
a.s9 X .

Theorem 2.5 (Partial converse of Th. 2.4)

Xn
a.s.→ X ⇒ There is a subsequence of {Xn}n∈IN that converges a.s to X.

Definition 2.4 (Convergence in r-th mean)

For any real number r > 0, we say that {Xn}n∈IN converges in

r-th mean to a r.v. X (Xn
r→ X), iff

E (|Xn −X|r) →
n→∞

0.

In particular, for r = 2 we say that {Xn}n∈IN converges to X in

quadratic mean, and we represent it by Xn
q.m.→ X .

Theorem 2.6 (Uniqueness of limiting r.v.)

Xn
q.m.→ X ⇒

[
Xn

q.m.→ Y ⇔ X = Y a.s.
]

Theorem 2.7 (Convergence in q.m. implies conver-

gence in prob.)

Xn
q.m.→ X ⇒ Xn

P→ X.

Example 2.3 (Counterexample: reciprocal of Theorem

2.7)

Consider the situation of Example 2.2. We have seen thatXn
a.s.9 X

and it is easy to see that Xn
q.m.→ X ≡ 0.
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Example 2.4 (Counterexample: reciprocal of Theorem

2.7)

Consider the probability space (Ω,A, P ) with Ω = (0, 1), A =

B(0,1) and P = U(0, 1). Check that Xn
a.s.→ X but Xn

q.m.9 X ≡ 0

for the following sequences of r.v.s:

(a) Xn(Ω) = 0 if ω ∈ (0, 1− 1/n) and Xn(Ω) = n otherwise.

(b) Xn(Ω) = 2n if ω ∈ [0, 1/n) and Xn(Ω) = 0 otherwise.

Theorem 2.8 (Fatou-Lebesgue’s Lemma)

If Xn
a.s.→ X and Xn ≥ Y , ∀n ∈ IN and for a r.v. Y with

E|Y | <∞, then

lim inf
n→∞

E(Xn) ≥ E(X).

Example 2.5 (Fatou-Lebesgue’s Lemma)

Consider the sequence of r.v.s of Example 2.4 (b). Check the Fatou-

Lebesgue’s Theorem.

Theorem 2.9 (Monotone Convergence Theorem for r.v.s)

If 0 ≤ X1 ≤ X2 ≤ · · · and Xn
a.s.→ X , then

E(Xn) →
n→∞

E(X).

Theorem 2.10 (Dominated Convergence Theorem for

r.v.s)

If Xn
a.s.→ X and |Xn| ≤ Y for a r.v. Y with E|Y | <∞, then

E(Xn) →
n→∞

E(X).

Definition 2.5 (Convergence in law/distribution)

Let {Fn}n∈IN be a sequence of d.f.s defined over (IR,B), We say
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that {Fn}n∈IN converges in law/distribution to a d.f. F (Fn
d→ F )

iff

lim
n→∞

Fn(x) = F (x), ∀x ∈ C(F ),

where C(F ) is the set of points where F is continuous.

Definition 2.6 (Convergence in law of r.v.s)

A sequence {Xn}n∈IN of r.v.s with respective d.f.s {Fn}n∈IN is said

to converge in law/distribution to a r.v. X with d.f. F (Xn
d→ X)

iff Fn
d→ F .

Proposition 2.1 (Uniqueness of limiting r.v.)

If Fn
d→ F and Fn

d→ F ∗, then F = F ∗.

Remark 2.2 (Knowledge of the d.f. on a dense set suf-

ficient)

The proof of Proposition 2.1 implies that F is completely deter-

mined when it is given for a dense subset of IR.

Theorem 2.11 (Convergence in prob. implies conver-

gence in law)

Xn
P→ X ⇒ Xn

d→ X.

Example 2.6 (Convergence in law)

Consider the sequence of degenerated r.v.s given by P (Xn = 1/n) =

1, n = 1, 2, . . .. Consider also the degenerated r.v. at zero,

P (X = 0) = 1. Check that Xn
d→ X .

Example 2.7 (Counterexample: Convergence in law does

not imply convergence in prob.)

Consider the probability space (Ω,A, P ) with Ω = (0, 1), A =

ISABEL MOLINA 5



B(0,1) and P = U(0, 1). Consider the sequence of r.v.s defined over

(Ω,A, P ) by

X2n−1(ω) =

{
1, if ω ∈ (0, 1/2)

0, if ω ∈ [1/2, 1)
, X2n(ω) =

{
0, if ω ∈ (0, 1/2)

1, if ω ∈ [1/2, 1)

Check that Xn
P9 X for any r.v. X but Xn

d→ X , where X
d
=

Bern(1/2).

Theorem 2.12 (Convergence in law to a constant im-

plies convergence in prob.)

Xn
d9 c ∈ IR⇒ Xn

P→ c.

The following example shows that in the definition of conver-

gence in law as the pointwise limit at only the continuity points is

convenient, we cannot define it at all points.

Example 2.8 (Conv. in law does not imply conver-

gence in prob.)

Consider the sequence of i.i.d. r.v.s {Xn}n∈IN , with Xn
d
= N(0, 1),

∀n ∈ IN .

Theorem 2.13 (Borel-Cantelli’s Lemma)

Let {An}∞n=1 be a sequence of sets from Ω and let (Ω,A, P ) be a

probability space. It holds that:

(a) If

∞∑
n=1

P (An) <∞, then P ({ω ∈ Ω : ω ∈ An i.o.}) = 0;

(b) Reciprocally, if {An}∞n=1 are independent and

∞∑
n=1

P (An) =∞,

then P ({ω ∈ Ω : ω ∈ An i.o.}) = 1.

ISABEL MOLINA 6



Example 2.9 (Borel-Cantelli’s Lemma)

Let {Xn}n∈IN be a sequence of r.v.s with Xn
d
= Bern(pn) with

pn = 1/n2, ∀n ∈ IN . Obtain the probability of Xn = 1 i.o.

Remark 2.3 (Another characterization of the Borel-

Cantelli’s Lemma)

The Borel-Cantelli’s Lemma is useful in problems related to the

a.s. convergence. In fact, another characterization of the a.s. con-

vergence is the following:

P (|Xn −X| > ε i.o.) = 0, ∀ε > 0.

Lemma 2.1 (Boundedness of measurable functions)

Let X be a r.v. defined from a probability space (Ω,A, P ) on

(IR,B). Let g be a bounded measurable function from (IR,B) on

(IR,B), with P (X ∈ C(g)) = 1. Then, it holds that ∀ε > 0,

there exist two continuous and bounded functions f and g such

that f ≤ g ≤ h pointwise and E [h(X)− f (X)].

Definition 2.7 (Function that vanishes out of a com-

pact set)

Let g be a real function defined on IR. We say that g vanishes out

of a compact set if and only if there is a compact set C ⊂ IRd such

that g(X) = 0, ∀x /∈ C.

Theorem 2.14 (Relation between conv. in law and conv.

of expectations)

The following conditions are equivalent:

(a) Xn
d→ X ;

(b) E [g(Xn)] → E [g(X)], for each continuous function g that

vanishes out of a compact set;
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(c) E [g(Xn)]→ E [g(X)], for each continuous and bounded func-

tion g;

(d) E [g(Xn)]→ E [g(X)], for all bounded and measurable func-

tion g with P (X ∈ C(g)) = 1, where C(g) is the continuity

set of g.

Implications (a)⇒ (b), (a)⇒ (c) and (a)⇒ (d) are known as

Helly-Bray’s Theorem.

Example 2.10 (Boundedness is necessary in (c) and

(d))

Consider the function g(x) = x and the sequence of r.v.s defined

by P (Xn = n) = 1/n and P (Xn = 0) = 1 − 1/n. Check that

Xn
d→ X , with X ≡ 0 but E [g(Xn)] 9 E [g(X)]. Why does this

happen?

Example 2.11 (Continuity is necessary)

Consider the function

g(x) =

{
0, x = 0

1, x > 0
.

Let {Xn}n∈IN be a sequence of r.v.s with P (Xn = 1/n) = 1, ∀n ∈
IN . See that Xn

d→ X , with X ≡ 0 but E [g(Xn)] 9 E [g(X)].

Why does this happen?

Sometimes it is easier to calculate the characteristic function

ϕn(t) than the d.f. Fn(t) if a sequence of r.v.s {Xn}n∈IN . Then,

the convergence in law of {Xn}n∈IN will be studied through the

pointwise convergence of ϕn(t) by using the following theorem.

Theorem 2.15 (Continuity Theorem)

Xn
d→ X ↔ ϕXn(t) →

n→∞
ϕX(t), ∀t ∈ IR.
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Problems

1. Consider the sequence of r.v.s given by P (Xn = n) = 1/n

and P (Xn = 0) = 1 − 1/n, n = 1, 2, . . .. Consider also

the degenerated r.v. at zero, P (X = 0) = 1. Check that

Xn
d→ X .

2. Consider the sequence of d.f.s defined as

Fn(x) =


0, x < 0

nx, 0 ≤ x < 1/n,

1, x ≥ 1/n

Prove that the pointwise limit function is not a d.f. but

Fn →
n→∞

F , where F is the d.f. given by

F (x) =

{
0, x < 0

1, x ≥ 0

3. Let {Xn}n∈IN be a sequence of r.v.s withXn
d
= Beta(1/n, 1/n)

and the r.v. X
d
= Bin(1, 1/2). Prove that Xn

d→ X . Is that

true also if Xn
d
= Beta(α/n, β/n)?

4. Let {Xn}n∈IN be a sequence of r.v.s, whereXn is uniformly dis-

tributed in the set {1/n, 2/n, 3/n, . . . , 1}. Prove that Xn
d→

X , where X
d
= U(0, 1). Does Xn

P→ X?

5. Let {Xn}n∈IN be a sequence of r.v.s and X another r.v. With

the help of Hölder’s inequality, prove that:

(a) If 0 < r < s and E|Xn −X|s <∞, then E|Xn −X|r <
∞.

(b) If 0 < r < s and Xn
s→ X , then Xn

r→ X .
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6. Give and example of a sequence of r.v.s such that

E|Xn| →
n→∞

0 and E(Xn)2 →
n→∞

0.

7. Let µ be a constant. Show that

Xn
q.m.→ µ↔ E(Xn) →

n→∞
µ and V (Xn) →

n→∞
0.
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