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Chapter 1

Measure Theory and Probability

1.1 Set sequences

In this section Ω is a set and P(Ω) is the class of all subsets of Ω.

Definition 1.1 (Set sequence)

A set sequence is a map
IN → P(Ω)
n An

We represent it by {An}n∈IN ∈ P(Ω).

Theorem 1.1 (The De Morgan laws)

It holds that

(i)

(

∞
⋃

n=1

An

)c

=
∞
⋂

n=1

Ac
n.

(ii)

(

∞
⋂

n=1

An

)c

=
∞
⋃

n=1

Ac
n.

Definition 1.2 (Monotone set sequence)

A set sequence {An}n∈IN ∈ P(Ω) is said to be monotone increasing if and only if An ⊆
An+1, ∀n ∈ IN . We represent it by {An} ↑. When An ⊇ An+1, ∀n ∈ IN , the sequence is

said to be monotone decreasing, and we represent it by {An} ↓.

Example 1.1 Consider the sequences defined by:

(i) An = (−n, n), ∀n ∈ IN . This sequence is monotone increasing, since

An = (−n, n) ⊂ (−(n+ 1), n+ 1) = An+1, ∀n ∈ IN.

(ii) Bn = (−1/n, 1 + 1/n), ∀n ∈ IN . This sequence is monotone decreasing, since

Bn = (−1/n, 1 + 1/n) ⊃ (−1/(n+ 1), 1 + 1/(n+ 1)) = Bn+1, ∀n ∈ IN.

5



CHAPTER 1. MEASURE THEORY AND PROBABILITY

Definition 1.3 (Limit of a set sequence)

(i) We call lower limit of {An}, and we denote it limAn, to the set of points of Ω that

belong to all Ans except for a finite number of them.

(ii) We call upper limit of {An}, and we denote it limAn, to the set of points of Ω that

belong to infinite number of Ans. It is also said that An occurs infinitely often (i.o.),

and it is denoted also limAn = An i.o.

Example 1.2 If ω ∈ A2n, ∀n ∈ IN , then ω ∈ limAn but ω /∈ limAn since there is an

infinite number of Ans to which ω does not belong, {A2n−1}n∈IN .

Proposition 1.1 (Another characterization of limit of a set sequence)

(i) limAn =
∞
⋃

k=1

∞
⋂

n=k

An

(ii) limAn =
∞
⋂

k=1

∞
⋃

n=k

An

Proposition 1.2 (Relation between lower and upper limits)

The lower and upper limits of a set sequence {An} satisfy

limAn ⊆ limAn

Definition 1.4 (Convergence)

A set sequence {An} converges if and only if

limAn = limAn.

Then, we call limit of {An} to

lim
n→∞

An = limAn = limAn.

Definition 1.5 (Inferior/Superior limit of a sequence of real numbers)

Let {an}n∈IN ∈ IR be a sequence. We define:

(i) lim inf
n→∞

an = sup
k

inf
n≥k

an;

(ii) lim sup
n→∞

an = inf
k
sup
n≥k

an.

Proposition 1.3 (Convergence of monotone set sequences)

Any monotone (increasing or decreasing) set sequence converges, and it holds:

(i) If {An} ↑, then lim
n→∞

An =
∞
⋃

n=1

An.
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1.1. SET SEQUENCES

(ii) If {An} ↓, then lim
n→∞

An =
∞
⋂

n=1

An.

Example 1.3 Obtain the limits of the following set sequences:

(i) {An}, where An = (−n, n), ∀n ∈ IN .

(ii) {Bn}, where Bn = (−1/n, 1 + 1/n), ∀n ∈ IN .

(i) By the previous proposition, since {An} ↑, then

lim
n→∞

An =
∞
⋃

n=1

An =
∞
⋃

n=1

(−n, n) = IR.

(ii) Again, using the previous proposition, since {An} ↓, then

lim
n→∞

Bn =
∞
⋂

n=1

Bn =
∞
⋂

n=1

(

− 1

n
, 1 +

1

n

)

= [0, 1].

Problems

1. Prove Proposition 1.1.

2. Define sets of real numbers as follows. Let An = (−1/n, 1] if n is odd, and An =

(−1, 1/n] if n is even. Find limAn and limAn.

3. Prove Proposition 1.2.

4. Prove Proposition 1.3.

5. Let Ω = IR2 and An the interior of the circle with center at the point ((−1)n/n, 0)

and radius 1. Find limAn and limAn.

6. Prove that (limAn)
c = limAc

n and (limAn)
c = limAc

n.

7. Using the De Morgan laws and Proposition 1.3, prove that if {An} ↑ A, then

{Ac
n} ↓ Ac while if {An} ↓ A, then {Ac

n} ↑ Ac.

8. Let {xn} be a sequence of real numbers and let An = (−∞, xn). What is the

connection between lim inf
n→∞

xn and limAn? Similarly between lim sup
n→∞

xn and limAn.

ISABEL MOLINA 7



CHAPTER 1. MEASURE THEORY AND PROBABILITY

1.2 Structures of subsets

A probability function will be a function defined over events or subsets of a sample space

Ω. It is convenient to provide a “good” structure to these subsets, which in turn will

provide “good” properties to the probability function. In this section we study collections

of subsets of a set Ω with a good structure.

Definition 1.6 (Algebra)

An algebra (also called field) A over a set Ω is a collection of subsets of Ω that has the

following properties:

(i) Ω ∈ A;

(ii) If A ∈ A, then Ac ∈ A;

(iii) If A1, A2, . . . , An ∈ A, then
n
⋃

i=1

Ai ∈ A.

An algebra over Ω contains both Ω and ∅. It also contains all finite unions and

intersections of sets from A. We say that A is closed under complementation, finite union

and finite intersection. Extending property (iii) to an infinite sequence of elements of A
we obtain a σ-algebra.

Definition 1.7 (σ-algebra)

A σ-algebra (or σ-field) A over a set Ω is a collection of subsets of Ω that has the following

properties:

(i) Ω ∈ A;

(ii) If A ∈ A, then Ac ∈ A;

(iii) If A1, A2 . . . is a sequence of elements of A, then ∪∞
n=1An ∈ A.

Thus, a σ-algebra is closed under countable union. It is also closed under countable

intersection. Moreover, if A is an algebra, a countable union of sets in A can be expressed

as the limit of an increasing sequence of sets, the finite unions
n
⋃

i=1

Ai. Thus, a σ-algebra

is an algebra that is closed under limits of increasing sequences.

Example 1.4 The smallest σ-algebra is {∅,Ω}. The smallest σ-algebra that contains a

subset A ⊂ Ω is {∅, A,Ac,Ω}. It is contained in any other σ-algebra containing A. The

collection of all subsets of Ω, P(Ω), is a well known algebra called the algebra of the parts

of Ω.
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1.2. STRUCTURES OF SUBSETS

Definition 1.8 (σ-algebra spanned by a collection of events C)
Given a collection of sets C ⊂ P(Ω), we define the σ-algebra spanned by C, and we denote

it by σ(C), as the smallest σ-algebra that contains C.

Remark 1.1 For each C, the σ-algebra spanned by C, σ(C), always exists, since σ(C) is
the intersection of all σ-algebras that contain C and at least P(Ω) ⊃ C is a σ-algebra.

When Ω is finite or countable, it is common to work with the σ-algebra P(Ω), so

we will use this one unless otherwise stated. In the case Ω = IR, later we will consider

probability measures and we will want to obtain probabilities of intervals. Thus, we need

a σ-algebra containing all intervals. The Borel σ-algebra is based on this idea, and it will

be used by default when Ω = IR.

Definition 1.9 (Borel σ-algebra)

Consider the sample space Ω = IR and the collection of intervals of the form

I = {(−∞, a] : a ∈ IR}.

We define the Borel σ-algebra over IR, represented by B, as the σ-algebra spanned by I.

The Borel σ-algebra B contains all complements, countable intersections and unions

of elements of I. In particular, B contains all types of intervals and isolated points of IR,

although B is not equal to P(IR). For example,

• (a,∞) ∈ B, since (a,∞) = (−∞, a]c, and (−∞, a] ∈ IR.

• (a, b] ∈ IR, ∀a < b, since this interval can be expressed as (a, b] = (−∞, b] ∩ (a,∞),

where (−∞, b] ∈ B and (a,∞) ∈ B.

• {a} ∈ B, ∀a ∈ IR, since {a} =
∞
⋂

n=1

(

a− 1

n
, a

]

, which belongs to B.

When the sample space Ω is continuous but is a subset of IR, we need a σ-algebra

restricted to subsets of Ω.

Definition 1.10 (Restricted Borel σ-algebra )

Let A ⊂ IR. We define the Borel σ-algebra restricted to A as the collection

BA = {B ∩ A : B ∈ B}.

In the following we define the space over which measures, including probability mea-

sures, will be defined. This space will be the one whose elements will be suitable to

“measure”.

Definition 1.11 (Measurable space)

The pair (Ω,A), where Ω is a sample space and A is an algebra over Ω, is called measurable

space.

ISABEL MOLINA 9



CHAPTER 1. MEASURE THEORY AND PROBABILITY

Problems

1. Let A,B ∈ Ω with A ∩ B = ∅. Construct the smallest σ-algebra that contains A

and B.

2. Prove that an algebra over Ω contains all finite intersections of sets from A.

3. Prove that a σ-algebra over Ω contains all countable intersections of sets from A.

4. Prove that a σ-algebra is an algebra that is closed under limits of increasing se-

quences.

5. Let Ω = IR. Let A be the class of all finite unions of disjoint elements from the set

C = {(a, b], (−∞, a], (b,∞); a ≤ b}

Prove that A is an algebra.

1.3 Set functions

In the following A is a σ-algebra and we consider the extended real line given by IR =

IR ∪ {−∞,+∞}.

Definition 1.12 (Additive set function)

A set function φ : A → IR is additive if it satisfies:

For all {Ai}ni=1 ∈ A with Ai ∩ Aj = ∅, i 6= j, φ

(

n
⋃

i=1

Ai

)

=
n
∑

i=1

φ(Ai).

We will assume that +∞ and −∞ cannot both belong to the range of φ. We will

exclude the cases φ(A) = +∞ for all A ∈ A and φ(A) = −∞ for all A ∈ A. Extending

the definition to an infinite sequence, we obtain a σ-additive set function.

Definition 1.13 (σ-additive set function)

A set function φ : A → IR is σ-additive if it satisfies:

For all {An}n∈IN ∈ A with Ai ∩ Aj = ∅, i 6= j, φ

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

φ(An).

Observe that a σ-additive set function is well defined, since the infinite union of sets

of A belongs to A because A is a σ-algebra. It is easy to see that an additive function

satisfies φ(∅) = 0. Moreover, countable additivity implies finite additivity.

Definition 1.14 (Measure)

A set function φ : A → IR is a measure if

10 ISABEL MOLINA



1.3. SET FUNCTIONS

(a) φ is σ-additive;

(b) φ(A) ≥ 0, ∀A ∈ A.

Definition 1.15 (Probability measure)

A measure µ with µ(Ω) = 1 is called a probability measure.

Example 1.5 (Counting measure)

Let Ω be any countable set and consider the σ-algebra of the parts of Ω, P(Ω). Define

µ(A) as the number of points of A. The set function µ is a measure known as the counting

measure.

Example 1.6 (Probability measure)

Let Ω = {x1, x2, . . .} be a finite or countably infinite set, and let p1, p2, . . . , be nonnegative

numbers. Consider the σ-algebra of the parts of Ω, P(Ω), and define

µ(A) =
∑

xi∈A

pi.

The set function µ is a probability measure if and only if
∑∞

i=1 pi = 1.

Example 1.7 (Lebesgue measure)

A well known measure defined over (IR,B), which assigns to each element of B its length, is

the Lebesgue measure, denoted here as λ. For an interval, either open, close or semiclosed,

the Lebesgue measure is the length of the interval. For a single point, the Lebesgue

measure is zero.

Definition 1.16 (σ-finite set function)

A set function φ : A → IR is σ-finite if ∀A ∈ A, there exists a sequence {An}n∈IN of

disjoint elements of A with φ(An) < ∞ ∀n, whose union covers A, that is,

A ⊆
∞
⋃

n=1

An.

Definition 1.17 (Measure space)

The triplet (Ω,A, µ), where Ω is a sample space, A is an algebra and µ is a measure

defined over (Ω,A), is called measure space.

Definition 1.18 (Absolutely continuous measure with respect to another)

A measure µ on Borel subsets of the real line is absolutely continuous with respect to

another measure λ if λ(A) = 0 implies that µ(A) = 0. It is also said that µ is dominated

by λ, and written as µ << λ.

ISABEL MOLINA 11



CHAPTER 1. MEASURE THEORY AND PROBABILITY

If a measure on the real line is simply said to be absolutely continuous, this typically

means absolute continuity with respect to Lebesgue measure.

Although a probability function is simply a measure µ satisfying µ(Ω) = 1 as men-

tioned above, in Section 1.4 we give the classical definition of probability through the

axioms of Kolmogoroff.

Problems

1. Prove that for any finitely additive set function µ defined on an algebra A,

µ(∅) = 0.

2. Prove that for any finitely additive set function µ defined on an algebra A,

µ(A ∪ B) + µ(A ∩B) = µ(A) + µ(B).

3. Prove that for any finitely additive set function µ defined on an algebra A, if B ⊆ A,

then

µ(A) = µ(B) + µ(A−B).

4. Prove that for any nonnegative finitely additive set function µ defined on an algebra

A, then for all A1, . . . , An ∈ A,

µ

(

n
⋃

i=1

Ai

)

≤
n
∑

i=1

µ(Ai).

5. Prove that for any measure µ defined on an algebra A, then for all A1, . . . , An ∈ A
such that

⋃∞
n=1An ∈ A,

µ

(

∞
⋃

n=1

An

)

≤
∞
∑

n=1

µ(An).

1.4 Probability measures

Definition 1.19 (Random experiment)

A random experiment is a process for which:

• the set of possible results is known;

• its result cannot be predicted without error;

• if we repeat it in identical conditions, the result can be different.

12 ISABEL MOLINA



1.4. PROBABILITY MEASURES

Definition 1.20 (Elementary event, sample space, event)

The possible results of the random experiment that are indivisible are called elementary

events. The set of elementary events is known as sample space, and it will be denoted Ω.

An event A is a subset of Ω, such that once the random experiment is carried out, we can

say that A “has occurred” if the result of the experiment is contained in A.

Example 1.8 Examples of random experiments are:

(a) Tossing a coin. The sample space is Ω = {“head”, “tail”}. Events are: ∅, {“head”},
{“tail”}, Ω.

(b) Observing the number of traffic accidents in a minute in Spain. The sample space

is Ω = IN ∪ {0}.

(c) Drawing a Spanish woman aged between 20 and 40 and measuring her weight (in

kgs.). The sample space is Ω = [m,∞), were m is the minimum possible weight.

We will require that the collection of events has a structure of σ-algebra. This will

make possible to obtain the probability of all complements, unions and intersections of

events. The probabilities will be set functions defined over a measurable space composed

by the sample space Ω and a σ-algebra of subsets of Ω.

Example 1.9 For the experiment (a) described in Example 1.8, a measurable space is:

Ω = {“head”, “tail”}, A = {∅, {“head”}, {“tail”},Ω}.

For the experiment (b), the sample space is Ω = IN ∪{0}. If we take the σ-algebra P(Ω),

then (Ω,P(Ω)) is a measurable space. Finally, for the experiment (c), with sample space

Ω = [m,∞) ⊂ IR, a suitable σ-algebra is the Borel σ-algebra restricted to Ω, B[m,∞).

Definition 1.21 (Axiomatic definition of probability by Kolmogoroff)

Let (Ω,A) be a measurable space, where Ω is a sample space and A is a σ-algebra over Ω.

A probability function is a set function P : A → [0, 1] that satisfies the following axioms:

(i) P (Ω) = 1;

(ii) For any sequence A1, A2, . . . of disjoint elements of A, it holds

P

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

P (An).

By axiom (ii), a probability function is a measure for which the measure of the sample

space Ω is 1. The triplet (Ω,A, P ), where P is a probability P , is called probability space.

ISABEL MOLINA 13



CHAPTER 1. MEASURE THEORY AND PROBABILITY

Example 1.10 For the experiment (a) described in Example 1.8, with the measurable

space (Ω,A), where

Ω = {“head”, “tail”}, A = {∅, {“head”}, {“tail”},Ω},

define

P1(∅) = 0, P1({“head”}) = p, P1({“tail”}) = 1− p, P1(Ω) = 1,

where p ∈ [0, 1]. This function verifies the axioms of Kolmogoroff.

Example 1.11 For the experiment (b) described is Example 1.8, with the measurable

space (Ω,P(Ω)), define:

• For the elementary events, the probability is

P ({0}) = 0.131, P ({1}) = 0.272, P ({2}) = 0.27, P ({3}) = 0.183,
P ({4}) = 0.09, P ({5}) = 0.012, P ({6}) = 0.00095, P ({7}) = 0.00005,

P (∅) = 0, P ({i}) = 0, ∀i ≥ 8.

• For other events, the probability is defined as the sum of the probabilities of the

elementary events contains in that event, that is, if A = {a1, . . . , an}, where ai ∈ Ω

are the elementary events, the probability of A is

P (A) =
n
∑

i=1

P ({ai}).

This function verifies the axioms of Kolmogoroff.

Proposition 1.4 (Properties of the probability)

The following properties are consequence of the axioms of Kolmogoroff:

(i) P (∅) = 0;

(ii) Let A1, A2, . . . , An ∈ A with Ai ∩ Aj = ∅, i 6= j. Then,

P

(

n
⋃

i=1

Ai

)

=
n
∑

i=1

P (Ai).

(iii) ∀A ∈ A, P (A) ≤ 1.

(iv) ∀A ∈ A, P (Ac) = 1− P (A).

(v) For A,B ∈ A with A ⊆ B, it holds P (A) ≤ P (B).

(vi) Let A,B ∈ A be two events. Then

P (A ∪ B) = P (A) + P (B)− P (A ∩ B).

14 ISABEL MOLINA



1.4. PROBABILITY MEASURES

(vii) Let A1, A2, . . . , An ∈ A be events. Then

P

(

n
⋃

i=1

Ai

)

=
n
∑

i=1

P (Ai)−
n
∑

i1,i2=1
i1<i2

P (Ai1 ∩ Ai2) +
n
∑

i1,i2,i3=1
i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3) + · · ·

+(−1)k−1

n
∑

i1,...ik=1
i1<···<ik

P (Ai1 ∩ · · · ∩ Aik) + · · ·+ (−1)n−1P (A1 ∩ A2 ∩ · · · ∩ An).

In particular, for n = 2 we get property (vi).

Proposition 1.5 (Bool’s inequality)

For any sequence {An} ⊂ A it holds

P

(

∞
⋃

n=1

An

)

≤
∞
∑

n=1

P (An).

Proposition 1.6 (Sequential continuity of the probability)

Let (Ω,A, P ) be a probability space. Then, for any monotone sequence {An} of events

from A it holds

P
(

lim
n→∞

An

)

= lim
n→∞

P (An).

Example 1.12 Consider the random experiment of selecting randomly a number from

[0, 1]. Then the sample space is Ω = [0, 1]. Consider also the Borel σ-algebra restricted

to [0, 1] and define the function

g(x) = P ([0, x]), x ∈ (0, 1).

Proof that g is always right continuous, for each probability measure P that we choose.

Example 1.13 (Construction of a probability measure for countable Ω)

If Ω is finite or countable, the σ-algebra that is typically chosen is P(Ω). In this case,

in order to define a probability function, it suffices to define the probabilities of the

elementary events {ai} as P ({ai}) = pi, ∀ai ∈ Ω with the condition that
∑

i pi = 1,

pi ≥ 0, ∀i. Then, ∀A ⊂ Ω,

P (A) =
∑

ai∈A

P ({ai}) =
∑

ai∈A

pi.

Example 1.14 (Construction of a probability measure in (IR,B))
How can we construct a probability measure in (IR,B)? In general, it is not possible to

define a probability measure by assigning directly a numerical value to each A ∈ B, since
then probably the axioms of Kolmogoroff will not be satisfied.

For this, we will first consider the collection of intervals

C = {(a, b], (−∞, a], (b,+∞) : a < b}. (1.1)

ISABEL MOLINA 15



CHAPTER 1. MEASURE THEORY AND PROBABILITY

We start by assigning values of P to intervals from C, by ensuring that P is σ-additive on

C. Then, we consider the algebra F obtained by doing finite unions of disjoint intervals

from C and we extend P to F . The extended function will be a probability measure on

(IR,F). Finally, there is a unique extension of a probability measure from F to σ(F) = B,
see the following propositions.

Proposition 1.7 Consider the collection of all finite unions of disjoint intervals from C
in (1.1),

F =

{

n
⋃

i=1

Ai : Ai ∈ C, Ai disjoint

}

.

Then F is an algebra.

Next we extend P from C to F as follows.

Proposition 1.8 (Extension of the probability function)

(a) For all A ∈ F , since A =
⋃n

i=1(ai, bi], with ai, bi ∈ IR ∪ {−∞,+∞}, let us define

P1(A) =
n
∑

i=1

P (ai, bi].

Then, P1 is a probability measure over (IR,F).

(b) For all A ∈ C, it holds that P (A) = P1(A).

Observe that B = σ(F). Finally, can we extend P from F to B = σ(F)? If the

answer is positive, is the extension unique? The next theorem gives the answer to these

two questions.

Theorem 1.2 (Caratheodory’s Extension Theorem)

Let (Ω,A, P ) be a probability space, whereA is an algebra. Then, P can be extended from

A to σ(A), and the extension is unique (i.e., there exists a unique probability measure P̂

over σ(A) with P̂ (A) = P (A), ∀A ∈ A).

The extension of P from F to σ(F) = B is done by steps. First, P is extended to the

collection of the limits of increasing sequences of events in F , denoted L. It holds that

L ⊃ F and L ⊃ σ(F) = B (Monotone Class Theorem). The probability of each event A

from L is defined as the limit of the probabilities of the sequences of events from F that

converge to A. Afterwards, P is extended to the σ-algebra of the parts of IR. For each

subset A ∈ P(IR), the probability is defined as the infimum of the probabilities of the

events in L that contain A. This extension is not countably additive on P(IR), only on a

smaller σ-algebra, so P it is not a probability measure on (IR,P(IR)). Finally, a σ-algebra

in which P is a probability measure is defined as the collection H of subsets H ⊂ Ω, for

16 ISABEL MOLINA
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which P (H) + P (Hc) = 1. This collection is indeed a σ-algebra that contains L and P is

a probability measure on it. It holds that σ(F) = B ⊂ H and P restricted to σ(F) = B
is also a probability measure on (IR,B).

Problems

1. Prove the properties of the probability measures in Proposition 1.4.

2. Prove Bool’s inequality in Proposition 1.4.

3. Prove the Sequential Continuity of the probability in Proposition 1.6.

1.5 Other definitions of probability

When Ω is finite, say Ω = {a1, . . . , ak}, many times the elementary events are equiprob-

able, that is, P ({a1}) = · · · = P ({ak}) = 1/k. Then, for A ⊂ Ω, say A = {ai1 , . . . , aim},
then

P (A) =
m
∑

j=1

P ({aij}) =
m

k
.

This is the definition of probability given by Laplace, which is useful only for experiments

with a finite number of possible results and whose results are, a priori, equally frequent.

Definition 1.22 (Laplace rule of probability)

The Laplace probability of an event A ⊆ Ω is the proportion of results favorable to A;

that is, if k is the number of possible results or cardinal of Ω and k(A) is the number of

results contained in A or cardinal of A, then

P (A) =
k(A)

k
.

In order to apply the Laplace rule, we need to learn to count. The counting techniques

are comprised in the area of Combinatorial Analysis.

The following examples show intuitively the frequentist definition of probability.

Example 1.15 (Frequentist definition of probability)

The following tables report the relative frequencies of the results of the experiments

described in Example 1.8, when each of these experiments are repeated n times.

(a) Tossing a coin n times. The table shows that both frequencies of “head” and “tail”

converge to 0.5.
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Result
n “head” “tail”
10 0.700 0.300
20 0.550 0.450
30 0.467 0.533
100 0.470 0.530
1000 0.491 0.509
10000 0.503 0.497
100000 0.500 0.500

Lanzamiento de una moneda
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(b) Observation of the number of traffic accidents in n minutes. We can observe in the

table below that the frequencies of the possible results of the experiment seem to

converge.

Result
n 0 1 2 3 4 5 6 7 8
10 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0 0
20 0.2 0.4 0.15 0.05 0.2 0 0 0 0
30 0.13 0.17 0.33 0.23 0.03 0 0 0 0
100 0.12 0.22 0.29 0.24 0.09 0 0 0 0
1000 0.151 0.259 0.237 0.202 0.091 0.012 0.002 0 0
10000 0.138 0.271 0.271 0.178 0.086 0.012 0.0008 0.0001 0
20000 0.131 0.272 0.270 0.183 0.090 0.012 0.00095 0.00005 0
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Número de accidentes de tráfico
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(c) Independient drawing of n women aged between 20 and 40 and measuring their

weight (in kgs.). Again, we observe that the relative frequencies of the given weight

intervals seem to converge.

Weight intervals
n (0, 35] (35, 45] (45, 55] (55, 65] (65,∞)
10 0 0 0.9 0.1 0
20 0 0.2 0.6 0.2 0
30 0 0.17 0.7 0.13 0
100 0 0.19 0.66 0.15 0
1000 0.005 0.219 0.678 0.098 0
5000 0.0012 0.197 0.681 0.121 0.0004
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Selección de mujeres y anotación de su peso
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Definition 1.23 (Frequentist probability)

The frequentist definition of probability of an event A is the limit of the relative frequency

of this event, when we let the number of repetitions of the random experiment grow to

infinity.

If the experiment is repeated n times, and nA is the number of repetitions in which A

occurs, then the probability of A is

P (A) = lim
n→∞

nA

n
.

Problems

1. Check if the Laplace definition of probability satisfies the axioms of Kolmogoroff.

2. Check if the frequentist definition of probability satisfies the axioms of Kolmogoroff.
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1.6 Measurability and Lebesgue integral

A measurable function relates two measurable spaces, preserving the structure of the

events.

Definition 1.24 Let (Ω1,A1) and (Ω2,A2) be two measurable spaces. A function f :

Ω1 → Ω2 is said to be measurable if and only if ∀B ∈ A2, f
−1(B) ∈ A1, where f−1(B) =

{ω ∈ Ω1 : f(ω) ∈ B}.

The sum, product, quotient (when the function in the denominator is different from

zero), maximum, minimum and composition of two measurable functions is a measurable

function. Moreover, if {fn}n∈IN is a sequence of measurable functions, then

sup
n∈IN

{fn}, inf
n∈IN

{fn}, lim inf
n∈IN

fn, lim sup
n∈IN

fn, lim
n→∞

fn,

assuming that they exist, are also measurable. If they are infinite, we can consider ĪR

instead of IR.

The following result will gives us a tool useful to check if a function f from (Ω1,A1)

into (Ω2,A2) is measurable.

Theorem 1.3 Let (Ω1,A1) and (Ω2,A2) be measure spaces and let f : Ω1 → Ω2. Let

C2 ⊂ P(Ω2) be a collection of subsets that generates A2, i.e, such that σ(C2) = A2. Then

f is measurable if and only of f−1(A) ∈ A1, ∀A ∈ C2.

Corollary 1.1 Let (Ω,A) be a measurable space and consider also the measurable space

(IR,B). Let f : Ω → IR be a function. Then f is measurable if and only if f−1(−∞, a] ∈ A,

∀a ∈ IR.

The Lebesgue integral is restricted to measurable functions. We are going to define

the integral by steps. We consider measurable functions defined from a measurable space

(Ω,A) on the measurable space (IR,B), where B is the Borel σ-algebra. We consider also

a σ-finite measure µ.

Definition 1.25 (Indicator function)

Given S ∈ A, an indicator function, 1S : Ω → IR, gives value 1 to elements of S and 0 to

the rest of elements:

1S(ω) =

{

1, ω ∈ S;
0, ω /∈ S.

Next we define simple functions, which are linear combinations of indicator functions.

Definition 1.26 (Simple function)

Let (Ω,A, µ) be a measure space. Let ai be real numbers and {Si}ni=1 disjoint elements
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of A. A simple function has the form

φ =
n
∑

i=1

ai1Si
.

Proposition 1.9 Indicators and simple functions are measurable.

Definition 1.27 (Lebesgue integral for simple functions)

(i) The Lebesgue integral of a simple function φ with respect to a σ-finite measure µ is

defined as
∫

Ω

φ dµ =
n
∑

i=1

ai µ(Si).

(ii) The Lebesgue integral of φ with respect to µ over a subset A ∈ A is

∫

A

φ dµ =

∫

A

φ · 1A dµ =
n
∑

i=1

ai µ(A ∩ Si).

The next theorem says that for any measurable function f on IR, we can always find

a sequence of measurable functions that converge to f . This will allow the definition of

the Lebesgue integral.

Theorem 1.4 Let f : Ω → IR. It holds:

(a) f is a positive measurable function if and only if f = limn→∞ fn, where {fn}n∈IN is

an increasing sequence of non negative simple functions.

(b) f is a measurable function if and only if f = limn→∞ fn, where {fn}n∈IN is an

increasing sequence of simple functions.

Definition 1.28 (Lebesgue integral for non-negative functions)

Let f be a non-negative measurable function defined over (Ω,A, µ) and {fn}n∈IN be an

increasing sequence of simple functions that converge pointwise to f (this sequence can

be always constructed). The Lebesgue integral of f with respect to the σ-finite measure

µ is defined as
∫

Ω

f dµ = lim
n→∞

∫

Ω

fn dµ.

The previous definition is correct due to the following uniqueness theorem.

Theorem 1.5 (Uniqueness of Lebesgue integral)

Let f be a non-negative measurable function. Let {fn}n∈IN and {gn}n∈IN be two increasing

sequences of non-negative simple functions that converge pointwise to f . Then

lim
n→∞

∫

Ω

fn dµ = lim
n→∞

∫

Ω

gn dµ.

22 ISABEL MOLINA
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Definition 1.29 (Lebesgue integral for general functions)

For a measurable function f that can take negative values, we can write it as the sum of

two non-negative functions in the form:

f = f+ − f−,

where f+(ω) = max{f(ω), 0} is the positive part of f and f−(ω) = max{−f(ω), 0} is the

negative part of f . If the integrals of f+ and f− are finite, then the Lebesgue integral of

f is
∫

Ω

f dµ =

∫

Ω

f+dµ−
∫

Ω

f−dµ,

assuming that at least one of the integrals on the right is finite.

Definition 1.30 The Lebesgue integral of a measurable function f over a subset A ∈ A
is defined as

∫

A

f dµ =

∫

Ω

f1Ad µ.

Definition 1.31 A function is said to be Lebesgue integrable if and only if

∣

∣

∣

∣

∫

Ω

f dµ

∣

∣

∣

∣

< ∞.

Moreover, if instead of doing the decomposition f = f+ − f− we do another decom-

position, the result is the same.

Theorem 1.6 Let f1, f2, g1, g2 be non-negative measurable functions and let f = f1 −
f2 = g1 − g2. Then,

∫

Ω

f1 dµ−
∫

Ω

f2 dµ =

∫

Ω

g1 dµ−
∫

Ω

g2 dµ.

Proposition 1.10 A measurable function f is Lebesgue integrable if and only if |f | is
Lebesgue integrable.

Remark 1.2 The Lebesgue integral of a measurable function f defined from a measurable

space (Ω,A) on (IR,B), over a Borel set I = (a, b) ∈ B, will also be expressed as

∫

I

f dµ =

∫ b

a

f(x) dµ(x).

Proposition 1.11 If a function f : IR → IR+ = [0,∞) is Riemann integrable, then it is

also Lebesgue integrable (with respect to the Lebesgue measure λ) and the two integrals

coincide, i.e.,
∫

A

f(x) dµ(x) =

∫

A

f(x) dx.
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Example 1.16 The Dirichlet function 1lQ is not continuous in any point of its domain.

• This function is not Riemann integrable in [0, 1] because each subinterval will contain

at least a rational number and and irrational number, since both sets are dense in

IR. Then, each superior sum is 1 and also the infimum of this superior sums,

whereas each lowersum is 0, the same as the suppremum of all lowersums. Since

the suppremum and the infimum are different, then the Riemann integral does not

exist.

• However, it is Lebesgue integrable on [0, 1] with respect to the Lebesgue measure λ,

since by definition
∫

[0,1]

1lQ dλ = λ(lQ ∩ [0, 1]) = 0,

since lQ is numerable.

Proposition 1.12 (Properties of Lebesgue integral)

(a) If µ(A) = 0, then
∫

A
f dµ = 0.

(b) If {An}n∈IN is a sequence of disjoint sets withA =
∞
⋃

n=1

An, then
∫

A
f dµ =

∞
∑

n=1

∫

An

f dµ.

(c) If two measurable functions f and g are equal in all parts of their domain except for

a subset with measure µ zero and f is Lebesgue integrable, then g is also Lebesgue

integrable and their Lebesgue integral is the same, that is,

If µ ({ω ∈ Ω : f(ω) 6= g(ω)}) = 0, then

∫

Ω

f dµ =

∫

Ω

g dµ.

(d) Linearity: If f and g are Lebesgue integrable functions and a and b are real numbers,

then
∫

A

(a f + b g) dµ = a

∫

A

f dµ+ b

∫

A

g dµ.

(e) Monotonocity: If f and g are Lebesgue integrable and f < g, then

∫

f dµ ≤
∫

g dµ.

Theorem 1.7 (Monotone convergence theorem)

Consider a point-wise increasing sequence of [0,∞]-valued measurable functions {fn}n∈IN
(i.e., 0 ≤ fn(x) ≤ fn+1(x), ∀x ∈ IR, ∀n > 1) with limn→∞ fn = f . Then,

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

fdµ.
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Theorem 1.8 (Dominated convergence theorem)

Consider a sequence of real-valued measurable functions {fn}n∈IN with limn→∞ fn = f .

Assume that the sequence is dominated by an integrable function g (i.e., |fn(x)| ≤ g(x),

∀x ∈ IR, with
∫

Ω
g(x) dµ < ∞). Then,

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

fdµ.

Theorem 1.9 (Hölder’s inequality)

Let (Ω,A, µ) be a measure space. Let p, q ∈ IR such that p > 1 and 1/p + 1/q = 1. Let

f and g be measurable functions with |f |p and |g|q µ-integrable (i.e.,
∫

|f |pdµ < ∞ and
∫

|g|qdµ < ∞.). Then, |fg| is also µ-integrable (i.e.,
∫

|fg|dµ < ∞) and

∫

Ω

|fg|dµ ≤
(
∫

Ω

|f |p dµ
)1/p(∫

Ω

|g|q dµ
)1/q

.

The particular case with p = q = 2 is known as Schwartz’s inequality.

Theorem 1.10 (Minkowski’s inequality)

Let (Ω,A, µ) be a measure space. Let p ≥ 1. Let f and g be measurable functions with

|f |p and |g|p µ-integrable. Then, |f + g|p is also µ-integrable and

(
∫

Ω

|f + g|pdµ
)1/p

≤
(
∫

Ω

|f |p dµ
)1/p

+

(
∫

Ω

|g|p dµ
)1/p

.

Definition 1.32 (Lp space)

Let (Ω,A, µ) be a measure space. Let p 6= 0. We define the Lp(µ) space as the set of

measurable functions f with |f |p µ-integrable, that is,

Lp(µ) = Lp(Ω,A, µ) =

{

f : f measurable and

∫

Ω

|f |p dµ < ∞
}

.

By the Minkowski’s inequality, the Lp(µ) space with 1 ≤ p < ∞ is a vector space

in IR, in which we can define a norm and the corresponding metric associated with that

norm.

Proposition 1.13 (Norm in Lp space)

The function φ : Lp(µ) → IR that assigns to each function f ∈ Lp(µ) the value φ(f) =
(∫

Ω
|f |p dµ

)1/p
is a norm in the vector space Lp(µ) and it is denoted as

‖f‖p =
(
∫

Ω

|f |p dµ
)1/p

.

Now we can introduce a metric in Lp(µ) as

d(f, g) = ‖f − g‖p.

A vector space with a metric obtained from a norm is called a metric space.
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Problems

1. Prove that if f and g are measurable, then g ◦ f is also measurable.

2. Using Corollary 1.1, prove that if f and g are measurable functions from (Ω,A) in

(IR,B), then max{f, g} and min{f, g} are measurable.

3. Prove Proposition 1.9.

4. Prove Prop. 1.12 (a).

5. Prove Prop. 1.12 (b).

6. Prove Prop. 1.12 (c).

1.7 Distribution function

We will consider the probability space (IR,B, P ). The distribution function will be a very

important tool since it will summarize the probabilities over Borel subsets.

Definition 1.33 (Distribucion function)

Let (IR,B, P ) a probability space. The distribution function (d.f.) associated with the

probability function P is defined as

F : IR → [0, 1]
x F (x) = P (−∞, x].

We can also define F (−∞) = lim
x↓−∞

F (x) and F (+∞) = lim
x↑+∞

F (x). Then, the distribution

function is F : [−∞,+∞] → [0, 1].

Proposition 1.14 (Properties of the d.f.)

(i) The d.f. is monotone increasing, that is,

x < y ⇒ F (x) ≤ F (y).

(ii) F (−∞) = 0 and F (+∞) = 1.

(iii) F is right continuous for all x ∈ IR.

Remark 1.3 If the d.f. was defined as F (x) = P (−∞, x), then it would be left continu-

ous.

We can speak about a d.f. without reference to the probability measure P that is used

to define the d.f.
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Definition 1.34 A function F : [−∞,+∞] → [0, 1] is a d.f. if and only if satisfies

Properties (i)-(iii).

Now, given a d.f. F verifying (i)-(iii), is there a unique probability function over (IR,B)
whose d.f. is exactly F?

Proposition 1.15 Let F : [−∞,+∞] → [0, 1] be a function that satisfies properties (i)-

(iii). Then, there is a unique probability function PF defined over (IR,B) such that the

distribution function associated with PF is exactly F .

Remark 1.4 Let a, b be real numbers with a < b. Then P (a, b] = F (b)− F (a).

Theorem 1.11 The set D(F ) of discontinuity points of F is finite or countable.

Definition 1.35 (Discrete d.f.)

A d.f. F is discrete if there exists a finite or countable set {a1, . . . , an, . . .} ⊂ IR such that

PF ({ai}) > 0, ∀i and∑∞
i=1 PF ({ai}) = 1, where PF is the probability function associated

with F .

Definition 1.36 (Probability mass function)

The collection of numbers PF ({a1}), . . . , PF ({an}), . . ., such that PF ({ai}) > 0, ∀i and
∑∞

i=1 PF ({ai}) = 1, is called probability mass function.

Remark 1.5 Observe that

F (x) = PF (−∞, x] =
∑

ai≤x

PF ({ai}).

Thus, F (x) is a step function and the length of the step at an is exactly the probability

of an, that is,

PF ({ai}) = P (−∞, an]− P (−∞, an) = F (an)− lim
x↓an

F (x) = F (an)− F (an−).

Theorem 1.12 (Radon-Nykodym Theorem)

Given a measurable space (Ω,A), if a σ-finite measure µ on (Ω,A) is absolutely continuous

with respect to a σ-finite measure λ on (Ω,A), then there is a measurable function f :

Ω → [0,∞), such that for any measurable set A,

µ(A) =

∫

A

f dλ.

The function f satisfying the above equality is uniquely defined up to a set with

measure µ zero, that is, if g is another function which satisfies the same property, then

f = g except in a set with measure µ zero. f is commonly written dµ/dλ and is called the

Radon–Nikodym derivative. The choice of notation and the name of the function reflects

the fact that the function is analogous to a derivative in calculus in the sense that it

describes the rate of change of density of one measure with respect to another.
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Theorem 1.13 A finite measure µ on Borel subsets of the real line is absolutely contin-

uous with respect to Lebesgue measure if and only if the point function

F (x) = µ((−∞, x])

is a locally and absolutely continuous real function.

If µ is absolutely continuous, then the Radon-Nikodym derivative of µ is equal almost

everywhere to the derivative of F . Thus, the absolutely continuous measures on IRn are

precisely those that have densities; as a special case, the absolutely continuous d.f.’s are

precisely the ones that have probability density functions.

Definition 1.37 (Absolutely continuous d.f.)

A d.f. is absolutely continuous if and only if there is a non-negative Lebesgue integrable

function f such that

∀x ∈ IR, F (x) =

∫

(−∞,x]

fdλ,

where λ is the Lebesgue measure. The function f is called probability density function,

p.d.f.

Proposition 1.16 Let f : IR → IR+ = [0,∞) be a Riemann integrable function such

that
∫ +∞

−∞
f(t)dt = 1. Then, F (x) =

∫ x

−∞
f(t)dt is an absolutely continuous d.f. whose

associated p.d.f is f .

All the p.d.f.’s that we are going to see are Riemann integrable.

Proposition 1.17 Let F be an absolutely continuous d.f. Then it holds:

(a) F is continuous.

(b) If f is continuous in the point x, then F is differentiable in x and F ′(x) = f(x).

(c) PF ({x}) = 0, ∀x ∈ IR.

(d) PF (a, b) = PF (a, b] = PF [a, b) = PF [a, b] =
∫ b

a
f(t)dt, ∀a, b with a < b.

(e) PF (B) =
∫

B
f(t)dt, ∀B ∈ B.

Remark 1.6 Note that:

(1) Not all continuous d.f.’s are absolutely continuous.

(2) Another type of d.f’s are those called singular d.f.’s, which are continuous. We will

not study them.

Proposition 1.18 Let F1, F2 be d.f.’s and λ ∈ [0, 1]. Then, F = λF1+(1−λ)F2 is a d.f.
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Definition 1.38 (Mixed d.f.)

A d.f. is said to be mixed if and only if there is a discrete d.f. F1, an absolutely continuous

d.f. F2 and λ ∈ [0, 1] such that F = λF1 + (1− λ)F2.

1.8 Random variables

A random variable transforms the elements of the sample space Ω into real numbers

(elements from IR), preserving the σ-algebra structure of the initial events.

Definition 1.39 Let (Ω,A) be a measurable space. Consider also the measurable space

(IR,B), where B is the Borel σ-algebra over IR. A random variable (r.v.) is a function

X : Ω → IR that is measurable, that is,

∀B ∈ B, X−1(B) ∈ A,

where X−1(B) := {ω ∈ Ω : X(ω) ∈ B}.

Remark 1.7 Observe that:

(a) a r.v. X is simply a measurable function in IR. The name random variable stems

from the fact the result of the random experiment ω ∈ Ω is random, and then the

observed value of the r.v., X(ω), is also random.

(b) the measurability property of the r.v. will allow transferring probabilities of events

A ∈ A to probabilities of Borel sets I ∈ B, where I is the image of A through X.

Example 1.17 For the experiments introduced in Example 1.8, the following are random

variables:

(a) For the measurable space (Ω,A) with sample space Ω = {“head”, “tail”} and σ-

algebra A = {∅, {“head”}, {“tail”},Ω}, a random variable is:

X(ω) =

{

1 if ω = “head”,
0 if ω = “tail”;

This variable counts the number of heads when tossing a coin. In fact, it is a random

variable, since for any event from the final space B ∈ B, we have

X If 0, 1 ∈ B, then X−1(B) = Ω ∈ A.

X If 0 ∈ B but 1 /∈ B, then X−1(B) = {“tail”} ∈ A.

X If 1 ∈ B but 0 /∈ B, then X−1(B) = {“head”} ∈ A.

X If 0, 1 /∈ B, then X−1(B) = ∅ ∈ A.
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(b) For the measurable space (Ω,P(Ω)), where Ω = IN ∪ {0}, since Ω ⊂ IR, a trivial

r.v. is X1(ω) = ω. It is a r.v. since for any B ∈ B,

X−1
1 (B) = {ω ∈ IN ∪ {0} : X1(ω) = ω ∈ B}

is the set of natural numbers (including zero) that are contained in B. But any

countable set of natural numbers belongs to P(Ω), since this σ-algebra contains all

subsets of IN ∪ {0}. Therefore, X1=“Number of traffic accidents in a minute in

Spain” is a r.v.

Another r.v. could be

X2(ω) =

{

1 if ω ∈ IN ;
0 if ω = 0.

Again, X2 is a r.v. since for each B ∈ B,

X If 0, 1 ∈ B, then X−1
2 (B) = Ω ∈ P(Ω).

X If 1 ∈ B but 0 /∈ B, then X−1
2 (B) = IN ∈ P(Ω).

X If 0 ∈ B but 1 /∈ B, then X−1
2 (B) = {0} ∈ P(Ω).

X If 0, 1 /∈ B, then X−1
2 (B) = ∅ ∈ P(Ω).

(c) As in previous example, for the measurable space (Ω,BΩ), where Ω = [m,∞), a

possible r.v. is X1(ω) = ω, since for each B ∈ B, we have

X−1
1 (B) = {ω ∈ [a,∞) : X1(ω) = ω ∈ B} = [a,∞) ∩ B ∈ BΩ.

Another r.v. would be the indicator of less than 65 kgs., given by

X2(ω) =

{

1 if ω ≥ 65,
0 if ω < 65.

Theorem 1.14 Any function X from (IR,B) in (IR,B) that is continuous is a r.v.

The probability of an event from IR induced by a r.v. is going to be defined as the

probability of the “original” events from Ω, that is, the probability of a r.v. preserves the

probabilities of the original measurable space. This definition requires the measurability

property, since the “original” events must be in the initial σ-algebra so that they have a

probability.

Definition 1.40 (Probability induced by a r.v.)

Let (Ω,A, P ) be a measure space and let B be the Borel σ-algebra over IR. The probability

induced by the r.v. X is a function PX : B → IR, defined as

PX(B) = P (X−1(B)), ∀B ∈ B.
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Theorem 1.15 The probability induced by a r.v. X is a probability function in (IR,B).

Example 1.18 For the probability function P1 defined in Example 1.10 and the r.v.

defined in Example 1.17 (a), the probability induced by a r.v. X is described as follows.

Let B ∈ B.

X If 0, 1 ∈ B, then P1X(B) = P1(X
−1(B)) = P1(Ω) = 1.

X If 0 ∈ B but 1 /∈ B, then P1X(B) = P1(X
−1(B)) = P1({“tail”}) = 1/2.

X If 1 ∈ B but 0 /∈ B, then P1X(B) = P1(X
−1(B)) = P1({“head”}) = 1/2.

X If 0, 1 /∈ B, then P1X(B) = P1(X
−1(B)) = P1(∅) = 0.

Summarizing, the probability induced by X is

P1X(B) =







0, if 0, 1 /∈ B;
1/2, if 0 or 1 are in B;
1, if 0, 1 ∈ B.

In particular, we obtain the following probabilities

X P1X({0}) = P1(X = 0) = 1/2.

X P1X((−∞, 0]) = P1(X ≤ 0) = 1/2.

X P1X((0, 1]) = P1(0 < X ≤ 1) = 1/2.

Example 1.19 For the probability function P introduced in Example 1.11 and the r.v.

X1 defined in Example 1.17 (b), the probability induced by the r.v. X1 is described as

follows. Let B ∈ B such that IN ∩ B = {a1, a2, . . . , ap}.

PX1
(B) = P (X−1

1 (B)) = P1((IN ∪ {0}) ∩ B) = P ({a1, a2, . . . , ap}) =
p
∑

i=1

P ({ai}).

Definition 1.41 (Degenerate r.v.)

A r.v. X is said to be degenerate at a point c ∈ IR if and only if

P (X = c) = PX({c}) = 1.

Since PX is a probability function, there is a distribution function that summarizes its

values.

Definition 1.42 (Distribucion function)

The distribucion function (d.f.) of a r.v. X is defined as the function FX : IR → [0, 1]

with

FX(x) = PX(−∞, x], ∀x ∈ IR.
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Definition 1.43 A r.v. X is said to be discrete (absolutely continuous) if and only if its

d.f. FX is discrete (absolutely continuous).

Remark 1.8 It holds that:

(a) a discrete r.v. takes a finite or countable number of values.

(b) a continuous r.v. takes infinite number of values, and the probability of single values

are zero.

Definition 1.44 (Support of a r.v.)

(a) If X is a discrete r.v., we define the support of X as

DX := {x ∈ IR : PX{x} > 0}.

(b) If X continuous, the support is defined as

DX := {x ∈ IR : fX(x) > 0}.

Observe that for a discrete r.v.,
∑

x∈DX

PX{x} = 1 and DX is finite or countable.

Example 1.20 From the random variables introduced in Example 1.17, those defined in

(a) and (b) are discrete, along with X2 form (c).

For a discrete r.v. X, we can define a function the gives the probabilities of single

points.

Definition 1.45 The probability mass function (p.m.f) of a discrete r.v. X is the function

pX : IR → IR such that

pX(x) = PX({x}), ∀x ∈ IR.

We will also use the notation p(X = x) = pX(x).

The probability function induced by a discrete r.v. X, PX , is completely determined

by the distribution function FX or by the mass function pX . Thus, in the following, when

we speak about the “distribution” of a discrete r.v. X, we could be referring either to

the probability function induced by X, PX , the distribution function FX , or the mass

function pX .

Example 1.21 The r.v. X1 : “Weight of a randomly selected Spanish woman aged within

20 and 40”, defined in Example 1.17 (c), is continuous.

Definition 1.46 The probability density function (p.d.f.) of X is a function fX : IR → IR

defined as

fX(x) =

{

0 if x ∈ S;
F ′
X(x) if x /∈ S.
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It is named probability density function of x because it gives the density of probability of

an infinitesimal interval centered in x.

The same as in the discrete case, the probabilities of a continuous r.v. X are deter-

mined either by PX , FX or the p.d.f. fX . Again, the “distribution” of a r.v., could be

referring to any of these functions.

Random variables, as measurable functions, inherit all the properties of measurable

functions. Furthermore, we will be able to calculate Lebesgue integrals of measurable

functions of r.v.’s using as measure their induced probability functions. This will be

possible due to the following theorem.

Theorem 1.16 (Theorem of change of integration space)

Let X be a r.v. from (Ω,A, P ) in (IR,B) an g another r.v. from (IR,B) in (IR,B). Then,
∫

Ω

(g ◦X) dP =

∫

IR

g dPX .

Remark 1.9 Let FX be the d.f. associated with the probability measure PX . The integral
∫

IR

g dPX =

∫ +∞

−∞

g(x) dPX(x)

will also be denoted as
∫

IR

g dFx =

∫ +∞

−∞

g(x) dFX(x).

Proposition 1.19 If X is an absolutely continuous r.v. with d.f. FX and p.d.f. with

respect to the Lebesgue measure fX = dFX/dµ and if g is any function for which
∫

IR
|g| dPX < ∞, then

∫

IR

g dPX =

∫

IR

g · fX dµ.

In the following we will see how to calculate these integrals for the most interesting

cases of d.f. FX .

(a) FX discrete: The probability is concentrated in a finite or numerable set DX =

{a1, . . . , an, . . .}, with probabilities PX{a1}, . . . , PX{an}, . . .. Then, using properties

(a) and (b) of the Lebesgue integral,
∫

IR

g dPX =

∫

DX

g dPX +

∫

Dc
X

g(x) dPX

=

∫

DX

g dPX

=
∞
∑

n=1

∫

{an}

g dPX

=
∞
∑

n=1

g(an)PX{an}.
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(b) FX absolutely continuous: In this case,

∫

IR

g dPX =

∫

IR

g · fX dµ

and if g · fX is Riemann integrable, then it is also Lebesgue integrable and the two

integrals coincide, i.e.,

∫

IR

g dPX =

∫

IR

g · fX dµ =

∫ +∞

−∞

g(x)fX(x)dx.

Definition 1.47 The expectation of the r.v. X is defined as

µ = E(X) =

∫

Ω

X dP.

Corollary 1.2 The expectation of X can be calculated as

E(X) =

∫

IR

x dFX(x),

and provided that X is absolutely continuous with p.d.f. fX(x), then

E(X) =

∫

IR

xfX(x) dx.

Definition 1.48 The k-th moment of X with respect to a ∈ IR is defined as

αk,a = E(gk,a ◦X),

where gk,a(x) = (x− a)k, provided that the expectation exists.

Remark 1.10 It holds that

αk,a =

∫

Ω

(gk,a ◦X) dP =

∫

IR

gk,a(x) dFX(x) =

∫

IR

(x− a)k dFX(x).

Observe that for the calculation of the moments of a r.v. X we only require is its d.f.

Definition 1.49 The k-th moment of X with respect to the mean µ is

µk := αk,µ =

∫

IR

(x− µ)k dFX(x).

In particular, second moment with respect to the mean is called variance,

σ2
X = V (X) = µ2 =

∫

IR

(x− µ)2 dFX(x).

The standard deviation is σX =
√

V (X).
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Definition 1.50 The k-th moment of X with respect to the origin µ is

αk := αk,0 = E(Xn) =

∫

IR

xk dFX(x).

Proposition 1.20 It holds

µk =
k
∑

i=0

(−1)k−i

(

k
i

)

µk−i αi.

Lemma 1.1 If αk = E(Xk) exists and is finite, then there exists αm and is finite, ∀m ≤ k.

One way of obtaining information about the distribution of a random variable is to

calculate the probability of intervals of the type (E(X) − ǫ, E(X) + ǫ). If we do not

know the theoretical distribution of the random variable but we do know its expectation

and variance, the Tchebychev’s inequality gives a lower bound of this probability. This

inequality is a straightforward consequence of the following one.

Theorem 1.17 (Markov’s inequality)

Let X be a r.v. from (Ω,A, P ) in (IR,B) and g be a non-negative r.v. from (IR,B, PX)

in (IR,B) and let k > 0. Then, it holds

P ({ω ∈ Ω : g(X(ω)) ≥ k}) ≤ E[g(X)]

k
.

Theorem 1.18 (Tchebychev’s inequality)

Let X be a r.v. with finite mean µ and finite standard deviation σ. Then

P ({ω ∈ Ω : |X(ω)− µ| ≥ kσ}) ≤ 1

k2
.

Corollary 1.3 Let X be a r.v. with mean µ and standard deviation σ = 0. Then,

P (X = µ) = 1.

Problems

1. Prove Markov’s inequality.

2. Prove Tchebychev’s inequality.

3. Prove Corollary 1.3.

1.9 The characteristic function

We are going to define the characteristic function associated with a distribution function

(or with a random variable). This function is pretty useful due to its close relation with

the d.f. and the moments of a r.v.
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Definition 1.51 (Characteristic function)

Let X be a r.v. defined from the measure space (Ω,A, P ) into (IR,B). The characteristic
function (c.f.) of X is

ϕ(t) = E
[

eitX
]

=

∫

Ω

eitXdP, t ∈ IR.

Remark 1.11 (The c.f. is determined by the d.f.)

The function Yt = gt(X) = eitX is a composition of two measurable functions, X(ω) and

gt(x), that is, Yt = gt ◦ X. Then, Yt is measurable and by the Theorem of change of

integration space, the c.f. is calculated as

ϕ(t) =

∫

Ω

eitXdP =

∫

Ω

(gt ◦X)dP =

∫

Ω

gtdPX =

∫

IR

gt(x)dF (x) =

∫

IR

eitxdF (x),

where PX is the probability induced by X and F is the d.f. associated with PX . Observe

that the only thing that we need to obtain ϕ is the d.f., F , that is, ϕ is uniquely determined

by F .

Remark 1.12 Observe that:

•
∫

IR
eitxdF (x) =

∫

IR
cos(tx)dF (x) + i

∫

IR
sin(tx)dF (x).

• Since | cos(tx)| ≤ 1 and | sin(tx)| ≤ 1, then it holds:
∫

IR

| cos(tx)| ≤ 1,

∫

IR

| sin(tx)| ≤ 1

and therefore, | cos(tx)| and | sin(tx)| are integrable. This means that ϕ(t) exists

∀t ∈ IR.

• Many properties of the integral of real functions can be translated to the integral

of the complex function eitx. In practically all cases, the result is a straightforward

consequence of the fact that to integrate a complex values function is equivalent to

integrate separately the real and imaginary parts.

Proposition 1.21 (Properties of the c.f.)

Let ϕ(t) be the characteristic function associated with the d.f. F . Then

(a) ϕ(0) = 1 (ϕ is non-vanishing at t = 0);

(b) |ϕ(t)| ≤ 1 (ϕ is bounded);

(c) ϕ(−t) = ϕ(t), ∀t ∈ IR, where ϕ(t) denotes the conjugate complex of ϕ(t);

(d) ϕ(t) is uniformly continuous in IR, that is,

lim
h↓0

|ϕ(t+ h)− ϕ(t)| = 0, ∀t ∈ IR.
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Theorem 1.19 (c.f. of a linear transformation)

(i) Let X be a r.v. with c.f. ϕX(t). Then, the c.f. of Y = aX + b, where a, b ∈ IR, is

ϕY (t) = eitbϕX(at).

(ii) If X and Y are independent r.v.s with respective c.f. ϕX(t) and ϕY (t), then

ϕX+Y (t) = ϕX(t)ϕY (t).

Example 1.22 (c.f. for some r.v.s)

Here we give the c.f. of some well known random variables:

(i) For the Binomial distribution, Bin(n, p), the c.f. is given by

ϕ(t) = (q + peit)n.

(ii) For the Poisson distribution, Pois(λ), the c.f. is given by

ϕ(t) = exp
{

λ(eit − 1)
}

.

(iii) For the Normal distribution, N(µ, σ2), the c.f. is given by

ϕ(t) = exp

{

iµt− σ2t2

2

}

.

Lemma 1.2 ∀x ∈ IR, |eix − 1| ≤ |x|.

Remark 1.13 (Proposition 1.21 does not determine a c.f.)

If ϕ(t) is a c.f., then Properties (a)-(d) in Proposition 1.21 hold but the reciprocal is not

true, see Example 1.23.

Theorem 1.20 (Moments are determined by the c.f.)

If the n-th moment of F , αn =
∫

IR
xndF (x), is finite, then

(a) The n-th derivative of ϕ(t) at t = 0 exists and satisfies ϕn)(0) = in αn.

(b) ϕn)(t) = in
∫

IR
eitx xndF (x).

Corollary 1.4 (Series expansion of the c.f.)

If αn = E(Xn) exists ∀n ∈ IN , then it holds that

ϕX(t) =
∞
∑

n=0

αn
(it)n

n!
, ∀t ∈ (−r, r),

where (−r, r) is the radius of convergence of the series.
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Example 1.23 (Proposition 1.21 does not determine a c.f.)

Consider the function ϕ(t) = 1
1+t4

, t ∈ IR. This function verifies properties (a)-(d) in

Proposition 1.21. However, observe that the first derivative evaluated at zero is

ϕ′(0) =

∣

∣

∣

∣

−4t3

(1 + t4)2

∣

∣

∣

∣

t=0

= 0.

The second derivative at zero is

ϕ′(0) =

∣

∣

∣

∣

−12t2(1 + t4)2 + 4t3 2(1 + t4) 4t3

(1 + t4)4

∣

∣

∣

∣

t=0

= 0.

Then, if ϕ(t) is the c.f. of a r.v. X, the mean and variance are equal to

E(X) = α1 =
ϕ′(0)

i
= 0, V (X) = α2 − (E(X))2 = α2 =

ϕ′′(0)

i2
= 0.

But a random variable with mean and variance equal to zero is a degenerate variable at

zero, that is, P (X = 0) = 1, and then its c.f. is

ϕ(t) = E
[

eit0
]

= 1, ∀t ∈ IR,

which is a contradiction.

We have seen already that the d.f. determines the c.f. The following theorem gives an

expression of the d.f. in terms of the c.f. for an interval. This result will imply that the

c.f. determines a unique d.f.

Theorem 1.21 (Inversion Theorem)

Let ϕ(t) be the c.f. corresponding to the d.f. F (x). Let a, b be two points of continuity

of F , that is, a, b ∈ C(F ). Then,

F (b)− F (a) =
1

2π
lim
T→∞

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt.

As a consequence of the Inversion Theorem, we obtain the following result.

Theorem 1.22 (The c.f. determines a unique d.f.)

If ϕ(t) is the c.f. of a d.f. F , then it is not the c.f. of any other d.f.

Remark 1.14 (c.f. for an absolutely continuous r.v.)

If F is absolutely continuous with p.d.f. f , then the c.f. is

ϕ(t) = E
[

eitX
]

=

∫

IR

eitxdF (x) =

∫

IR

eitxf(x)dx.

We have seen that for absolutely continuous F , the c.f. ϕ(t) can be expressed in terms

of the p.d.f. f . However, it is possible to express the p.d.f. f in terms of the c.f. ϕ(t)?

The next theorem is the answer.
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Theorem 1.23 (Fourier transform of the c.f.)

If F is absolutely continuous and ϕ(t) is Riemann integrable in IR, that is,
∫∞

−∞
|ϕ(t)| dt <

∞, then ϕ(t) is the c.f. corresponding to an absolutely continuous r.v. with p.d.f. given

by

f(x) = F ′(x) =
1

2π

∫

IR

e−itxϕ(t)dt,

where the last term is called the Fourier transform of ϕ.

In the following, we are going to study the c.f. of random variables that share the

probability symmetrically in IR+ and IR−.

Definition 1.52 (Symmetric r.v.)

A r.v. X is symmetric if and only if X
d
= −X, that is, iff FX(x) = F−X(x), ∀x ∈ IR.

Remark 1.15 (Symmetric r.v.)

Since ϕ is determined by F , X is symmetric iff ϕX(t) = ϕ−X(t), ∀t ∈ IR.

Corollary 1.5 (Another characterization of a symmetric r.v.)

X is symmetric iff FX(−x) = 1− FX(x
−), where FX(x

−) = P (X < x).

Corollary 1.6 (Another characterization of a symmetric r.v.)

X is symmetric iff ϕX(t) = ϕX(−t), ∀t ∈ IR.

Corollary 1.7 (Properties of a symmetric r.v.)

Let X be a symmetric r.v. Then,

(a) If FX is absolutely continuous, then fX(x) = fX(−x), ∀x ∈ IR.

(b) If FX is discrete, then PX(x) = PX(−x), ∀x ∈ IR.

Theorem 1.24 (c.f. of a symmetric r.v.)

The c.f. ϕ of the d.f. F is real iff F is symmetric.

Remark 1.16 We know that ϕ(t), ∀t ∈ IR determines completely F (x), ∀x ∈ IR. How-

ever, if we only know ϕ(t) for t in a finite interval, then do we know completely F (x),

∀x ∈ IR? The answer is no, since we can find two different d.f.s with the same c.f. in a

finite interval, see Example 1.24.

Example 1.24 (The c.f. in a finite interval does not determine the d.f.)

Consider the r.v. X taking the values ∓(2n+ 1), n = 0, 1, 2, · · · , with probabilities

P (X = 2n+ 1) = P (X = −(2n+ 1)) =
4

π2(2n+ 1)2
, n = 0, 1, 2, · · ·
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Consider also the r.v. Y taking values 0,∓(4n+ 2), n = 0, 1, 2, . . ., with probabilities

P (Y = 0) = 1/2, P (Y = 4n+ 2) = P (X = −(4n+ 2)) =
2

π2(2n+ 1)2
, n = 0, 1, 2, · · ·

Using the formulas

∞
∑

n=0

1

(2n+ 1)2
=

π2

8
;

8

π2

∞
∑

n=0

cos(2n+ 1)t

(2n+ 1)2
= 1− 2|t|

π
, |t| ≤ π,

prove:

(a) PX is a probability function;

(b) PY is a probability function;

(c) ϕX(t) = ϕY (t), for |t| ≤ π/2.

Remark 1.17 From the series expansion of the c.f. in Corollary 1.4, one is tempted to

conclude that the c.f., and therefore also the d.f., of a r.v. is completely determined by

all of its moments, provided that they exist. This is false, see Example 1.25.

Example 1.25 (Moments do not always determine the c.f.)

For a ∈ [0, 1], consider the p.d.f. defines by

fa(x) =
1

24
e−x1/4

(1− a sin(x1/4), x ≥ 0.

Using the following formulas:
∫ ∞

0

xne−x1/4

sin(x1/4)dx = 0, ∀n ∈ IN ∪ {0};
∫ ∞

0

xne−x1/4

= 4(4n+ 3)!∀n ∈ IN ∪ {0},

prove:

(a) fa is a p.d.f. ∀a ∈ [0, 1].

(b) The moments αn are the same ∀a ∈ [0, 1].

(c) The series
∑∞

n=0 αn
(it)n

n!
diverges for all t 6= 0.

Definition 1.53 (Moment generating function)

We define the moment generating function (m.g.f.) of a r.v. X as

M(t) = E
[

etX
]

, t ∈ (−r, r) ⊂ IR, r > 0,

assuming that there exists r > 0 such that the integral exists for all t ∈ (−r, r). If such

r > 0 does not exist, then we say that the m.g.f. of X does not exist.
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Remark 1.18 Remember that the c.f. always exists unlike the m.g.f.

Proposition 1.22 (Properties of the m.g.f.)

If there exists r > 0 such that the series

∞
∑

n=0

(tx)n

n!

is uniformly convergent in (−r, r), where r is called the radius of convergence of the series,

then it holds that

(a) The n-th moment αn exists and if finite, ∀n ∈ IN ;

(b) The n-th derivative of M(t), evaluated at t = 0, exists and it satisfies M n)(0) = αn,

∀n ∈ IN ;

(c) M(t) can be expressed as

M(t) =
∞
∑

n=0

αn

n!
tn, t ∈ (−r, r).

Remark 1.19 Under the assumption of Proposition 1.22, the moments {αn}∞n=0 deter-

mine the d.f. F .

Remark 1.20 It might happen that M(t) exists for t outside (−r, r), but that it cannot

be expressed as the series
∑∞

n=0
αn

n!
tn.

Problems

1. Find the c.f. of the Binomial distribution, Bin(n, p).

2. Find the c.f. of the Poisson distribution, Pois(λ), Bin(n, p).

3. Find the c.f. of the Normal distribution, N(µ, σ2).
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Chapter 2

Convergence concepts

In the following, {Xn}n∈IN will be a sequence of r.v.s defined over the same probability

space (Ω,A, P ).

Definition 2.1 (Almost sure convergence)

A sequence {Xn}n∈IN is said to converge almost surely (a.s.) to the r.v. X, represented

by Xn
a.s.→ X, if and only if

P
(

{ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}
)

= 1.

Convergence “almost surely” is also called “almost everywhere” (a.e.), “with proba-

bility 1” or “strong” convergence.

Remark 2.1 Let us define the set

C = {ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}.

Definition 2.1 has sense only if C ∈ A.

Definition 2.2 (Almost sure equality)

We say that two r.v.s X and Y are almost surely equal (X = Y a.s.) iff P (X 6= Y ) = 0.

Theorem 2.1 (Uniqueness of limiting r.v.)

Xn
a.s.→ X ⇒

[

Xn
a.s.→ Y ⇔ X = Y a.s.

]

Theorem 2.2 (Another characterization of a.s convergence)

Xn
a.s.→ X ⇔ lim

n→∞
P ({ω ∈ Ω : |Xm(ω)−X(ω)| ≤ ǫ, ∀m ≥ n}) = 1.

Example 2.1 Consider the probability space associated with tossing a coin, (Ω,A, P )

with Ω = {H, T}, A = P(Ω) and P ({H}) = P ({T}) = 1/2. consider also the sequence

of r.v.s {Xn}n∈IN , defined by

Xn({H}) = 1/n, Xn({T}) = −1/n, n ∈ IN.

Observe that Xn
a.s.→ X ≡ 0.
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Definition 2.3 (Convergence in probability)

A sequence {Xn}n∈IN is said to converge in probability to the r.v. X, represented by

Xn
P→ X, if and only if

∀ǫ > 0, lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ǫ}) = 0.

Theorem 2.3 (Uniqueness of limiting r.v.)

Xn
P→ X ⇒

[

Xn
P→ Y ⇔ X = Y a.s.

]

Theorem 2.4 (a.s convergence implies convergence in prob.)

Xn
a.s.→ X ⇒ Xn

P→ X.

Example 2.2 (Counterexample: reciprocal of Theorem 2.4)

We are going to build a sequence of r.v.s that converge in probability to a r.v. X but does

not converge a.s. Consider the probability space (Ω,A, P ), with Ω = (0, 1], A = B(0,1]

and P = U(0, 1]. Consider the sequence of r.v.s:

X1 = 1(0,1], X2 = 1(0,1/2], X3 = 1(1/2,1]

X4 = 1(0,1/4], X5 = 1(1/4,1/2], X6 = 1(1/2,3/4]

X7 = 1(3/4,1], X8 = 1(0,1/8], X9 = 1(1/8,1/4], . . .

Observe that Xn
P→ X but Xn(ω) does not converge for any ω ∈ (0, 1], so that Xn

a.s
9 X.

Theorem 2.5 (Partial converse of Th. 2.4)

Xn
a.s.→ X ⇒ There is a subsequence of {Xn}n∈IN that converges almos surely to X.

Definition 2.4 (Convergence in r-th mean)

For any real number r > 0, we say that {Xn}n∈IN converges in r-th mean to a r.v. X

(Xn
r→ X), iff

E (|Xn −X|r) →
n→∞

0.

In particular, for r = 2 we say that {Xn}n∈IN converges to X in quadratic mean, and we

represent it by Xn
q.m.→ X.

Theorem 2.6 (Uniqueness of limiting r.v.)

Xn
q.m.→ X ⇒

[

Xn
q.m.→ Y ⇔ X = Y a.s.

]

Theorem 2.7 (Convergence in q.m. implies convergence in prob.)

Xn
q.m.→ X ⇒ Xn

P→ X.
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Example 2.3 (Counterexample: Convergence in q.m. does not imply a.s. con-

vergence)

Consider the situation of Example 2.2. We have seen that Xn
a.s.
9 X and it is easy to see

that Xn
q.m.→ X ≡ 0.

Example 2.4 (Counterexample: a.s. convergence does not imply convergence

in q.m.)

Consider the probability space (Ω,A, P ) with Ω = (0, 1), A = B(0,1) and P = U(0, 1).

Check that Xn
a.s.→ X ≡ 0 but Xn

q.m.
9 X ≡ 0 for the following sequences of r.v.s:

(a) Xn(Ω) = 0 if ω ∈ (0, 1− 1/n) and Xn(Ω) = n otherwise.

(b) Xn(Ω) = 2n if ω ∈ [0, 1/n) and Xn(Ω) = 0 otherwise.

Theorem 2.8 (Fatou-Lebesgue’s Lemma)

If Xn
a.s.→ X and Xn ≥ Y , ∀n ∈ IN and for a r.v. Y with E|Y | < ∞, then

lim inf
n→∞

E(Xn) ≥ E(X).

Example 2.5 (Fatou-Lebesgue’s Lemma)

For the sequence of r.v.s of Example 2.4 (b), check the Fatou-Lebesgue’s Theorem.

Theorem 2.9 (Monotone Convergence Theorem for r.v.s)

If 0 ≤ X1 ≤ X2 ≤ · · · and Xn
a.s.→ X, then

E(Xn) →
n→∞

E(X).

Theorem 2.10 (Dominated Convergence Theorem for r.v.s)

If Xn
a.s.→ X and |Xn| ≤ Y for a r.v. Y with E|Y | < ∞, then

E(Xn) →
n→∞

E(X).

Definition 2.5 (Convergence in law/distribution)

Let {Fn}n∈IN be a sequence of d.f.s defined over (IR,B), We say that {Fn}n∈IN converges

in law/distribution to a d.f. F (Fn
d→ F ) iff

lim
n→∞

Fn(x) = F (x), ∀x ∈ C(F ),

where C(F ) is the set of points where F is continuous.

Definition 2.6 (Convergence in law of r.v.s)

A sequence {Xn}n∈IN of r.v.s with respective d.f.s {Fn}n∈IN is said to converge in law/distribution

to a r.v. X with d.f. F (Xn
d→ X) iff Fn

d→ F .
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Proposition 2.1 (Uniqueness of limiting r.v.)

If Fn
d→ F and Fn

d→ F ∗, then F = F ∗.

Remark 2.2 (Knowledge of the d.f. on a dense set sufficient)

The proof of Proposition 2.1 implies that F is completely determined when it is given for

a dense subset of IR.

Theorem 2.11 (Convergence in prob. implies convergence in law)

Xn
P→ X ⇒ Xn

d→ X.

Example 2.6 (Convergence in law)

Consider the sequence of degenerated r.v.s given by P (Xn = 1/n) = 1, n = 1, 2, . . ..

Consider also the degenerated r.v. at zero, P (X = 0) = 1. Check that Xn
d→ X.

Example 2.7 (Counterexample: Convergence in law does not imply conver-

gence in prob.)

Consider the probability space (Ω,A, P ) with Ω = (0, 1), A = B(0,1) and P = U(0, 1).

Consider the sequence of r.v.s defined over (Ω,A, P ) by

X2n−1(ω) =

{

1, if ω ∈ (0, 1/2)
0, if ω ∈ [1/2, 1)

, X2n(ω) =

{

0, if ω ∈ (0, 1/2)
1, if ω ∈ [1/2, 1)

Check that Xn
P
9 X for any r.v. X but Xn

d→ X, where X
d
= Bern(1/2).

Theorem 2.12 (Convergence in law to a constant implies convergence in prob.)

Xn
d→ c ∈ IR ⇒ Xn

P→ c.

The following example shows that in the definition of convergence in law as the point-

wise limit at only the continuity points is convenient, we cannot define it at all points.

Example 2.8 (Conv. in law does not imply convergence in prob.)

Consider the sequence of i.i.d. r.v.s {Xn}n∈IN , with Xn
d
= N(0, 1), ∀n ∈ IN .

Theorem 2.13 (Borel-Cantelli’s Lemma)

Let {An}∞n=1 be a sequence of sets from Ω and let (Ω,A, P ) be a probability space. It

holds that:

(a) If
∞
∑

n=1

P (An) < ∞, then P ({ω ∈ Ω : ω ∈ An i.o.}) = 0;

(b) Reciprocally, if {An}∞n=1 are independent and
∞
∑

n=1

P (An) = ∞, then P ({ω ∈ Ω : ω ∈

An i.o.}) = 1.
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Example 2.9 (Borel-Cantelli’s Lemma)

Let {Xn}n∈IN be a sequence of r.v.s with Xn
d
= Bern(pn) with pn = 1/n2, ∀n ∈ IN . Obtain

the probability of Xn = 1 i.o.

Remark 2.3 (Another characterization of the Borel-Cantelli’s Lemma)

The Borel-Cantelli’s Lemma is useful in problems related to the a.s. convergence. In fact,

another characterization of the a.s. convergence is the following:

P (|Xn −X| > ǫ i.o.) = 0, ∀ǫ > 0.

Lemma 2.1 (Boundedness of measurable functions)

Let X be a r.v. defined from a probability space (Ω,A, P ) on (IR,B). Let g be a bounded

measurable function from (IR,B) on (IR,B), with P (X ∈ C(g)) = 1. Then, it holds that

∀ǫ > 0, there exist two continuous and bounded functions f and g such that f ≤ g ≤ h

pointwise and E [h(X)− f(X)].

Definition 2.7 (Function that vanishes out of a compact set)

Let g be a real function defined on IR. We say that g vanishes out of a compact set if and

only if there is a compact set C ⊂ IRd such that g(X) = 0, ∀x /∈ C.

Theorem 2.14 (Relation between conv. in law and conv. of expectations)

The following conditions are equivalent:

(a) Xn
d→ X;

(b) E [g(Xn)] → E [g(X)], for each continuous function g that vanishes out of a compact

set;

(c) E [g(Xn)] → E [g(X)], for each continuous and bounded function g;

(d) E [g(Xn)] → E [g(X)], for all bounded and measurable function g with P (X ∈
C(g)) = 1, where C(g) is the continuity set of g.

Implications (a)⇒ (b), (a)⇒ (c) and (a)⇒ (d) are known as Helly-Bray’s Theorem.

Example 2.10 (Boundedness is necessary in (c) and (d))

Consider the function g(x) = x and the sequence of r.v.s defined by P (Xn = n) = 1/n

and P (Xn = 0) = 1− 1/n. Check that Xn
d→ X, with X ≡ 0 but E [g(Xn)] 9 E [g(X)].

Why does this happen?

Example 2.11 (Continuity is necessary)

Consider the function

g(x) =

{

0, x = 0
1, x > 0

.

Let {Xn}n∈IN be a sequence of r.v.s with P (Xn = 1/n) = 1, ∀n ∈ IN . See that Xn
d→ X,

with X ≡ 0 but E [g(Xn)] 9 E [g(X)]. Why does this happen?
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Sometimes it is easier to calculate the characteristic function ϕn(t) than the d.f. Fn(t)

if a sequence of r.v.s {Xn}n∈IN . Then, the convergence in law of {Xn}n∈IN will be studied

through the pointwise convergence of ϕn(t) by using the following theorem.

Theorem 2.15 (Continuity Theorem)

Xn
d→ X ↔ ϕXn(t) →

n→∞
ϕX(t), ∀t ∈ IR.

Problems

1. Consider the sequence of r.v.s given by P (Xn = n) = 1/n and P (Xn = 0) = 1−1/n,

n = 1, 2, . . .. Consider also the degenerated r.v. at zero, P (X = 0) = 1. Check that

Xn
d→ X.

2. Consider the sequence of d.f.s defined as

Fn(x) =







0, x < 0
nx, 0 ≤ x < 1/n,
1, x ≥ 1/n

Prove that the pointwise limit function is not a d.f. but Fn →
n→∞

F , where F is the

d.f. given by

F (x) =

{

0, x < 0
1, x ≥ 0

3. Let {Xn}n∈IN be a sequence of r.v.s with Xn
d
= Beta(1/n, 1/n) and the r.v. X

d
=

Bin(1, 1/2). Prove that Xn
d→ X. Is that true also if Xn

d
= Beta(α/n, β/n)?

4. Let {Xn}n∈IN be a sequence of r.v.s, where Xn is uniformly distributed in the set

{1/n, 2/n, 3/n, . . . , 1}. Prove that Xn
d→ X, where X

d
= U(0, 1). Does Xn

P→ X?

5. Let {Xn}n∈IN be a sequence of r.v.s and X another r.v. With the help of Hölder’s

inequality, prove that:

(a) If 0 < r < s and E|Xn −X|s < ∞, then E|Xn −X|r < ∞.

(b) If 0 < r < s and Xn
s→ X, then Xn

r→ X.

6. Give and example of a sequence of r.v.s such that

E|Xn| →
n→∞

0 and E(Xn)
2 →

n→∞
0.

7. Let µ be a constant. Show that

Xn
q.m.→ µ ↔ E(Xn) →

n→∞
µ and V (Xn) →

n→∞
0.
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Chapter 3

Laws of large numbers

The laws of large numbers are a collection of theorems that establish the convergence, in

some of the ways already studied, of sequences of the type {n−1
∑n

i=1 Xi − an}, where an
is a constant generally given by an = n−1

∑n
i=1 E(Xi). These theorems are classified as

weak or strong laws, depending on whether the convergence is in probability or almost

surely.

3.1 Weak laws of large numbers

Theorem 3.1 (Tchebychev’s Theorem)

Let {Xn}n∈IN be a sequence of independent r.v.s (not necessarily identically distributed)

such that V (Xn) ≤ M < ∞, ∀n ∈ IN . Then,

1

n

n
∑

i=1

Xi −
1

n

n
∑

i=1

E(Xi)
P→ 0.

Corollary 3.1 (Tchebychev’s Theorem for r.v.s with equal mean)

In the conditions of Theorem 3.1, if E(Xn) = µ, ∀n ∈ IN , then

1

n

n
∑

i=1

Xi
P→ µ.

Thus, the sample mean converges weakly to the population mean. Historically, the next

corollary was the first law of large numbers.

Corollary 3.2 (Bernouilli’s Theorem)

Let {Xn}n∈IN be a sequence of i.i.d. r.v.s distributed as Bern(p). Then,

1

n

n
∑

i=1

Xi
P→ p.

The next theorem does not require the existence of the variances, but in turn requires

the r.v.s to be identically distributed.
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Theorem 3.2 (Khintchine’s weak law of large numbers)

Let {Xn}n∈IN be a sequence of i.i.d. r.v.s with mean E(Xn) = µ ∈ (−∞,∞). Then,

1

n

n
∑

i=1

Xi
P→ µ.

3.2 Strong law of large numbers

Lemma 3.1 (Kolmogorov’s bound)

Let {Xn}n∈IN be a sequence of independent r.v.s with mean E(Xn) = µn and V (Xn) = σ2
n,

both finite. Let Sn =
∑n

i=1 Xi and c2n =
∑n

i=1 σ
2
i . Then, it holds that for all H > 0,

P

(

n
⋃

k=1

{ω ∈ Ω : |Sk(ω)− E(Sk)| ≥ Hcn}
)

≤ 1

H2
.

Theorem 3.3 (Kolmogorov’s strong law of large numbers)

Let {Xn}n∈IN be a sequence of independent r.v.s with mean E(Xn) = µn and V (Xn) = σ2
n,

both finite.

If
∞
∑

n=1

σ2
n

n2
< ∞, then

1

n

n
∑

i=1

Xi −
1

n

n
∑

i=1

µi
a.s.→ 0.

Corollary 3.3 (Borel-Cantelli’s Theorem)

Let {Xn}n∈IN be a sequence of i.i.d. r.v.s distributed as Bern(p). Then,

1

n

n
∑

i=1

Xi
a.s.→ p.

This theorem says that the relative frequency of a dichotomic event goes almost surely

to the probability of the event.

Finally, the next strong law does not require anything to the variances but it assumes

that the r.v.s are i.i.d.

Theorem 3.4 (Khintchine’s strong law of large numbers)

Let {Xn}n∈IN be a sequence of i.i.d. r.v.s with E(Xn) = µ < ∞. Then

1

n

n
∑

i=1

Xi
a.s.→ µ.
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Chapter 4

Central limit and Slusky’s theorems

The central limit theorems (CLTs) give the asymptotic distributions of sums of indepen-

dent random variables and Slutky’s theorems give the asymptotic distribution of func-

tions of random variables and of sequences that are asymptotically equivalent to other

sequences.

4.1 Central limit theorems

Theorem 4.1 (Levy-Lindeberg’s Theorem)

Let {Xn}n∈IN be a sequence of i.i.d. r.v.s with mean E(Xn) = µ and variance V (Xn) = σ2,

both finite. Then,
n
∑

i=1

Xi − E

(

n
∑

i=1

Xi

)

√

√

√

√V

(

n
∑

i=1

Xi

)

d→ N(0, 1).

The first known CLT was the theorem below, due to De Moivre.

Corollary 4.1 (De Moivre’s Theorem)

If {Xn}n∈IN is a sequence of i.i.d. r.v.s distributed as a Bern(p), then

n
∑

i=1

Xi − E

(

n
∑

i=1

Xi

)

√

√

√

√V

(

n
∑

i=1

Xi

)

d→ N(0, 1).

Example 4.1 (Normal approximation of binomial distribution)

Consider X
d
= Bin(n, p). We know that X =

∑n
i=1 Zi, where Zi are i.i.d. with Bern(p)
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distribution. By the De Moivre’s Theorem,
n
∑

i=1

Zi − E

(

n
∑

i=1

Zi

)

√

√

√

√V

(

n
∑

i=1

Zi

)

=
X − np

√

np(1− p)

d→ N(0, 1).

However, the normal approximation is poor whenever either n < 30 or n > 30 but p

is too small (such that np < 5).

Theorem 4.2 (Lindeberg-Feller’s CLT)

Let {Xn}n∈IN be a sequence of independent r.v.s with means E(Xn) = µn and variances

V (Xn) = σ2
n, both finite ∀n ∈ N . Let c2n =

∑n
i=1 σ

2
i . If the following condition, known as

the Lindeberg-Feller’s condition (LFC), holds:

∀ǫ > 0,
1

c2n

n
∑

i=1

E
[

(Xi − µi)
2| |Xi − µi| ≥ ǫ cn

]

→
n→∞

0,

then
n
∑

i=1

Xi − E

(

n
∑

i=1

Xi

)

√

√

√

√V

(

n
∑

i=1

Xi

)

d→ N(0, 1).

The previous theorem was also extended to sequences of triangular arrays of r.v.s of

the form:
X11

X21 X22

X31 X32 X33

· · ·
,

where the r.v.s in each row are independent and satisfy the LFC, see the theorem below.

Theorem 4.3 (Lindeberg-Feller’s CLT for for triangular arrays)

Let {Xni, i = 1, . . . , n}n∈IN be a sequence of triangular arrays of r.v.s, where for each n ∈
IN , the r.v.s in n-th row {Xn1, . . . , Xnn} are independent with finite means E(Xni) = µni

and variances V (Xni) = σ2
ni. Let c

2
n =

∑n
i=1 σ

2
ni. If the LFC holds for each row, that is, if

∀ǫ > 0,
1

c2n

n
∑

i=1

E
[

(Xni − µni)
2| |Xni − µni| ≥ ǫ cn

]

→
n→∞

0,

then
n
∑

i=1

Xni − E

(

n
∑

i=1

Xni

)

√

√

√

√V

(

n
∑

i=1

Xni

)

d→ N(0, 1).
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Example 4.2 (Asymptotic normality of the LS estimator is linear regression)

Consider the sequence of r.v.s defined as

Xi = α + βZi + ei, i = 1, 2, . . . ,

where Z1, Z2, . . . are known fixed values and e1, e2, . . . are i.i.d. r.v.s with E(ei) = 0 and

V (ei) = σ2, i = 1, 2, . . .. Let us define z̄n = n−1
∑n

i=1 Zi and s2n = n−1
∑n

i=1(Zi − z̄n)
2.

The LS estimator of β is given by

β̂n =

∑n
i=1 Xi(Zi − z̄n)
∑n

i=1(Zi − z̄n)2

(a) See that β̂n can be also expressed as

β̂n = β +

∑n
i=1 ei(Zi − z̄n)

∑n
i=1(Zi − z̄n)2

(b) Using (a) and applying the Lindeberg-Feller’s CLT to the sequence of random vari-

ables

Xni = ei(Zi − z̄n), i = 1, . . . , n,

prove that if

γn := max
1≤i≤n

(Zi − z̄n)
2

∑n
j=1(Zj − z̄n)2

→
n→∞

0,

then √
n sn (β̂n − β)

d→ N(0, σ2).

4.2 Slutsky’s theorems

Theorem 4.4 (Slutsky’s theorems)

Let {Xn}n∈IN be a sequence of d-dimensional r.v.s with Xn
d→ X. Then it holds

(i) For any f : IRd → IRk such that P (X ∈ C(f)) = 1, then

f(Xn)
d→ f(X).

(ii) Let {Yn}n∈IN be another sequence of d-dimensional r.v.s with Xn − Yn
P→ 0. Then,

Yn
d→ X.

(iii) Let {Yn}n∈IN be another sequence of d-dimensional r.v.s with Yn
P→ c ∈ IRd. Then,

(

Xn

Yn

)

d→
(

X
c

)

.
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Example 4.3 Consider the sequence of r.v.s Xn
d→ N(0, 1) and the function f(x) = x2.

Since f in continuous, by Theorem 4.4 (i),

X2
n

d→ X 2
(1).

Example 4.4 Consider the sequence of r.v.s Xn
d→ N(0, 1) and the function f(x) = 1/x.

Now f is not continuous at x = 0, but since X is an absolutely continuous r.v., P (X ∈
C(f)) = P (X ∈ {0}c) = 1− P (X = 0) = 1. Then, by Theorem 4.4 (i),

1/Xn
d→ 1/X.

Example 4.5 Consider the sequence of r.v.s Xn = 1/n and the function f = 1(0,∞). It

holds that Xn
d→ 0 but f(Xn) = 1

d
9 f(X) = 0. This happens because C(f) = {0}c and

P (X = 0) = 1. Then, P (X ∈ C(f)) = P (X ∈ {0}c) = 0.

Corollary 4.2 (Asymptotic distribution of functions of several sequences of

random variables)

Let {Xn}n∈IN be a sequence of d-dimensional r.v.s with Xn
d→ X and {Yn}n∈IN be a

sequence of k-dimensional r.v.s with Yn
P→ c ∈ IRk. Let f : IRd+k → IRr be such that

P

((

X
c

)

∈ C(f)
)

= 1.

Then it holds

f(Xn, Yn)
d→ f(X, c).
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