ACTIVIDAD 2: PROBLEMAS DE PROBABILIDAD

Problema 1 Sea X una variable aleatoria con la siguiente función de cuantía:

X=x	P(X=x)
1	1/2
2	1/3
3	1/6

Calcula la función de distribución de X.

Problema 2 Calcula las esperanzas de las siguientes variables aleatorias discretas:

- (a) Bern(p);
- (b) Bin(n, p);
- (c) Geom(p);
- (d) $Pois(\lambda)$.

Problema 3 Calcula las esperanzas de las siguientes variables aleatorias continuas:

- (a) Unif(θ_1, θ_2);
- (b) $\operatorname{Exp}(\beta)$;
- (c) $N(\mu, \sigma^2)$.

Problema 4 Calcula el momento de orden 3 de una variable aleatoria Unif(0,1).

Problema 5 Demuestra que la varianza de una variable aleatoria $N(\mu, \sigma^2)$ es igual a σ^2 .

Problema 6 Sean X_1, \ldots, X_n variables aleatorias independientes y con idéntica distribución de probabilidad, con esperanza igual a μ y varianza igual a σ^2 . Calcula:

- (a) $E(\bar{X})$;
- (b) $V(\bar{X});$
- (c) $Cov(\bar{X}, X_i \bar{X})$.

Problema 7 Calcula la función generatriz de momentos de las siguientes variables aleatorias:

- (a) Bin(n, p);
- (b) $Pois(\lambda)$;
- (c) $\operatorname{Exp}(\beta)$;
- (d) Unif (θ_1, θ_2) .

Problema 8 Calcular la distribución de X + Y, si X e Y son dos variables aleatorias independientes con distribuciones:

- (a) $X \sim \text{Bin}(n, p)$ e $Y \sim \text{Bin}(m, p)$;
- (b) $X \sim \text{Pois}(\lambda_1) \text{ e } Y \sim \text{Pois}(\lambda_2);$
- (c) $X \sim N(\mu_1, \sigma_1^2)$ e $Y \sim N(\mu_2, \sigma_2^2)$.

Problema 9 Sea X una v.a. con distribución de Poisson de media λ . Calcular la media y la varianza de la nueva v.a. definida a partir de X,

$$Y = \begin{cases} 1 & \text{si } X = 0; \\ 0 & \text{si } X \neq 0. \end{cases}$$

Problema 10 Demostrar la propiedad aditiva de la distribución gamma. Es decir, demostrar que si X_i , i = 1, ..., n son variables aleatorias independientes con distribuciones respectivas $\gamma(\alpha_i, \beta)$, i = 1, ..., n, entonces

$$\sum_{i=1}^{n} X_i \sim \gamma \left(\sum_{i=1}^{n} \alpha_i, \beta \right).$$

Problema 11 Sea X una variable aleatoria con distribución \mathcal{X}^2_{ν} ; es decir, con función de densidad

$$f(x;\nu) = \frac{x^{\nu/2-1}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}, \quad x > 0, \quad \nu > 0.$$

- (a) Calcular la función generatriz de momentos.
- (b) Sean X_1, \ldots, X_n variables aleatorias i.i.d. según una \mathcal{X}^2_{ν} . Calcular la distribución de la variable suma $Y = \sum_{i=1}^n X_i$.

Problema 12 Sea el vector aleatorio (X,Y) con función de densidad

$$f(x,y) = e^{-x}, \quad x > 0, \ 0 < y < x.$$

Calcular E[X], E[Y] y Cov(X, Y).

Problema 13 Sean X_1 y X_2 dos variables aleatorias independientes con distribución Exponencial de medias β_1 y β_2 respectivamente. Calcular la probabilidad de que X_1 exceda X_2 .