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Introduction

0 TheProbability Calculuss used to model
random phenomena. It endows the
conclusions about datasets drawn by
statistical inference with mathematical rig

0 A probabilityis used to quantify the
likelihood, or chance, that an outcome of a
random experiment will occur.
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Random phenomena

O An experiment isleterministiaf when repeated In
the same manner always leads to the same outcome.

O An experiment isandomif although it Is repeated In
the same manner every time, can result in diffe
outcomes. More specifically:

Ignacio Cascos

The set of all possible outcomes is completely determined
before carrying it out.

Before we carry it out, we cannot predict its outcome.

It can be repeated indefinitely, always under the same
conditions (leading to different outcomes).
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Events

0 Thesample spacs the set of all possible outcomes
of a random experiment, we will denote itlby

Example: Experiment, roll a die&={1,2,3,4,5,6}

0 An eventis a subset of the sample space (any set of
outcomes of the random experiment).

An elementary ever{singleton) is an element of the
sample space.

o Example: (roll a die), getting a si&={6}
A compound everns a set of elementary events.
o Example: (roll a die), getting an even numBef2,4,6}
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Events

0 Thecertain evenis the one that always
occurs as an outcome of the experiment,

Example: (roll a diek={1,2,3,4,5,6}

0o Thenull (impossible) evens the one that
never occurs,].

Example: (roll a die) getting a negative result
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Operations with events (sets)

O Union. Given two eventéd andB, the event

ALIB ocurrs when either of them (or both
simultaneously) occurs.

A={©,0,0,8} : B={®,",0,0)
ACB={©,",®,",0,0)
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Operations with events (sets)

O Intersection Given two eventé andB, the

eventAn B (or AB) ocurrs wherA andB
simultaneously occur.

A={©,0,0,6}; B={6,»,0,68}
AN B={©,6}
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Operations with events (sets)

0 Complementargvent. Given an evewt Its
complementary eve®® occurs wherA does

s

E={©,0,0}; A={©}
A=, 0}
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Operations with events (sets)

O Event (set) differenceésiven two eventé and
B, its differenceA\B (or A-B) occurs whemi\
occurs, buB does not.

A={©,,0} ; B={©,®}
A\B={ ) ©}.

0 Mutually exclusive eventdwo eventA andB
are mutually exclusive (disjoint) if

An B=L]
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Properties of the operations with events

O Commutative
ALIB=BLIA
ANB=BnNA

O Associative
ALI(BLIC) = (ALIB)LIC
ANn(BNC) = (AnB)NC
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Properties of the operations with events

O Neutral element
Union, null eventALID = A
Intersection, certain everdkNnE = A

O Distributive
Union wrt intersection

ALI(BNC) = (ALIB)Nn (ALIC)
Intersection wrt union
AN (BLIC) = (AnB)LJ(ANC)
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Properties of the operations with events

0 Complementation(exhaustive and mutually
exclusive)

ALIAC=E ; AnAc=[]
O ldempotence
ALIA=A ; AnA=A

O Absortion
ALIE=E ; An =0
o Simplification ALI(AnB) =A=An (ALIB)
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Properties of the operations with events

0 Properties of the complementary event
(A=A ; Ec=0 ; O°=E
0o DeMorgan’s laws
(ALIB)¢ = A°n B°
(ANB)¢ = ACLIBC
(Liz1eA)® = NizgeolA)°
(Ni21A)° = Uiz o(A)°
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Definition of probability

Probabillityis a number assigned to each member
of a collection of events from a random experiment
that satisfies the following propertie

1. P(A)=0;

2. P(E)=1;

3. If A, Ay,...are such thabyn A=01 wheni # ],
thenP(Ll_, ., A)=2 100 P(A) -
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Elementary properties of a probability
0 Property 1P(A°) =1-P (A)

O Property 2P(0) =0
o Property 3if ALl B, thenP(A) < P(B)

0 Property 4 P(A\B) = P(A)—P(AN B)

o Property 5SP(ALIB) =P(A) + P(B) - P(AnB)
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Laplace rule (equiprobability)

When a random experiment has a finite number
of equally likelypossible outcomes, then for any
eventA

numberof outcomedavorableto A
total numberof possibleoutcomes

P(A) =
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Interpretations of probability

0 Law of Large Numbers

After a large number of “]

realisations of a random:. hw‘“mv\
experiment, the relative .
frequency of any event: =
A stabilises around a

value
(PROBABILITY OF A) oo o

mero lanzamientos

0.2

0.0
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Independence of events

Two eventsA andB areindependenif
P(AN B)=P(A)P(B)
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Conditional probability

Given two event& andB with P(B)>0, the
conditional probabilityof A givenB is the
probability thailA occurs given theB ha:
occurred,

P(An B)

PABE )

WhenA andB are independenB(A|B)=P(A) .
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Conditional probability

It holds:

o P(AB)=0;

o PEB)=1

O If A, A,,...are such thabyn A=0 wheni # ],
thenP(Li-; . AIB)=2-, ., P(A[B) .
As a consequence, all the properties of a
probability, hold for a conditional probability.
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Multiplication rule

Givenn eventsA,, A,, ..., A with P(A)>0 for
I=1,...,n It holds

P(A\nAn...0nA)=P(AYP(AJA)...P(AJAN AN ..0A, 1)

Further, if the events are independent

P(A\nAn...nA,) = P(A)P(A,)...P(A)
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Total probability rule

GivenAy, A,,....A such thathn A= wheni # |

andL;_, ,A=E (mutually exclusive and
exhaustive), the probabillity of any eveB Is

P(B)= Y. P(A)P(BIA)
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Bayes Theorem

GivenAy, A,,....A such thathn A= wheni # |
andL;_, ,A=E (mutually exclusive and
exhaustive), anB such thaP(B)>0, it hold:

P(ANB) _ P(A)P(BIA)
P(B) X7, P(A)P(BIA)

P(AIB) =
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Example (washers)

Suppose that a lot of washdrsis large enough that it can be assumed
that the sampling is done with replacement. Asstirae60% of the
washers exceed the target thickness.

Washers are selected from thellgt

o If 3 washers are selected, what is the probalihigy the first 2 of
them exceed the target thickness, but the lastioas not?

o |If 3 washers are selected, what is the probalihidy exactly 2 of
them exceed the target thickness?

o What is the minimum number of washers that nedmeteelected
so that the probability that all the washers arek#r than the
target is less than 0.107

Ignacio Cascos Depto. Estadistica, Universidad Carlos IlI 29



—!

Example (washers)

Another big lot of washers, containing twice as many washers as
the first onel(,) is purchased. Out of the washers from this
second lot, 40% exceed the target thickness. The two lots are
merged together into a new lot, and washers are selected |

0 If a washer exceeds the target thickness, what is the
probability that it comes from the first Idt,)?

Ignacio Cascos Depto. Estadistica, Universidad Carlos IlI 30



