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Abstract. Organized trading for electricity includes both the pool and the futures mar-

ket. Pool prices are volatile while the prices of the futures-market products are compar-

atively more stable. Thus, futures-market products constitute hedging instruments to

reduce the risk suffered by any market agent. Electricity market agents engage in both

pool and futures market transactions seeking to maximize their respective profits/utilities

for a given risk level on profit variability. To make informed decisions, the market agent

must gather as much accurate information as possible on the pool prices covering the

whole time horizon spanned by the futures-market product. This paper provides a novel

technique to represent conveniently the uncertainty associated with pool prices during

long- or medium-term horizons through a set of scenarios, i.e., pool price realizations.

The proposed technique uses the prices of the futures-market products as long-term ex-

planatory variables and exploits the short-term structure of the pool prices.

Keywords: Electricity pool prices, year-ahead forecasting, forward trading, futures

prices, scenarios.

1 Introduction

Organized trading for electricity includes both the pool and the futures market. The pool

allows short-term transactions, e.g., buying/selling electric energy on an hourly basis one-

day ahead. On the other hand, the futures market allows energy transactions spanning

from one week to several years and involving a specified amount of energy to be delivered

somewhen in the future, e.g., two-hundred megawatts to be supplied throughout the next

quarter.

During the last two decades pool-based electricity markets have flourished in many places

all over the world. Nowadays, they constitute generally mature trading floors. The

pioneering experience in Europe corresponds to the England and Wales electricity pool

created in the early 1990s. In North America, California established in 1998 the first pool-

based electricity market. The electricity markets in New Zealand and Australia started to

operate in 1996 and 1998, respectively. Currently, China is considering different market

alternatives to manage efficiently its vast electric energy systems.

On the other hand, futures markets were established generally later and they have not
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been yet fully developed. Futures markets in Europe include the pioneering Nordpool

market in Scandinavia, EEX in Germany, PowerNext in France, and the recently es-

tablished OMIP in the Iberian Peninsula. Nordpool, EEX, PowerNext and OMIP were

launched in 1993, 2001, 2004 and 2006, respectively. Among others, two major electricity

markets in North America are New England ISO mostly covering New England, and PJM

Interconnection mostly covering Pennsylvania, New Jersey and Maryland. The financial

electricity products of these markets are traded at the New York Mercantile Exchange,

NYMEX. Trading for PJM and New England ISO in NYMEX started in 2003 and 2004,

respectively.

Pool prices are generally highly volatile while the prices of the futures-market products are

comparatively more stable. Thus, futures-market products constitute hedging instruments

to reduce the risk on profit/utility variability suffered by any market agent. Needless to

say, the prices of the futures-market products are usually less competitive than pool prices.

Hence, a risky agent opts mostly for the pool while a conservative one opts mostly for the

futures market.

Electricity market agents engage in both pool and futures market transactions seeking to

maximize their respective profits/utilities for a given risk level on profit/utility variability.

To make informed decisions on the futures market pertaining to any product (e.g., a

monthly forward contract), the market agent must gather as much accurate information

as possible on the pool prices covering the whole time horizon spanned by the futures-

market product. Thus, characterizing the future behavior of electricity pool prices several

months or years in advance is important for electricity trading and risk management (see,

for instance, Carrión et al. (2007a), Carrión et al. (2007b) and Conejo et al. (2008)).

Specifically, this paper provides a novel technique to represent conveniently the uncer-

tainty associated with pool prices during long- or medium-term horizons (e.g., one year)

through a set of scenarios (pool price realizations). The proposed technique uses the

prices of the futures-market products as long-term explanatory variables and exploits the

short-term structure of the pool prices. Prices of futures-market products and pool prices

are clearly dependent, as a result of the unique fact that electricity is a non-storable com-

modity. The technique proposed in this paper materializes in a set of time series models,

which are easy to understand and simple to use. To the best of our knowledge, no pre-
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vious attempt to generate long-term electricity-price scenarios based on futures markets

information has been reported in the technical literature.

Besides electricity non-storability, electricity markets are incomplete and not sufficiently

liquid, hence, pool and futures prices present a complex dynamic structure that other

commodities such as oil, gas, etc. do not present in general. A careful analysis of such

structure provides the relevant information needed to build appropriate models to generate

accurate year-ahead pool price scenarios. If electricity markets were liquid and complete,

then, futures and pool prices would have a simple dynamic structure similar to that

of other financial assets. But these circumstances do not hold in electricity markets,

implying the existence of specific patterns (over short- and long-term horizons) inexistent

in markets for other commodities. These patterns can be exploited to generate scenarios

that efficiently describe future pool price realizations.

Throughout this paper, the term base refers to all the 24 hours in a day and the term

peak refers to the hours in a day with the highest pool-price values, i.e., the 12 hours

from 8 am to 8 pm. Off-peak hours are the remaining 12 hours.

We consider below the so-called forward base/peak curve that allows relating prices of

futures products and pool prices. A forward base/peak curve is constructed at forecasting

time (day d) spanning the study horizon (e.g., one year) and including the following prices:

1. day d prices for all available one-month futures-market products (e.g., three months),

2. day d prices for three-month futures-market products for the remaining periods to

complete the planning horizon (e.g., three quarter futures-market products to com-

plete one year).

As an example, Figure 1 shows for the EEX market the forward base/peak curves com-

puted on December 30, 2005 and spanning the whole 2006. This figure shows also the

average daily pool prices throughout 2006. Besides some outliers, it can be observed that

the forward curves provide appropriate indicators of the long-term behavior of electricity

pool prices. This observation constitutes the rationale of the approach used in this paper:

to exploit the patterns observed in the differences between the forward curves and the

associated pool prices. Note that these differences are known as forward premia.
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Figure 1: EEX market: Forward base and peak curves (computed at December

30, 2005) and average daily pool prices throughout 2006.

Hence, the proposed methodology is based on combining the information provided by

the long-term properties of the forward premium and the information provided by the

short-term properties of the pool price. However, note that the objective of this paper

is not to evaluate the financial properties of the forward premium. These properties are

studied in Longstaff and Ashley (2004) and Karakatsani and Bunn (2003), where forward

premium is found to vary systematically in the short-term. On the contrary, in this paper

we exploit existing systematic patterns in the year-ahead forward premium to generate

long-term price scenarios.

References on long-term electricity price forecasting include Bunn (2006), which provides

background on the price formation in electricity markets, and Davison et al. (2002),

which proposes a stochastic electricity price model that is adequate for pricing options in

financial markets. References on long-term commodity prices are unfortunately scarce.

Relevant ones include Schwartz (1997) and Schwartz & Smith (2000). In these papers

the authors propose several models for the stochastic behavior of commodity prices, with

emphasis on the valuation of financial and real assets.
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In conclusion, the main contribution of this paper is to provide a technique to gener-

ate base/peak year-ahead pool-price scenarios with the help of information pertaining

to base/peak futures-market products. Off-peak pool-price scenarios are subsequently

obtained. Results of a real-world case study pertaining to the Germany-based EEX elec-

tricity market (a sufficiently liquid market), which illustrate the relevance and accuracy

of the technique proposed, are provided. Needless to say, the proposed methodology can

be adapted to markets other than EEX.

The rest of this paper is organized a follows. Section 2 describes in detail the models pro-

posed and the scenario-generation procedure. Section 3 provides, analyzes and discusses

results pertaining to a real-world case study based on the EEX electricity market. Sec-

tion 4 draws some relevant conclusions. Finally, and for the sake of clarity, an appendix

provides the notation used throughout the paper.

2 Long-Term Uncertainty Characterization of Pool

Prices

2.1 Time Discretization

We describe the pool electricity prices throughout the year using 48 base values, 48 peak

values and 48 off-peak values. Independent models for base and peak prices, respectively,

are developed. Off-peak prices are then obtained from base and peak forecasts.

The 48 base price values correspond to 12 months, each one including 1 Monday base

period, 1 working day (other than Monday) base period, 1 Saturday base period and 1

Sunday base period. The Monday base period is the average value of all Monday base

hourly prices throughout the month. The Saturday/Sunday base period is defined simi-

larly as the Monday base period. The working (other than Monday) base period includes

all base hourly prices pertaining to working days (other than Mondays) throughout the

month. Peak and off-peak periods are defined similarly as base periods.

It should be noted that the above discretization captures pool price variations during the

whole year and leads to yearly price scenarios of a tractable dimension, for both uncer-

tainty characterization of pool prices and long-term decision making through stochastic
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programming models, Birge & Louveaux (1997). Indeed, the discretization above consti-

tutes an appropriate tradeoff since it provides sufficient accuracy for moderate computa-

tional effort. Moreover, the above discretization is based on actual practice of producers

in the Iberian Electricity Market, OMIP.

Needless to say, the considered discretization should be tailored to the specific circum-

stances of the electricity market under consideration and the 48-value discretization

changed as considered appropriate.

2.2 Forward Curves

Forward base an peak curves spanning the considered yearly horizon are built as follows:

1. The forward base/peak curve spans one year and includes 48 values according with

the time discretization established in Section 2.1 above. The forward base/peak

curve is computed at the decision-making (forecasting) day, day d.

2. Prices for the first three months (months 1, 2 and 3) are the futures prices at day d

of the corresponding three monthly futures products.

3. Prices for months 4-6, 7-9 and 10-12 are the futures prices at day d of the three

futures three-month (quarters) products that correspond to months 4-6, 7-9 and

10-12, respectively.

Figure 2 includes plots of the peak and base forward curves for EEX (computed at De-

cember 30, 2005), the base prices (48 values) and the peak prices (48 values) for year

2006.

The above three-step procedure illustrates the way in which forward curves have to be

built. It should be emphasized that this procedure should be tailored to the specific

financial market under study.

Moreover, note that unlike traditional financial markets in which the forward price repre-

sents the discounted expected future value of the pool price, pool and forward electricity

prices do not comply with this relationship because electricity markets are not sufficiently

liquid and complete.
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Figure 2: EEX market: Forward base/peak curves, computed at December

30, 2005 (48 values), and base/peak pool prices (48 values) throughout 2006.

2.3 Basic Models

Based on the considerations provided in the previous Sections 2.1 and 2.2, the follow-

ing basic models for the pool price are initially considered for base and peak periods,

respectively:

log pBase
t = log fBase

t0
(t) + εBase

t,t0
, (1)

log pPeak
t = log fPeak

t0 (t) + εPeak
t,t0 . (2)

Note that equations (1)/(2) relate base/peak prices (pBase
t /pPeak

t ) with base/peak forward

curves (fBase
t0

(t)/fPeak
t0

(t)) and base/peak forecasting errors (εBase
t,t0

/εPeak
t,t0

). The motivation

to take logarithms is to stabilize the variance. Because of this transformation, the direct

un-transformation of the forecasts is biased. Thus, we use the method provided in Guer-

rero (1993) to adjust for bias when un-transforming forecasts and confidence intervals.

Further details are given in Section 2.7.

For each trading day in the EEX market, throughout 2004-2005, errors for models (1) and

(2) are depicted in Figure 3. In order to clearly visualize error patterns, the base/peak
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48-error values of each trading day are plotted in a superimposed manner, together with

the error means of each of the time periods.
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Figure 3: EEX Market: Base and peak errors throughout the trading days of

2004-2005 for basic models (1) and (2), respectively.

Figure 3 reveals a significant pattern in the time evolution of the forward premium within

a long term horizon, i.e., this premium increases with time.

2.4 Features of the Basic Models

First of all, note that not all the errors in (1) and (2) are known at the forecasting day.

For instance, if the forecasting day is December 30, 2005, since pool prices for 2005 are

available but pool prices for 2006 are not, then all the errors terms in (1) and (2) are

available for each trading day in 2004. However, for the first trading day in 2005, the

first 44 errors are available (the first 44 pool prices in equations in (1) and (2) belong to

2005) but the last 4 errors are not available (the last 4 pool prices in equations in (1) and

(2) belong to 2006). Thus, the latter the trading day in 2005, the higher the number of

non-available errors.

As an example, Figure 4 shows the pattern of available errors at forecasting day De-

cember 30, 2005. Specifically, each column represents the available errors (up to 48) for

the base/peak models obtained for each trading day from the first trading day in 2004

(January 2, 2004) to the last trading day in 2005 (December 30, 2005).

These non-available errors need to be treated as missing data to be estimated through the
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Figure 4: EEX Market: Pattern of available errors (computed at December 30,

2005) corresponding to each trading day from January 2, 2004 to December

30, 2005.

proposed time series models. In Section 2.6, we propose a recursive procedure to estimate

these non-available errors.

Finally, to reproduce the special patterns shown in Figure 3, the cyclic terms in the errors

of (1) and (2) are treated with seasonal differences. That is, the first 48 error terms in

(1) and (2) corresponds to the 48 observed error terms at the first trading day in 2004.

Then, the second 48 error terms in (1) and (2) corresponds to the 48 observed error terms

at the second trading day in 2004, and so on. Then, we differentiate these data with

seasonality differences of orders 4 and 48, respectively. Note that the 4-order difference

is motivated by the 4 blocks considered in a month: Monday, working day (other than

Monday), Saturday and Sunday. The 48-order difference is motivated by the forecasting

horizon: 48-period ahead.

2.5 Detailed Models for Base and Peak Errors

Considering the features exhibited by the error plots of Figure 3, and the standard auto-

correlation and partial autocorrelation functions of the final time series involved, the two

models below are suggested.
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The proposed base-error model has the form:

(
1 − φBase

1 B − φBase
2 B2

) (
1 − φBase

4 B4
) (

1 − φBase
48 B48

) (
1 − B4

) (
1 − B48

)
εBase

t,t0

=
(
1 − θBase

1 B
) (

1 − θBase
4 B4

) (
1 − θBase

48 B48
)
aBase

t,t0 , (3)

where aBase
t,t0

is the innovation term, and, as usual, it is assumed to be white noise.

The proposed peak-error model has the alternative and simpler form:

(
1 − φPeak

1 B
) (

1 − φPeak
4 B4

) (
1 − B4

) (
1 − B48

)
εPeak

t,t0

=
(
1 − θPeak

1 B − θPeak
2 B2

) (
1 − θPeak

4 B4
) (

1 − θPeak
48 B48

)
aPeak

t,t0 , (4)

where aPeak
t,t0 is the innovation term.

Note that in models (3) and (4) the short-term properties of the pool prices are modelled

through components with lags 1, 2 and 4, and the long-term properties of the forward curve

are modelled through components with lag 48. Note also that the proposed models can be

adapted to markets other than EEX by changing the corresponding ARIMA specifications.

The parameter estimation for models (3) and (4) is based on maximizing a conditional

likelihood function for the available data, as described in Hillmer & Tiao (1979). Since

the number of observations used to estimate the parameters is large enough (more than

12,000), instead of the exact likelihood function, a conditional function is used because

both functions produce similar results, while the conditional one has a lower computational

burden.

2.6 Estimation of Non-Available Errors

We characterize a non-available error as an additive outlier, as in Chen & Liu (1993).

This characterization allows estimating the missing error values in an optimal manner.

Nevertheless, given the large amount of non-available errors present in the data, specially

at the end of the estimation window, we use a recursive procedure to estimate the non-

available errors by blocks (using blocks of 4 periods at a time).

We illustrate this estimation considering that the forecasting day is December 30, 2005.

At that time, we cannot use all available error data from January 2, 2004 to December

30, 2005 (24,480 periods) because there are missing error values. The first 4 missing error
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values appear in the first trading day in January 2005. That is, in positions 12,285 to

12,288. To estimate these 4 missing error values we use the procedure in Chen & Liu

(1993) considering error data from positions 1 to 12,284. Once these 4 missing values are

estimated, the next 4 missing values appear in the second trading day of January 2005.

That is, in positions 12,333 to 12,336. To estimate these 4 missing values we use again

the procedure in Chen & Liu (1993) but now considering error data from positions 1 to

12,332. This procedure is repeated until the last 4 missing error values appear in the last

trading day of January 2005. That is, we estimate the missing error values in positions

13,245 to 13,248 using data from positions 1 to 13,244.

Then, for each trading day in February 2005, there are 8 missing error values (instead of

4) to be estimated. For simplicity, we estimate these 8-error values using two blocks of

4 values. That is, for the first trading day in February 2005, the first block of 4 missing

values appear in positions 13,289 to 13,292. We estimate these 4 missing values with data

from positions 1,009 to 13,288. Once these values are estimated, we proceed to estimate

the second block of 4 missing values in positions 13,293 to 13,296 but using data from

positions 1,009 to 13,292. Once these 8 missing values are estimated, we use the same

procedure to estimate the next 8 missing values appearing in the second trading day in

February 2005.

We repeat the same procedure explained above for the remaining months in 2005, taking

into account that the later the month in 2005, the higher the number of non-available

errors and, hence, the higher the number of blocks of 4-error values to be estimated.

It should be noted that although the length of the estimation window in this recursive

procedure is not equal in all iterations, it remains above 12,000 values.

After the missing error estimation, 48-period ahead forecasts (from position 24,432) can

be obtained as indicated in the next section. The required information to generate a

scenario tree of appropriate size is also readily available.

2.7 Forecasting Base and Peak Prices

Before detailing the forecasting algorithm, the following intuitive explanation of the ap-

proach is provided.
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Consider that we intend to forecast the future spot price at time t based on data up to

and including time t0. For this we need to collect all error terms up to time t0. However,

as explained in Section 2.6, not all past “errors” are available up to time t0, thus, we

need to “fill” these gaps in a efficient way. To do so, we propose a recursive estimation

procedure by blocks to compute the missing errors. Each step of this procedure is based

on Chen & Liu approach, which considers each missing value as an additive outlier, and

hence estimates the non-available errors in an optimal way.

Once we have replaced all non-available past errors by their corresponding estimates, we

can estimate all parameters in equations (3) and (4), and finally we can forecast future

errors from the same equations.

In summary, we have a collection of past errors with several missing values up to time

t0. We propose a recursive method to compute these missing values, which results in a

complete collection of past errors. Then, we propose time series models to fit these past

errors. Finally, we estimate model parameters and compute error forecasts to obtain price

forecasts.

With this explanation, the forecasting algorithm for base prices is described below. For

peak prices, an analogous algorithm can be built.

1. Parameter fitting and error characterization:

(a) Based on historical data up to period t0, obtain φBase
i , ∀i; θBase

j , ∀j.

(b) Obtain also an estimation of the standard error of the white noise term, σaBase
t,t0

.

2. Error forecasting:

Use model (3) to forecast errors ε̂Base
t1,t0 , . . . , ε̂Base

tnB
,t0 .

3. Price forecasting:

(a) Use model (1) and the un-transformation proposed by Guerrero (1993) to ob-

tain the nB price forecasts:

p̂Base
tj

= fBase
t0 (tj) exp

(
ε̂Base

tj ,t0 +
1

2
(σaBase

tj ,t0
)2

)
, j = 1, . . . , nB . (5)

(b) nB confidence intervals at 95% level are computed below.
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Lower:

fBase
t0 (tj) exp

(
ε̂Base

tj ,t0 +
1

2
(σaBase

tj ,t0
)2 − 1.96σaBase

tj ,t0

)
, j = 1, . . . , nB (6)

Upper:

fBase
t0

(tj) exp

(
ε̂Base

tj ,t0
+

1

2
(σaBase

tj ,t0
)2 + 1.96σaBase

tj ,t0

)
, j = 1, . . . , nB (7)

Note that these intervals are not symmetric.

2.8 Off-Peak Prices

Once base and peak forecasts are available, off-peak forecasts are obtained as explained

below.

Base, peak and off-peak prices are related as:

pBase
d =

1

24

24∑
h=1

pBase
d,h (8)

=
1

24

( ∑
h∈ΩPeak

pPeak
d,h +

∑
h∈ΩOff−peak

pOff−peak
d,h

)
(9)

=
1

24
(|ΩPeak| pPeak

d + |ΩOff−peak| pOff−peak
d ), (10)

thus,

pOff−peak
d =

1

|ΩOff−peak|(24 pBase
d − |ΩPeak| pPeak

d ). (11)

Hence, the off-peak price forecasts depend on base price forecasts and peak price ones as

p̂Off−peak
t =

1

|ΩOff−peak|(24 p̂Base
t − |ΩPeak| p̂Peak

t ). (12)

Since base and peak prices are correlated, caution should be exercised in applying formula

(12) above. Particularly, we propose to use the same seed to generate both base and peak

prices.

2.9 Scenario Generation Algorithm

The scenario generation algorithm for base prices is described below. For peak prices, an

analogous algorithm can be built.
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1. Single scenario generation:

(a) Randomly generate the nB white noise terms aBase
tj ,t0 ∼ N(0, σaBase

t0
); j = 1, . . . , nB.

Note that σaBase
t0

is the standard deviation of the estimation error using data

up to t0.

(b) Then, use equation (3) to obtain a realization of errors εBase
t1,t0

, . . . , εBase
tnB

,t0
.

(c) Finally, use equation (5) to obtain a realization of prices pBase
t1

, . . ., pBase
tnB

.

2. Scenario tree generation:

Repeat step (1) above as many times as needed to generate a scenario tree of ap-

propriate size, e.g., 1,000 times.

Once base and peak price scenarios are generated, off-peak price scenarios are derived

using (12). Finally, the peak and off-peak prices of each scenario are merged to produce

a resulting scenario covering the whole year and following the actual time sequence. Note

that the resulting scenario tree comprises 2×nB periods (nB peak values and nB off-peak

values).

3 Case study

3.1 Introduction and Data

A real-world case study is comprehensively analyzed in this section and the obtained

results reported. This case study is based on the European Energy Exchange (EEX), an

exchange under public law located in Leipzig, Germany.

EEX operates both the pool trading for electric energy with physical delivery (one-day

ahead) and the futures market. The EEX futures market is well developed and has

sufficient financial liquidity, i.e., it has a sufficient volume of forward trade.

We have collected all EEX (month and quarter) futures prices (for base and peak hours)

for each trading day in 2004 and 2005, that is, for 510 trading days. Additionally, we have

collected the 24 hourly pool prices for each day in 2004-2006. From this data and using the

48-value yearly discretization proposed in Section 2.1, we calculate the 510×48 = 24, 480
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error values for the base model (including missing errors) and the corresponding 24,480

error values for the peak model (including missing errors as well).

The models presented in Section 2 are then used for out-of-sample forecasting as explained

below.

3.2 Forecasting

To evaluate the out-of-sample performance of the proposed models, we calculate 48

periods-ahead forecasts for each Friday in October, November and December, 2005 (that

is, for 13 trading days). Hence, in the out-of-sample study, we have selected 13 trading

days and, for each of them, electricity prices are forecasted for 48 periods ahead (one

whole year).

Note that no previous trading day in 2005 is considered due to the short history of the

EEX market, which makes the proportion of non-available errors over the available ones

unreasonable for dates previous to October 2005.

The out-of-sample evaluation is summarized as follows. First and for each of these 13

days, we estimate the missing error values by the recursive procedure stated in Section

2.6. Second, the parameters of the models are estimated and 48-period ahead forecasts

(confidence intervals included) are computed. Third, the differentiation and transforma-

tion (logarithm) for the forecasts are reversed and diverse performance metrics regarding

prediction errors are computed.

Finally, note that in order to appropriately consider the strong periodic pattern exhib-

ited by the data, we re-estimate the model parameters each time we change the trading

day. Particularly, we re-estimate models (3) and (4), and the corresponding forecasting

equation (5), thirteen times. Doing so, we ensure that the proposed models capture the

corresponding seasonal patterns, no matter the day of the week in which we initiate the

forecasting horizon.

Results are reported below.
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3.3 Performance Metrics and Benchmark Models

To appraise the accuracy of the proposed models, we use the standard performance metrics

below:

MAPE =
100

nF
×

nF∑
t=1

|p̂t − ptrue
t |

ptrue
t

(13)

EMax = 100 × max

{ |p̂1 − ptrue
1 |

ptrue
1

,
|p̂2 − ptrue

2 |
ptrue

2

, . . . ,
|p̂nF

− ptrue
nF

|
ptrue

nF

}
(14)

RMSE =

√√√√ 1

nF

nF∑
t=1

(p̂t − ptrue
t )2 (15)

Additionally, two benchmark models are used to assess the behavior of the proposed

technique. Note that long-term forecasting methods for electricity prices have not been

considered previously in the forecasting literature.

The first benchmark model for the pool price is:

log pBase
t = log fBase

t0
(t) + aBase

t,t0
(16)

log pPeak
t = log fPeak

t0 (t) + aPeak
t,t0 , (17)

where aBase
t,t0 and aPeak

t,t0 are the innovation terms, and, as usual, they are assumed to be white

noise. Note that this model assumes no specific patterns between expected pool prices

and futures-product prices. Therefore, there is no need to estimate non-available errors

as the standard deviation characterizing the innovation term can be directly computed

with the available data.

For the second benchmark model, we have adapted the standard exponential weighted

moving average (frequently used in practice without seasonality). We have incorporated

additional moving average terms to appropriately capture the monthly and yearly sea-

sonality patterns of the forecast error series. The resulting model for this benchmark

is:

(1 − B) log pBase
t =

(
1 − θBase

1 B
) (

1 − θBase
4 B4

) (
1 − θBase

48 B48
)
aBase

t,t0
(18)

(1 − B) log pPeak
t =

(
1 − θPeak

1 B − θPeak
2 B2

) (
1 − θPeak

4 B4
) (

1 − θPeak
48 B48

)
aPeak

t,t0 , (19)

where aBase
t,t0 and aPeak

t,t0 are the innovation terms. We have selected this benchmark for its

good performance in forecasting short-term pool prices, but note this second benchmark
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does not include relevant long-term information (futures-product prices). It expresses

past predictions as weighted combinations of past prices and past predictions of orders 1,

4, and 48.

3.4 Results

All models have been implemented in the SCA System, Liu and Hudak (1994). Using

this tool, we can estimate the missing error values and the parameters in the models and

obtain 48-period ahead forecasts.

The cases have been run on a Dell PowerEdge 6600 with 2 processors at 1.60 GHz and

2 GB of RAM memory. For each one of the 13 forecasting studies (including parameter

estimation and forecasting of prices), running times pertaining to peak and base prices

are under 5 and 7 CPU minutes, respectively.

Tables 1 and 2 provide the estimates of the parameters characterizing the proposed models

(3) and (4), respectively, for a specific date (December 30, 2005). Particularly, each

table contains the estimation for each of the parameters of the corresponding models,

the corresponding standard error, and the corresponding t-value to measure parameter

significativeness. Finally, each table contains the residual standard error, which is an

estimation of the standard error of the white noise term: σaBase
t,t0

for the base model and

σaPeak
t,t0

for the peak model.

From Tables 1 and 2, we can see the significant effect of the pool price properties over the

short-term together with the significant effect of the forward curve (or forward premium)

over the long-term. Moreover, diagnostic checks reveal that the proposed methodology

performs adequately in this case study. Finally, note that the information provided in

Tables 1 and 2 need to be updated for each trading day.

Figure 5 shows the evolution of MAPE and EMax for the 13 forecasting days and the

base and peak models, respectively.

Figure 6 shows the base and peak true pool prices, respectively, for 2006 and the corre-

sponding confidence intervals computed December 30, 2005.

Figure 7 depicts 1,000 scenarios of EEX pool prices covering peak and off-peak periods

for 2006, computed December 30, 2005. Peak and off-peak prices are generated separately
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Table 1: Base-error model parameters computed at December 30, 2005.

Base

Parameter Estimation Std. Error t-value

φBase
1 1.4905 0.0224 66.3

φBase
2 -0.5143 0.0197 -26.0

φBase
4 -0.6693 0.0066 -101.2

φBase
48 -0.9032 0.0663 -13.6

θBase
1 0.7978 0.0186 42.9

θBase
4 0.9974 0.0410 24.3

θBase
48 -0.9022 0.0636 -14.1

Residual standard error = 0.020
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Figure 5: EEX market: MAPE and EMax evolution for base/peak prices and

the 13 forecasting days.

and then merged in the right time sequence to produce the scenarios plotted in Figure 7.

Finally, a comparison between the proposed methodology and the two benchmark models

presented in Section 3.3 is carried out.

First of all, Table 3 presents the performance metrics (MAPE, EMax and RMSE) of the

proposed methodology for the selected 13 forecasting days (and the 48 predictions). Note

that these metrics imply an accurate performance of the proposed forecasting technique

for the considered forecasting horizon that spans one whole year.
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Table 2: Peak-error model parameters computed at December 30, 2005.

Peak

Parameter Estimation Std. Error t-value

φPeak
1 0.9332 0.0046 202.1

φPeak
4 -0.5933 0.0072 -81.9

θPeak
1 0.0178 0.0098 1.8

θPeak
2 0.4536 0.0098 46.5

θPeak
4 0.9926 0.2695 3.6

θPeak
48 0.0199 0.0087 2.2

Residual standard error = 0.023
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Figure 6: EEX market: True base/peak pool prices for 2006 and confidence

intervals at December 30, 2005.

Table 4 below presents the performance metrics (MAPE, EMax and RMSE) for the first

benchmark model (16)–(17) for the selected 13 forecasting days (and the 48 predictions).

From this table, we conclude that the proposed methodology conveniently exploit the

specific patterns observed between expected pool prices and futures-product prices. For

example, the MAPE of the proposed model is approximately half of that for this first

benchmark model.

Table 5 below shows the performance metrics for the second benchmark model (18)–(19).

Note that forecasts at December 2 (2005) and November 4 (2005) cannot be performed as
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Table 3: Proposed methodology: Forecasting-error metrics for the last Fridays

in October, November and December, 2005.

Case Date

Base Peak

MAPE EMax RMSE MAPE EMax RMSE

(%) (%) (e/MWh) (%) (%) (e/MWh)

1 Dec. 30, 2005 13.8 55.6 9.5 13.8 56.1 15.0

2 Dec. 23, 2005 13.2 50.9 9.5 14.2 57.2 15.3

3 Dec. 16, 2005 13.4 48.9 9.8 14.7 57.2 15.4

4 Dec. 9, 2005 14.8 50.6 10.8 15.9 58.8 16.2

5 Dec. 2, 2005 15.4 50.5 11.1 16.9 59.4 16.8

6 Nov. 25, 2005 31.4 111.8 17.0 44.5 143.3 31.7

7 Nov. 18, 2005 29.4 109.0 15.8 40.5 138.5 29.0

8 Nov. 11, 2005 28.5 109.6 15.4 37.7 137.7 27.2

9 Nov. 4, 2005 25.5 103.7 14.1 32.7 127.5 24.3

10 Oct. 28, 2005 17.6 52.8 14.3 18.2 60.2 22.0

11 Oct. 21, 2005 18.0 52.4 14.6 18.5 60.2 22.3

12 Oct. 14, 2005 17.6 53.2 14.3 18.0 59.6 21.7

13 Oct. 07, 2005 18.3 52.5 14.8 18.4 60.3 22.3
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Figure 7: EEX market: 1,000 pool-price scenarios for 2006 computed at De-

cember 30, 2005.

the data available up to those dates are not sufficient to conduct the time discretization

proposed in Section 2.1 for the months of December and November 2005, respectively.

We can observe from this table that the performance of this second benchmark is clearly

worse than that of the proposed methodology.

3.5 Discussion

Observing Table 3 and analyzing Figures 5-7, the conclusions below are drawn:

1. MAPE, EMax and RMSE of the proposed technique remain below 32%, 112% and

17 e/MWh, respectively, for base prices, and below 45%, 144% and 32 e/MWh,

respectively, for peak prices.

2. Results are surprisingly accurate for the considered forecasting horizon that spans

one whole year. Moreover, the price forecasts by the proposed method are substan-

tially more accurate than those provided by other methods.

3. The proposed model is therefore very appropriate for the EEX market. Other

markets should be tested to further validate the proposed methodology.
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Table 4: First benchmark: Forecasting-error metrics for the last Fridays in

October, November and December, 2005.

Case Date

Base Peak

MAPE EMax RMSE MAPE EMax RMSE

(%) (%) (e/MWh) (%) (%) (e/MWh)

1 Dec. 30, 2005 40.6 169.2 17.5 63.9 212.6 32.0

2 Dec. 23, 2005 38.0 161.1 16.9 61.2 209.6 31.0

3 Dec. 16, 2005 36.8 157.7 16.5 60.9 210.7 30.9

4 Dec. 9, 2005 33.1 147.6 15.4 54.9 199.1 28.2

5 Dec. 2, 2005 32.5 147.8 15.2 52.3 193.4 27.0

6 Nov. 25, 2005 31.4 143.3 15.3 49.8 188.0 27.2

7 Nov. 18, 2005 30.5 140.0 15.1 47.4 182.3 26.0

8 Nov. 11, 2005 30.4 140.7 15.2 46.4 181.3 25.3

9 Nov. 4, 2005 29.0 133.8 15.3 42.5 169.1 24.3

10 Oct. 28, 2005 28.5 133.6 15.9 42.2 169.5 25.4

11 Oct. 21, 2005 28.1 130.8 16.0 42.0 169.0 25.4

12 Oct. 14, 2005 28.7 134.3 15.9 43.4 173.5 25.6

13 Oct. 07, 2005 27.8 129.8 16.0 42.0 169.0 25.3

4 Conclusions

Since forecasting errors greatly increase as the forecasting horizon expands, the year-ahead

uncertainty characterization of pool prices is a hard and complex endeavor. However,

year-ahead pool price scenarios covering most realizations are crucial to make informed

decision in financial markets, thus achieving appropriate risk hedging.

Based on the prices of diverse financial products traded at financial markets, this paper

provides an efficient yet sufficiently accurate procedure to characterize pool price uncer-

tainty one-year ahead. Moreover, scenario trees to be used within stochastic programming

decision making tools are also generated.

Detailed studies pertaining to a real-world electricity market demonstrate the theoretical
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Table 5: Second benchmark: Forecasting-error metrics for the last Fridays in

October, November and December, 2005.

Case Date

Base Peak

MAPE EMax RMSE MAPE EMax RMSE

(%) (%) (e/MWh) (%) (%) (e/MWh)

1 Dec. 30, 2005 41.1 179.2 18.0 31.8 114.6 22.9

2 Dec. 23, 2005 47.9 198.0 19.7 34.3 120.5 23.3

3 Dec. 16, 2005 52.0 209.0 21.0 36.0 123.6 24.0

4 Dec. 9, 2005 51.2 206.9 20.7 37.5 127.4 24.6

5 Dec. 2, 2005 – – – – – –

6 Nov. 25, 2005 31.8 148.9 16.9 59.1 206.2 30.2

7 Nov. 18, 2005 29.7 133.8 17.2 48.5 178.5 26.2

8 Nov. 11, 2005 28.7 123.3 17.7 41.1 157.7 24.6

9 Nov. 4, 2005 – – – – – –

10 Oct. 28, 2005 29.0 129.1 18.7 38.9 150.0 26.9

11 Oct. 21, 2005 28.9 128.6 18.7 38.8 149.5 27.0

12 Oct. 14, 2005 28.8 127.5 18.8 38.6 148.9 27.0

13 Oct. 07, 2005 29.1 130.5 18.6 38.6 148.6 27.2

and practical interest of the proposed methodology.

Notation

The notation used throughout the paper is stated below for quick reference. A price

forecast is indicated with a “ ˆ ”, and superscripts “Base”, “Peak” and “Off-peak” indicate

base, peak and off-peak values, respectively.

Pool Prices:

pBase
d,h Pool price at hour h of day d.
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pPeak
d,h Pool price at peak hour h of day d.

pOff−peak
d,h Pool price at off-peak hour h of day d.

pBase
d Average pool price of day d.

pPeak
d Average pool price of peak hours of day d.

pOff−peak
d Average pool price of off-peak hours of day d.

pBase
t Pool price of base period t.

pt Pool price of period t.

pPeak
t Pool price of peak period t.

pOff−peak
t Pool price of off-peak period t.

ptrue
t Pool price true value in period t.

Forward Functions:

fBase
t0 (t) Forward base curve providing at period t0 available futures prices for all relevant

future periods t > t0.

fPeak
t0

(t) Forward peak curve providing at period t0 available futures prices for all relevant

future periods t > t0.

Errors:

εBase
t,t0 Base price forecast error at time period t > t0 for data available up to t0.

εPeak
t,t0 Peak price forecast error at time period t > t0 for data available up to t0.

aBase
t,t0 , aPeak

t,t0 White noise.

σaBase
t,t0

Standard deviation of the base-price forecast error for data available up to t0 and

time t > t0.

σaPeak
t,t0

Standard deviation of the peak-price forecast error for data available up to t0 and

time t > t0.
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σaBase
t0

Standard deviation of the base-price estimation error for data available up to t0.

σaPeak
t0

Standard deviation of the peak-price estimation error for data available up to t0.

Parameters:

φBase
i , φPeak

i Polynomial price constants of order i.

θBase
i , θPeak

i Polynomial error constants of order i.

Operators:

Bk Backshift operator, i.e., Bkpt = pt−k.

| · | Both cardinality and absolute value.

Indices:

d Index for days.

h Index for hours.

t Index for periods typically including several hours.

Numbers:

nF Number of forecast values.

nB Number of forecast values pertaining to base periods.

Sets:

ΩPeak Set of the peak hours of the day.

ΩOff−peak Set of the off-peak hours of the day.
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