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Mean-variance portfolios constructed using the sample mean and covariance matrix of asset returns perform poorly out of
sample due to estimation error. Moreover, it is commonly accepted that estimation error in the sample mean is much larger
than in the sample covariance matrix. For this reason, researchers have recently focused on the minimum-variance portfolio,
which relies solely on estimates of the covariance matrix, and thus usually performs better out of sample. However, even the
minimum-variance portfolios are quite sensitive to estimation error and have unstable weights that fluctuate substantially
over time. In this paper, we propose a class of portfolios that have better stability properties than the traditional minimum-
variance portfolios. The proposed portfolios are constructed using certain robust estimators and can be computed by solving
a single nonlinear program, where robust estimation and portfolio optimization are performed in a single step. We show
analytically that the resulting portfolio weights are less sensitive to changes in the asset-return distribution than those of the
traditional portfolios. Moreover, our numerical results on simulated and empirical data confirm that the proposed portfolios
are more stable than the traditional minimum-variance portfolios, while preserving (or slightly improving) their relatively
good out-of-sample performance.
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1. Introduction

An investor who cares only about the mean and variance
of static portfolio returns should hold a portfolio on the
mean-variance efficient frontier, which was first character-
ized by Markowitz (1952). To implement these portfolios
in practice, one has to estimate the mean and the covariance
matrix of asset returns. Traditionally, the sample mean and
covariance matrix have been used for this purpose. How-
ever, because of estimation error, policies constructed using
these estimators are extremely unstable; that is, the result-
ing portfolio weights fluctuate substantially over time. This
has greatly undermined the popularity of mean-variance
portfolios among portfolio managers, who are reluctant to
implement policies that recommend such drastic changes
in the portfolio composition. Moreover, the concerns of
portfolio managers are reinforced by well-known empirical
evidence, which shows that these unstable portfolios per-
form very poorly in terms of their out-of-sample mean and
variance; see Michaud (1989), Chopra and Ziemba (1993),
and Broadie (1993).

The instability of the mean-variance portfolios can be
explained (partly) by the well-documented difficulties asso-
ciated with estimating mean asset returns; see Merton
(1980). For this reason, researchers have recently focused
on the minimum-variance portfolio, which relies solely on

estimates of the covariance matrix, and thus is not as sen-
sitive to estimation error (Chan et al. 1999, Jagannathan
and Ma 2003). Jagannathan and Ma, for example, state
that “the estimation error in the sample mean is so large
that nothing much is lost in ignoring the mean altogether”
(p. 1652). This claim is substantiated by extensive empir-
ical evidence that shows the minimum-variance portfolio
usually performs better out of sample than any other mean-
variance portfolio—even when Sharpe ratio or other perfor-
mance measures related to both the mean and variance are
used for the comparison; see Jorion (1986), Jagannathan
and Ma (2003), and DeMiguel et al. (2005). Moreover, in
this paper we provide numerical results that also illustrate
the perils associated with using estimates of mean returns
for portfolio selection. For all these reasons, herein our dis-
cussion focuses on the minimum-variance portfolios.
Although the minimum-variance portfolio does not rely
on estimates of mean returns, it is still quite vulnera-
ble to the impact of estimation error; see Chan et al.
(1999) and Jagannathan and Ma (2003). The sensitiv-
ity of the minimum-variance portfolio to estimation error
is surprising. These portfolios are based on the sample
covariance matrix, which is the maximum likelihood esti-
mator (MLE) for normally distributed returns. Moreover,
MLEs are theoretically the most efficient for the assumed
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distribution; that is, these estimators have the smallest as-
ymptotic variance provided the data follows the assumed
distribution. So why does the sample covariance matrix
give unstable portfolios? The answer is the efficiency of
MLEs based on assuming normality of returns is highly
sensitive to deviations of the asset-return distribution from
the assumed (normal) distribution. In particular, MLEs
based on the normality assumption are not necessarily the
most efficient for data that depart even slightly from nor-
mality; see Example 1.1 in Huber (2004). This is partic-
ularly important for portfolio selection, where extensive
evidence shows that the empirical distribution of returns
usually deviates from the normal distribution.

To induce greater stability on the minimum-variance port-
folio weights, in this paper we propose a class of policies
that are constructed using robust estimators of the portfolio
return characteristics. A robust estimator is one that gives
meaningful information about asset returns even when the
empirical (sample) distribution deviates from the assumed
(normal) distribution (see Huber 2004, Hampel et al. 1986,
Rousseeuw and Leroy 1987). Specifically, a robust estima-
tor should have good properties not only for the assumed
distribution, but also for any distribution in a neighborhood
of the assumed one.

Classical examples of robust estimators are the median
and the mean absolute deviation (MAD). The median is the
value that is larger than 50% and smaller than 50% of the
sample data points whereas the MAD is the mean absolute
deviation from the median. The following example from
Tukey (1960) illustrates the advantages of using robust esti-
mators. Assume that all but a small fraction & of the data
are drawn from a univariate normal distribution, whereas
the remainder are drawn from the same normal distribu-
tion, but with a standard deviation three times larger. Then,
a value of h = 10% is enough to make the median as effi-
cient as the mean, whereas more sophisticated robust esti-
mators are 40% more efficient than the mean with 4 = 10%.
Moreover, even h = 0.1% is enough to make the MAD
more efficient than the standard deviation. The conclusion
is that when the sample distribution deviates even slightly
from the assumed distribution, the efficiency of classical
estimators may be drastically reduced. Robust estimators,
on the other hand, are not as efficient as MLEs when the
underlying model is correct, but their properties are not as
sensitive to deviations from the assumed distribution.

For this reason, we examine portfolio policies based on
robust estimators. These policies should be less sensitive
to deviations of the empirical distribution of returns from
normality than the traditional policies. We focus on cer-
tain robust estimators known as M- and S-estimators, which
have better properties than the classical median and MAD.

Our paper makes three contributions. Our first contribu-
tion is to show how one can compute the portfolio pol-
icy that minimizes a robust estimator of risk by solving a
single nonlinear program. As mentioned above, we focus
on minimum-risk portfolios because they usually perform

better out of sample than portfolios that optimize the
trade-off between in-sample risk and return. The proposed
portfolios are the solution to a nonlinear program where
portfolio optimization and robust estimation are performed
in a single step. In particular, the decision variables of
this optimization problem are the portfolio weights, and its
objective is either the M- or S-estimator of portfolio risk.

Our second contribution is to characterize (analytically)
the properties of the resulting portfolios. Specifically, we
give an analytical bound on the sensitivity of the portfolio
weights to changes in the distribution of asset returns. Our
analysis shows that the portfolio weights of the proposed
policies are less sensitive to changes in the distributional
assumptions than those of the traditional minimum-variance
policies. As a result, the portfolio weights of the proposed
policies are more stable than those of the traditional poli-
cies. This makes the proposed portfolios a credible alterna-
tive to the traditional policies in the eyes of the investors,
who are usually reticent to implement portfolios whose rec-
ommended weights fluctuate substantially over time.

Our third contribution is to compare the behavior of the
proposed portfolios to that of the traditional portfolios on
simulated and empirical data. The results confirm that mini-
mume-risk portfolios (standard and robust) attain higher out-
of-sample Sharpe ratios than return-risk portfolios (standard
and robust). As mentioned above, this is because estimates
of mean returns (standard and robust) contain so much esti-
mation error that using them for portfolio selection wors-
ens performance. Comparing the proposed minimum-risk
portfolios to the traditional minimum-variance portfolios,
we observe that the proposed portfolios have more stable
weights than the traditional portfolios, while preserving (or
slightly improving) their high out-of-sample Sharpe ratios.

Other researchers have proposed portfolio policies based
on robust estimation techniques; see Cavadini et al.
(2001), Vaz-de Melo and Camara (2003), Perret-Gentil and
Victoria-Feser (2004), and Welsch and Zhou (2007). Their
approaches, however, differ from ours. All three papers
compute the robust portfolio policies in two steps. First,
they compute a robust estimate of the covariance matrix
of asset returns. Second, they solve the minimum-variance
problem where the covariance matrix is replaced by its
robust estimate. We, on the other hand, propose solving a
single nonlinear program, where portfolio optimization and
robust estimation are performed in one step.

The only other one-step approach to robust portfolio
estimation is in Lauprete et al. (2002); see also Lauprete
(2001). They consider a one-step robust approach based
on the M-estimator of risk and give some numerical
results. We, in addition, consider portfolios based on the
S-estimators, give an analytical bound on the sensitivity of
the M- and S-portfolio weights to changes in the distribu-
tional assumptions, and examine the behavior of both the
M- and S-portfolios on simulated and empirical data sets.

Finally, a number of other approaches have been pro-
posed in the literature to address estimation error. The
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robust portfolio optimization approach (see, for example,
Goldfarb and Iyengar 2003, Tiitiincii and Koenig 2004,
Garlappi et al. 2007, Lu 2006) explicitly recognizes that
the result of the estimation process is not a single-point
estimate, but rather an uncertainty set, where the true mean
and covariance matrix of asset returns lie with certain con-
fidence. A robust portfolio is, then, one that optimizes the
worst-case performance with respect to all possible val-
ues the mean and covariance matrix may take within their
corresponding uncertainty sets. Bayesian portfolio poli-
cies are constructed using estimators that are generated by
combining the investor’s prior beliefs with the evidence
obtained from historical return data; see Jorion (1986),
Black and Litterman (1992), and Pdstor and Stambaugh
(2000). Finally, Jagannathan and Ma (2003) show that
imposing short-selling constraints can help to reduce the
impact of estimation error on the stability and performance
of the minimum-variance portfolio.

The rest of this paper is organized as follows. Section 2
reviews the mean-variance and minimum-variance portfo-
lios and highlights their lack of stability with a simple exam-
ple. In §3, we show how to compute the M- and S-portfolios.
In §4, we analyze the sensitivity of the proposed portfo-
lio policies to changes in the empirical distribution of asset
returns. In §5, we compare the different policies on simu-
lated and empirical data. Section 6 concludes.

2. On the Instability of
the Traditional Portfolios

In this section, we use a simple example to illustrate the
instability of the portfolio weights of the mean-variance
and minimum-variance policies. In particular, we consider
two risky assets whose returns follow a normal distribution
most of the time, but there is a small probability that the
returns of the two risky assets follow a different deviation
distribution. That is, we assume that the true asset-return
distribution is

G=99% x N(u, )+ 1% x D, (1)

where N(u, ) is a normal distribution with mean p and
covariance matrix >, and D is a deviation distribution.
Specifically, we are going to consider the case where there
is a 99% probability that the returns of the two assets
are independently and identically distributed following a
normal distribution with an annual mean of 12% and an
annual standard deviation of 16%, and there is a 1% prob-
ability that the returns of the two assets are distributed
according to a normal distribution with the same covari-
ance matrix but with the mean return for the second asset
equal to —50 times the mean return of the first asset. That
is, we assume that h = 1%,

0.01 0.0021 0
M = N 2 = N
0.01 0 0.0021

and D = N(u,, 2,), where 3, = 3 and u, = (0.01, —0.50).
Finally, we would like to note that a basic assumption
of our work is that the investor does know that the true

asset-return distribution deviates from the normal but the
investor does not know the parametric form of this devia-
tion. If the investor knew the parametric form of the devia-
tion distribution D, then the investor would be better off by
estimating this distribution using, for example, maximum
likelihood estimation. It is convenient for exposition pur-
poses, however, to assume that the deviation distribution D
does have a parametric (normal) form in our example.

2.1. A Rolling-Horizon Simulation

We then perform a “rolling-horizon simulation.” We first
generate a time series of 240 asset returns by sampling
from the true asset-return distribution G. Then, we carry
out a rolling-horizon experiment based on this time series.
Concretely, we use the first 120 returns in the time series
to estimate the sample mean and covariance matrix of asset
returns. We then compute the corresponding minimum-
variance portfolio as well as the mean-variance portfolio
for a risk aversion parameter y = 1. We then repeat this
procedure by “rolling” the estimation window forward one
period at a time until we reach the end of the time series.
Thus, after performing this experiment we have computed
the portfolio policies corresponding to 120 different esti-
mation windows of 120 returns each.

2.2. Computing the Mean-Variance and
Minimum-Variance Portfolios

Given N risky assets, the mean-variance portfolio is the
solution to the optimization problem

- 1.
min W' 3w ——41'w )
w Y

st. we=1, 3)

where w € #" is the vector of portfolio weights, aTw is
the sample mean of portfolio returns, w'Sw is the sam-
ple variance of portfolio returns, and 7 is the risk-aversion
parameter. The constraint w'e =1, where e € #" is the
vector of ones, ensures that the portfolio weights sum to
one. The sample cgvariance matrix of asset returns, X, can
be calculated as 3 = (1/(T — 1)) X", (r, — A)(r, — @)7,
where r, € Y is the vector of asset returns at time ¢,
T is the sample size, and i € %" is the sample mean
of asset returns, i = (1/T)Y."_, r,. Note that for differ-
ent values of the risk aversion parameter y, we obtain the
different mean-variance portfolios on the efficient frontier.
The minimum-variance portfolio is the mean-variance port-
folio corresponding to an infinite risk aversion parameter
(v = 0), and thus it can be computed by solving the fol-
lowing minimum-variance problem:

min w'Sw 4)

st. we=1. (5)

Note that the true asset return distribution G in our
example is a mixture of normals, which is not normal
in general. However, it is easy to compute the first and
second moments of G from the first and second moments
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of the two normal distributions being mixed. Specifically,
it is easy to see that u; = E(G) = (1 — h)u + hu,
and 3; = Var(G) = (1 — I) (2 + (1 — pe) (1 — pe)") +
h(E, + (kg — rg)(y — mg)T). Hence, the true mean-
variance and minimum-variance portfolios can be computed
for our simple example by solving problems (2)—(3) and
(4)—(5), respectively, replacing the sample mean and covari-
ance matrix by g and 3.

2.3. Discussion

The time series of asset returns and the mean-variance
and minimum-variance portfolio weights are depicted
in Figure 1. Panel (a) depicts the times series of 240 returns

for the two assets. Note that the two sample returns cor-
responding to dates 169 and 207 follow the deviation
distribution D, whereas the rest of the returns follow the
distribution N(u, ).

Panel (c) in Figure 1 depicts the estimated mean-variance
portfolio weights together with the true mean-variance port-
folio weights, which are equal to 143% for the first asset
and —43% for the second asset. Note that the estimated
portfolio weights for the first asset range between 200%
and 450% and the estimated weights for the second asset
range between —325% and —100%. Clearly, the estimated
mean-variance portfolio weights take extreme values that
fluctuate substantially over time and tend to be very differ-
ent from the true mean-variance portfolios.

Figure 1. Time series of asset returns and portfolio weights for the example in §2.
(b) Minimum-variance portfolio weights with axis
(a) Time series of asset returns scaled between 0 and 100%
. . . . 1.0 : . . . T
—— Asset 1
05F 1 L ]
—— Asset 2 0.9
0.4F : PR LR T
0.8 e 1
0.7k L ]
o) i
c 0.6 i 1
3 TNt TG PR
> osf :
Q ] ' "“.—-'- ~.—.".
7] " L 1 i
g : 04 ;
-0.2 ¢ . R -
: : 0.3F ' 7
-03} : : 1 RN
! : 02F - 1
—-0.4F} H ' g A ’
i :
—05} ! { otf 1
. . N . . . . . .
0 50 100 150 200 0 20 40 60 80 100 120
Time Out-of-sample period
(c) Mean-variance portfolio weights with axis (d) Minimum-variance portfolio weights with axis
scaled between —500 and 500% scaled between —500 and 500%
5 . . . . . 5 : : . T T
A-
ar R BOTIARYS 1 4r ]
3 -. II - 'Nl'“\ ’ ~"‘~. e Nt ] 3r i
2r ot .\'\"‘. 2F 4
1k 4 1t ¢ e S e s y
SISl i=mimimamImIE:
ol | of = —— -
-1r o ,"-a 1 -1t T
- P id et i
A et NN 1 -2 1
I ‘\-» - .\.‘.\‘ _,»‘." | | 4
-3 ) ¢ -3
4t g 4t i
_5 . . . . . _5 . . . . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Out-of-sample period

Out-of-sample period

Notes. Panel (a) depicts the time series of asset returns for the two-asset example in §2. Panels (b)—(d) depict the 120 estimated mean-variance and
minimum-variance portfolios. The panels also depict the “true” mean-variance and minimum-variance portfolio weights (corresponding to the true asset-
return distribution). Panel (b) depicts the minimum-variance portfolio weights on an axis ranging between 0 and 100%, Panel (c) depicts the mean-variance
portfolio weights on an axis ranging between —500% and 500%, and for comparison purposes, Panel (d) depicts the minimum-variance portfolio on an

axis ranging between —500% and 500%.
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Panel (d) shows the estimated minimum-variance port-
folio weights. Comparing panels (c) and (d), it seems
clear that the estimated mean-variance portfolio weights are
more unstable than the estimated minimum-variance port-
folio weights. This confirms the insight given by Merton
(1980) that the error incurred when estimating mean asset
returns is much larger than that incurred when estimat-
ing the covariance matrix. Specifically, Merton showed
that although the estimation error in the sample covariance
matrix can be reduced by increasing the frequency with
which the return data is sampled, the estimation error in
the sample mean can only be reduced by increasing the
total duration of the time series. Consequently, for most
real-world data sets, it is nearly impossible to obtain a
time series long enough to generate reasonable estimates of
mean asset returns. Our numerical results in §5 also con-
firm this point. For this reason, and following the same
argument as in much of the recent literature (Chan et al.
1999, Jagannathan and Ma 2003), in this paper we focus
on the minimum-variance policy.

The estimated minimum-variance portfolio weights are
also depicted in panel (b) in Figure 1, but on a vertical axis
that ranges only between 0% and 100%, whereas the ver-
tical axis in panels (c) and (d) ranges between —500% and
500%. The panel also shows the true minimum-variance
portfolio weights, which are equal to 69% for the first asset
and 31% for the second asset. Note that the first 49 esti-
mated minimum-variance portfolios are obtained from the
first 168 return samples in the time series depicted in
panel (a). None of these sample returns contains a nega-
tive jump for the second asset. Consequently, the estimated
minimum-variance portfolio weights are close to 50%. The
next 38 estimated portfolios are obtained from estimation
windows containing exactly one negative jump. As a result,
these 38 estimated minimum-variance portfolios assign a
larger weight to the first asset. Comparing these 38 esti-
mated portfolios to the true minimum-variance portfolio,
we note, however, that these 38 portfolios overestimate the
weight that should be assigned to the first asset. Finally, the
rest of the estimated portfolios are obtained from estima-
tion windows that contain exactly two negative jumps for
the second asset. As a result, the corresponding estimated
minimum-variance portfolios overestimate even more the
weight that should be assigned to the first asset. Summariz-
ing, the minimum-variance portfolios tend to underestimate
the weight on the first asset when there are no jumps in
the estimation window and they tend to overestimate the
weight on the first asset when there are one or two jumps
in the estimation window.

Hence, the example also shows that although the
minimum-variance portfolio weights are more stable than
those of the mean-variance portfolio, they are still quite
unstable over time. This can be explained as follows. The
minimum-variance portfolio is based on the sample covari-
ance matrix, which is the MLE for normally distributed
returns, and thus should be the most efficient estimator.

However, although MLEs are very efficient for the assumed
(normal) distribution, they are highly sensitive to deviations
in the sample or empirical distribution from normality. Con-
sequently, the minimum-variance portfolio is bound to be
very sensitive to the two sample returns following the devi-
ation distribution D. To understand this better, note that the
sample variance of portfolio returns is

W= S~ )Y ©
t=1

Although MLE:s are very efficient for data that follow a nor-
mal distribution, the fast growth rate of the square function
in (6) makes the sample variance (and thus the minimum-
variance portfolio) highly sensitive to deviations in the
empirical distribution from normality, such as jumps or
heavy tails. This is particularly worrying in finance, where
there is extensive evidence that the empirical return distri-
butions often depart from normality.! In the next section
we propose a class of portfolios that minimize robust esti-
mates of risk. These robust estimates of risk are based on
functions that grow more slowly than the square function.

3. Robust Portfolio Estimation

In this section, we propose two classes of portfolio policies
that are based on the robust M- and S-estimators, and we
show how these policies can be computed by solving a
nonlinear program where portfolio optimization and robust
estimation are performed in one step.

3.1. M-Portfolios

For a given portfolio w, the M-estimator of portfolio risk s is

5= X p(wTr —m), )

where the loss function p is a convex symmetric function
with a unique minimum at zero, and m is the M-estimator
of portfolio return:

1 T
m=argmin— Y p(w'r,—m).
m t=1

Particular cases of M-estimators are the sample mean and
variance, which are obtained for p(r) = 0.5, and the
median and MAD, for p(r) = |r|. In our numerical experi-
ments we focus on the M-estimators derived from Huber’s
loss function

r2/2

, Ir| <e,
c(|r|—=c¢/2),

p(r) = ®)

|r| > c,

where ¢ is a constant. Note that for large values of |r|,
all of these loss functions lie below the square function.
This makes the M-estimators more robust with respect to
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deviations from normality of the empirical distribution than
the traditional mean and variance.

We define the M-portfolio as the policy that minimizes
the M-estimator of portfolio risk. The M-portfolio can then
be computed as the solution to the following optimization
problem:

mm Zp(w v, —m) 9)
st. we=1. (10)

Note that for fixed w, the minimum with respect to m of
the objective function of problem (9)—(10) is equal to the
M-estimator of risk s for the return of the portfolio w,
as defined in (7). By including the portfolio weight vector
w as a variable for the optimization problem, we compute
the portfolio that minimizes the M-estimator of risk.

The M-portfolios generalize several well-known portfo-
lio policies. For example, the minimum-variance portfo-
lio is the M-portfolio corresponding to the square or L,
loss function, p(r) = 0.5r2. Also, the portfolio that mini-
mizes the mean absolute deviation from the median (MAD)
is the M-portfolio corresponding to the L, loss function
p(r) =|r|. In our numerical experiments, we use the port-
folios obtained from Huber’s loss function because of their
good out-of-sample performance.

3.2. S-Portfolios

The second class of portfolio policies we propose is
based on the robust S-estimators. The main advantage of
S-estimators is that they are equivariant with respect to
scale; that is, multiplying the whole data set by a constant
does not change the value of the S-estimator. This is not
the case for the M-estimators. The S-estimators of portfolio
return and risk are defined as the values of m and s that
solve the following optimization problem:

min s (11)

1L (wir—m
= Zp(’T) e (12)
t=1

where p is the loss function and K is the expectation of
this loss function evaluated at a standard normal random
variable z; that is, K = E(p(z)). Note that the portfolio
return deviations, w' r, —m, are scaled by the S-estimator
for risk s in Equation (12). Intuitively, this is what makes
the S-estimators scale invariant.

The loss function p in (12) must satisfy two conditions:
(i) it must be symmetric with a unique minimum at zero,
and (ii) there must exist ¢ > 0 such that p is strictly increas-
ing on [0, c] and constant on [c, 00). A crucial implica-
tion of these two conditions is that the loss function for
S-estimators is bounded above. Consequently, the contribu-
tion of any sample return to the S-estimator of portfolio risk

is bounded. In our experiments, we use Tukey’s biweight
function:

2
SU=(= (/). Il <e,
p(r) = (13)
—, otherwise.
6
S-estimators allow the flexibility to choose the break-
down point, which is the amount of data deviating from the
reference model that an estimator can accept while giving
meaningful information. For example, when using Tukey’s
biweight loss function, we can control the breakdown point
by choosing the constant c¢. The S-estimators allow a break-
down point of up to 50%.
We define the S-portfolio as the policy that minimizes
the S-estimate of risk; namely, the portfolio that solves the
following optimization problem:

min s (14)
s.t. ?Xj: (W h )=K, (15)
wie=1. (16)

3.3. Two-Step Approaches

Perret-Gentil and Victoria-Feser (2004), Vaz-de Melo and
Camara (2003), Cavadini et al. (2001), and Welsch and
Zhou (2007) propose a different procedure for computing
portfolios based on robust statistics. Basically, they pro-
pose a two-step approach to robust portfolio estimation.
First, they compute a robust estimate of the covariance
matrix of asset returns. Second, they compute the portfolio
policies by solving the classical minimum-variance prob-
lem (4)—(5), but replacing the sample mean and covariance
matrix by their robust counterparts. The main differ-
ence among these three approaches is the type of robust
estimator used. Perret-Gentil and Victoria-Feser (2004)
use S-estimators, Vaz-de Melo and Camara (2003) use
M-estimators, Cavadini et al. (2001) use the equivariant
location and scale M-estimators (Maronna 1976 and Huber
1977), and Welsch and Zhou (2007) use the minimum
covariance determinant estimator and winsorization.

Our approach differs from all of these two-step ap-
proaches because we propose solving a nonlinear program
where robust estimation and portfolio optimization are per-
formed in one step. Thus, our approach does not require
the explicit computation of any estimate of the covariance
matrix.

Just like we do, Cavadini et al. (2001) and Perret-Gentil
and Victoria-Feser (2004) also derive analytical bounds
on the sensitivity of their proposed portfolio weights to
changes in the distributional assumptions. However, their
method of analysis differs from ours. We derive these ana-
Iytical bounds by studying how the solution to the opti-
mality conditions of the M- or S-portfolio problem changes
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with changes in the asset-return distribution. Cavadini et al.
(2001) and Perret-Gentil and Victoria-Feser (2004) show
that the analytical bounds for their portfolios follow auto-
matically from the influence function of the robust estima-
tors they use for the covariance matrix of asset returns.

Finally, the approaches in Perret-Gentil and Victoria-
Feser (2004), Vaz-de Melo and Camara (2003), Cavadini
et al. (2001), and Welsch and Zhou (2007) can also be used
to compute robust mean-variance portfolios. This can be
done by simply replacing the sample mean and variance by
their robust estimates in the classical mean-variance port-
folio problem. Our out-of-sample evaluation results in §5,
however, show that the resulting robust mean-variance port-
folios are substantially outperformed (in terms of out-
of-sample Sharpe ratio) by the robust minimum-variance
portfolios. As argued before, the reason for this is that
estimates of mean returns (both standard and robust) con-
tain so much estimation error that using them for portfolio
selection is likely to hurt the performance of the resulting
portfolios. Also, the out-of-sample evaluation results show
that the stability and performance of the two-step robust
minimum-variance portfolios proposed in Perret-Gentil and
Victoria-Feser (2004) are not as good as those of our pro-
posed robust minimum M- and S-risk portfolios, but they
are better than those of the traditional minimum-variance
policy.

3.4. The Example Revisited

We have tried the minimum M-risk and S-risk portfolios
on the time series of asset returns from the example in §2.
The resulting portfolio weights are depicted in Figure 3 in
the online appendix, which is available as part of the online
version that can be found at http://or.pubs.informs.org/. The
figure demonstrates that the weights of the robust portfolios
are more stable than those of the traditional portfolios, and
overall stay relatively close to the true minimum-variance
portfolio weights. The reason for this is that by reducing the
impact of the negative jumps on the estimated S-portfolios,
the proposed policies manage to preserve the stability of
the portfolio weights. In §5, we give numerical results on
simulated and empirical data sets that confirm the insights
from this simple example.

4. Analysis of Portfolio Weight Stability

In this section, we characterize (analytically) the sensitivity
of the M- and S-portfolio weights to changes in the dis-
tribution of asset returns. To do so, we derive the influ-
ence function (IF) of the portfolio weights, which gives a
first-order approximation to portfolio weight sensitivity. We
also show that the IF of the proposed M and S-portfolios
is smaller than that of the traditional minimum-variance
policy. Specifically, we show that the sensitivity of the
M-portfolio weights to a particular sample return grows lin-
early with the distance between the sample return and the
location estimator of return, whereas the sensitivity of the

S-portfolios to a particular sample return is bounded, and
the sensitivity of the minimum-variance portfolios grows
with the square of the distance between the sample return
and the sample mean return.

The IF (see Hampel et al. 1986) measures the impact of
small changes in the distributional assumptions on the value
of an estimator 6. In our case, this estimator 6 contains
the vector of portfolio weights w, the robust estimators m
and s, and the Lagrange multipliers of the constraints in
problems (9)—(10) and (14)—(16). Given a cumulative dis-
tribution function (CDF) of returns F(R), the IF measures
the impact of a small perturbation 7 to this CDF on the
value of the estimator 6. The formal definition of IF is the
following:

0((1—h)F —;hA;) —0(F) a7

where 6(F) is the estimator corresponding to the cumula-
tive distribution function F, and A; is a CDF for which 7
occurs with 100% probability; that is,

0, R<r,

IF, (7 =i
o(7, F) }}E})

A(R) = (18)

I, R>F.

Thus, the IF measures the per-unit (standardized) effect of
a sample return 7 on the value of an estimator. Mathemati-
cally, the IF may be interpreted as the directional derivative
of the estimator 6, evaluated at the distribution function F',
in the direction A;. Finally, the IF function can be used to
derive several statistical properties of an estimator such as
the asymptotic variance and the gross-error sensitivity; see
§1.3 of Hampel et al. (1986).

The IF of the portfolio weights is particularly informa-
tive in the context of portfolio selection. First, it is clear
that if the IF of the portfolio weights of a given policy is
relatively small or remains bounded for all possible values
of 7, then this portfolio policy is relatively insensitive to
changes in the distributional assumptions. Second, we can
use the IF to give a first-order bound on the sensitivity of
the portfolio weights to the introduction of an additional
sample return in the estimation window. Concretely, assume
that the empirical distribution of the historical data avail-
able at time T is given by F; and that we then obtain a new
sample return at time 7 + 1, 7. Then, by Taylor’s theorem,
we know that the difference between the portfolio weights
computed before and after 7 4 1 is bounded as follows:

T 1
Rt —A) —w(F
W<T+1 T ) w(Fr)

1 ~ —2

< T 1IFW(r, F)+0(T™?), (19)
where IF,, is the IF of the portfolio weights and O(7~?)
denotes the second-order (small) terms. The main implica-
tion of this bound is that if the IF of the portfolio weights
corresponding to a particular policy is bounded (or rela-
tively small) for all values of 7, then the effect of including
a new sample point in the data is also bounded (or small),
up to first-order terms.
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4.1. M-Portfolio Influence Function

To compute the M-portfolio IFs, we study how the solu-
tion to the optimality conditions of the M-portfolio prob-
lem (9)—(10) is affected by changes in the distribution of
asset returns. We denote the IF of the robust estimator m,
the M-portfolio weights w, and the Lagrange multipliers of
the M-portfolio problem A as IF,, IF,, and IF,, respec-
tively. Moreover, we formally define these IFs as IF, =
IF (F,F)=(3/dh)x((1 — h)F 4+ hA;)|,—o for x =m, x, A.
The first-order optimality conditions for the M-portfolio
problem (9)—(10) are

T
—% S p(w'r,—m)=0, (20)
=1
1 T
?Zw(WTrt—m)rt—/\e=O, (21)
t=1
wle—1=0, (22)

where ¢(r) = p/(r) and A is the Lagrange multiplier cor-
responding to the equality constraint w'e = 1. The func-
tional form of these first-order optimality conditions is the
following:

/ $(wW R —m)dF(R) =0, (23)
f W(W R —m)RAF(R) — Ae =0, (24)
we—1=0, (25)

where F(R) is the CDF of asset returns.’

The following theorem gives a linear system whose solu-
tion gives the IFs of the M-portfolios. The proof to the
theorem is given in the online appendix.

THEOREM 1. Let (m,w,A) be an M-estimate satisfying
(23)-(25) and let the function Y(R) be measurable and
continuously differentiable. Then, the influence functions of
the M-portfolio are the solution to the following symmetric
linear system:

EWWw'R—m) —EWW'R-—mR") 0
—E((f/(w R—m)R) E(M/(W R—m)RRT) e

0 e’ 0
IF,, YW'F —m)
IF, | =] Ae—yWw'F—m)i |. (26)
IF, 0

The following proposition gives an analytic expression
for IF,,, the influence function for the M-portfolio weights.
We use the following notation: Z = w'R — m, ¢, =
Y(W'R—m), ¢, =¢'(W R—m), and ¢: =y(w'F —m).
The proof of the proposition is given in the online
appendix.

ProposITION 1. If the following conditions hold:

1. E(y},)#0,

2. the return distribution F(R) has finite first and second
moments,

3. the following matrix is invertible:

E(W;R)E(Y;R")

H=EWRR) = =Ty

4. e"H'e #0,
then the matrix in (26) is invertible and the M-portfolio
weights influence function is

EwR) )
Ew) )

REMARK 1. Conditions (1)—(4) in Proposition 1 are mild.
To see this, note that for the square loss function the
M-portfolio coincides with the minimum-variance portfo-
lio and conditions (1)-(4) are necessary for the minimum-
variance portfolio to be well defined. Concretely, for the
square loss function p(r) = 0.5r%, we have () = r and
Y'(r) = 1. Thus, H = 3 if Condition (2) holds. More-
over, from the optimality Conditions (23)—(25), we have
that m=w'p and w = (1/e"S7'e)Ste; that is, the
M-portfolio coincides with the minimum-variance portfo-
lio. Finally, clearly the minimum-variance portfolio is well
defined only if Conditions (3) and (4) hold.

mw=¢yf*( 27)

REMARK 2. The main implication of Equation (27) is that

EW,R)
Ewy

We are particularly interested in comparing the IFs of
the minimum-variance and M-portfolio weights. Note that
the IF of the minimum-variance portfolio weights can be
obtained from (28) by setting p(r) = 0.57> or #(r) = r.
Simple algebra yields the expression

WE I < 1] x | H ] x H 28)

TR I < TWary 7 = g > IZ71 ] e = 7L (29)

where w,,y is the minimum-variance portfolio, u is the vec-
tor of mean asset returns, and 2, is the covariance matrix.
When comparing expressions (28) and (29), we note that
the second and third factors on the right-hand side of (28)
and (29) are roughly comparable in size for all loss func-
tions mentioned in §3.1, including the squared or L, loss
function p(r) = 0.5r%. The main difference is that while
the first factor in (29) (that is, |wyy 7 — p|) is not bounded
for all 7, the first factor in (28) (that is, |¢;|) is bounded
for the absolute value and Huber functions.

4.2. S-Portfolio Influence Function

To derive the influence function of the S-portfolios we
follow a procedure similar to that we used to derive the
M-portfolio IFs. In particular, we first state the optimality
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conditions of the S-portfolio problem (14)—(16), and then
we analyze how the solution to this optimality conditions
is affected by changes in the return distribution.

We denote the IFs of the robust estimators m and s,
the S-portfolio weights w, and the Lagrange multipliers v
and A as IF, =1F (7, F) = (3/9h)x((1 — h)F + hA;)|,—o»
where x = {m, s, w, v, A}. The functional form of the first-
order optimality conditions for the S-portfolio problem
(14)-(16) is

/ 3¢<M—_m> dF(R) =0, (30)

S S

1+/ ?lﬁ(WT}i_m) (WTRS_’"> dF(R)=0,  (31)

—/ ztp(WTR—_m>RdF(R) —Ae=0, (32)
N N

f p(“’TRT_m) dF(R) — K =0, (33)

we—1=0, (34)

where (r) = p’(r), v is the Lagrange multiplier corre-
sponding to the equality constraint (15), A is the Lagrange
multiplier for the equality constraint (16), and K is as
defined in §3.2.

The following theorem gives the linear system whose
solution gives the S-portfolio IFs. The proof to the the-
orem is given in the online appendix. We use the fol-
lowing notation: Z = (W' R—m)/s, 2 = (W'7—m)/s,
Wy = W(WTR=m)/s), ¥, = (W R—m)/s), ¥ =
Y((w'F—m)/s), and p: = p((W'F —m)/s).

THEOREM 2. Let (m, s, w, v, ) be an S-estimate satisfying
(30)—(34), and let the functions p(r) and Y(r) be measur-
able and continuously differentiable. Then, the S-estimate
influence functions are the solution to the following sym-
metric linear system:

E(M)IF=b, (35)
where

e S

—Su, =S (02)

1
— S+, 2) =5 (0,240, 2%) S(WZR +U,RT) U2 0

= ’ ’ J 1
M Siz(pZR £(¢ZR+¢;ZZR) —SKZ;bZRRT —<URe|
Ly, Lo,z Ly, RT 0 0
s 5
0 0 e 0 0
14
IF, v
v,
IF, ——i—1
S
IF=| IF = v
w |, and b e+ Ly
I, §
—K
IF, p:

0

The following proposition shows that the S-portfolio
weights influence function IF, is bounded. The proof is
given in the online appendix.

ProPoSITION 2. [f the following conditions hold:

1. p is Tukey’s biweight function (13),

2. the return distribution F(R) has finite first and second
moments,

3. the matrix E(M) is invertible,
then, the influence function of the S-risk portfolio weights
is bounded.

REMARK 3. Conditions (1)—(3) in Proposition 2 are mild.
In particular, it is easy to show that for the square loss
function, the S-portfolio coincides with the minimum-
variance portfolio, and Conditions (2)—(3) are required if the
minimum-variance portfolio is to be well defined.

REMARK 4. The importance of the result in Proposition 2
is that it shows that the S-portfolio weights are more stable
than the minimum-variance portfolio weights. In particular,
although Proposition 2 shows that the IF of the S-portfolio
weights is bounded for all 7, it is easy to see from (29) that
the IF of the minimum-variance portfolio is unbounded.

5. Out-of-Sample Evaluation

In this section, we use simulated and empirical data sets
to illustrate the stability and performance properties of the
proposed portfolios. Although our work focuses mainly on
minimum-risk portfolios, for completeness we also evalu-
ate the stability and performance of traditional and robust
portfolios that optimize the trade-off between in-sample
risk and return. We consider 12 portfolios: (1) the mean-
variance (Mean-var) portfolio with risk aversion parame-
ter y = 1;> (2) the minimum-variance (Min-var) portfolio;
(3) the two-step robust mean-variance portfolio (2-Mean) of
Perret-Gentil and Victoria-Feser (2004) with risk aversion
parameter y = 1; (3) the two-step robust minimum-variance
portfolio (2-var) of Perret-Gentil and Victoria-Feser (2004);
(4) the minimum M-risk portfolio with Huber’s loss func-
tion (M-Hub); and (5) the minimum S-risk portfolio with
Tukey’s biweight loss function (S-Tuk). The remaining six
portfolios are the same but with the addition of short-selling
constraints, i.e., with nonnegativity constraints on the port-
folio weights.

This section is divided into three parts. In the first part,
we explain our methodology for evaluating the different
policies. In the second part, we give the results for the
simulated data and, in the third part, for the empirical data.

5.1. Evaluation Methodology

We compare the different policies using a “rolling-horizon”
procedure. First, we choose a window over which to per-
form the estimation. We denote the length of the estimation
window by T < L, where L is the total number of samples
in the data set. For our experiments, we use an estimation
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window of T = 120 data points, which for monthly data
corresponds to 10 years.* Two, using the return data in the
estimation window we compute the different portfolio poli-
cies. Three, we repeat this “rolling-window” procedure for
the next period by including the data for the new date and
dropping the data for the earliest period. We continue doing
this until the end of the data set is reached. At the end
of this process, we have generated L — T portfolio weight
vectors for each strategy; that is, w’; fort=7T,...,L—1
and for each strategy k.

In the remainder of this section, we explain how we use
these L — T portfolio weight vectors to compare the dif-
ferent policies in terms of their stability and out-of-sample
performance.

5.1.1. Boxplots of Portfolio Weights. The boxplots of
portfolio weights give a graphical representation of the
stability of the different portfolio policies. As mentioned
above, as a result of the application of the “rolling-horizon”
methodology, we obtain L — T portfolio weight vectors for
each of the strategies. Each boxplot represents the variabil-
ity of the portfolio weight assigned to a particular asset
by a particular policy. Specifically, the plot gives a box
that has lines at the 25th, 50th, and 75th percentile values
of the time series {wf[} for t=7T,...,L— 1, where w;f,t
is the weight that strategy k assigns to asset j at time .
The boxplot also gives whiskers, which are lines extend-
ing from each end of the boxes to show the extent of
the rest of the weights. Finally, the boxplot also depicts
the extreme portfolio weights that have values beyond the
whiskers. Clearly, stable policies should have relatively
compact (short) boxplots.

5.1.2. Portfolio Turnover. To define portfolio turnover,
let W;t denote the portfolio weight in asset j chosen at
time ¢ under strategy k, w’;’ .+ the portfolio weight before
rebalancing but at 7 4 1, and w% ., the desired portfolio
weight at time ¢ + 1 (after rebalancing). Then, the turnover
is defined as the sum of the absolute value of the rebalancing
trades across the N available assets and over the L — T — 1
trading dates, normalized by the total number of trading
dates:

1 L-1 N
turnover = I-7-1 ;;(M,t+1 - Wit* D

Roughly speaking, the turnover is the average percentage
of wealth traded in each period.

5.1.3. Out-of-Sample Mean, Variance, and Sharpe
Ratio of Returns. Following the “rolling-horizon” meth-
odology, for each strategy k we compute the portfolio
weights w¥ for 7 =T, ..., L — 1. Holding the portfolio w*
for one period gives the following out-of-sample excess
return at time 7 + 1: 7%, = w¥'r,,,, where r,,, denotes
the returns in excess of the benchmark (risk-free) rate.
After collecting the time series of L — T excess returns r,",
the out-of-sample mean, variance, and Sharpe ratio of

excess returns are i* = (1/(L—T)) YL wh'r,,,, (647 =
(/(L—T = D)) T (W 1,y — 492 and SR = 4,/6,.
respectively. We also report p-values that measure the sta-
tistical significance of the differences between the vari-
ance and Sharpe ratio of a particular strategy and those
of the minimum-variance strategy (which serves as the

benchmark).>

5.2. Simulation Results

In this section, we describe our simulation experiments and
discuss the behavior of the different portfolio policies on
simulated data. Section 5.3 discusses the results for the
empirical data.

5.2.1. The Simulated Data Set. We use simulation
to generate asset-return data following a distribution G
that deviates slightly from the normal distribution. Con-
cretely, we assume that G is a mixture of two different
distributions:

G=(1-hN(u,2)+hD,

where N(w, ) is a normal distribution with mean w and
covariance matrix 2, D is a deviation distribution, and h
is the proportion of the data that follows the deviation
distribution D.

We generate three different data sets with proportions of
the data deviating from normality & equal to 0%, 2.5%,
and 5%. This allows us to study how the different portfo-
lios change when the asset-return distribution progressively
deviates from the normal distribution. We generate monthly
return data for 1,010 years (L = 12,120); we use an estima-
tion window length of 10 years (7 = 120), which matches
our choice when analyzing the empirical data sets; and we
leave the last 1,000 years (L — 7 = 12,000 months) for
out-of-sample evaluation.

To generate the part of the data that follows the multivari-
ate normal distribution N(u, %), we sample from a factor
model similar to that used in MacKinlay and Pastor (2000)
and DeMiguel et al. (2005). Concretely, we consider a mar-
ket composed of N risky assets and one risk-free asset.
The N risky assets include K factors. The excess returns
of the remaining N — K risky assets are generated by the
following model:

R,,=a+BR, ,+¢, (36)

where R, , is the (N — K) vector of excess asset returns;
a is the (N — K) vector of mispricing coefficients; B is the
(N — K) x K matrix of factor loadings; R, , is the K vec-
tor of excess returns on the factor (“benchmark’) portfolios
and is distributed as a multivariate normal distribution with
mean w,, and covariance matrix ,, R, , ~ N(u,, ,), and
€, is the (N — K) vector of noise, € ~ N(0, 3.), which
is uncorrelated with the returns on the factor portfolios.
We report the case where there are four risky assets (N =4)
and a single factor (K = 1). We have also tried the cases
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with N = 10, 25, and 50, but the insights are similar to
those from the case with N =4 and thus we do not report
these cases to conserve space. We choose the factor return
that has an annual average of 8% and standard deviation
of 16%. The mispricing a is set to zero and the factor
loadings B for each of the other three risky assets are ran-
domly drawn from a uniform distribution between 0.5 and
1.5. Finally, the variance-covariance matrix of noise 2, is
assumed to be diagonal with each of the three elements of
the diagonal drawn from a uniform distribution with sup-
port [0.15, 0.25], that is, the cross-sectional average annual
idiosyncratic volatility is 20%.

In our experiments, we consider several different devia-
tion distributions D: (i) where D assigns a 100% probabil-
ity to a constant asset-return vector whose return for each
asset is equal to the expected return of the asset plus five
times the standard deviation of the asset return; (ii) where
D assigns a 100% probability to a constant vector equal to
the expected asset return plus three times the standard devi-
ation of returns; (iii) where D assigns a 50% probability to
a constant vector equal to the expected asset return plus five
times the standard deviation of returns and 50% probability
to a constant vector equal to the expected asset return minus
five times the standard deviation of returns; (iv) where D is
a normal distribution N({, %), where each component of [
is equal to the corresponding component of u plus five times
the standard deviation of the asset return; and (v) where the
deviation from the normal distribution occurs for each asset
at different dates. The insights from the results for these
alternative types of deviations are similar, and thus we only
report the results for the first type of deviation.

Finally, the proportion of the data deviating from the nor-
mal distribution and the “size” of the deviation (i.e., 0%—5%
and five standard deviations) are similar to those used in
Perret-Gentil and Victoria-Feser (2004), where it is also
argued that this proportion and size of the deviations are a
good representation of the deviations present in the histori-
cal data sets they use for their analysis.®

5.2.2. Discussion of Portfolio Weight Stability. We
now discuss the stability of the portfolio weights of the dif-
ferent policies on the simulated data sets with proportion of
return data deviating from normality & equal to 0%, 2.5%,
and 5%.”

We first compare the stability of the portfolio weights
of the mean-variance portfolio, the two-step robust mean-
variance portfolio, and the minimum-variance portfolio on
the simulated data set with 0% of the sample returns devi-
ating from normality. We observe from our experiments
that the mean-variance portfolios (traditional and robust)
are much more unstable than the minimum-variance portfo-
lio. For example, the weight assigned by the mean-variance
policy to the fourth risky asset ranges between —600%
and 1,200%, and the weight assigned to this same asset by
the two-step robust mean-variance portfolio ranges between
—700% and 1,350%, but the weight assigned to the same

asset by the minimum-variance policy ranges only between
—20% and 50%. This shows that mean-variance portfolios
(traditional and robust) are highly unstable even for data
that follow a normal distribution. Hence, the results con-
firm the finding in much of the recent financial literature
that estimates of mean returns can be very noisy. Moreover,
the experiment shows that using robust estimators of loca-
tion for portfolio selection does not help to substantially
improve the portfolio weight stability.

We now turn to discuss the stability of the policies con-
structed using estimates of portfolio risk only. Each of the
four panels of Figure 2 gives the boxplots of the port-
folio weights for each of the following policies: (a) the
minimum-variance portfolio (Min-var), (b) the two-step
robust minimum-variance portfolio (2-var), (c) the mini-
mum M-risk portfolio with Huber’s loss function (M-Hub),
and (d) the minimum S-risk portfolio with Tukey’s biweight
loss function (S-Tuk). Each panel contains 12 boxplots cor-
responding to each of the four assets and each of the data
sets with & equal to 0%, 2.5%, and 5%. Each boxplot is
labelled as wk(h), where k =1,2,3,4 is the asset num-
ber and 7 =0, 2.5, 5 is the proportion of the data deviating
from the normal distribution. The boxplots for the portfolio
weights for different values of 4 are given side by side to
facilitate the understanding of the impact of the deviation
from normality on portfolio weight stability.

It is clear from Panel (a) in Figure 2 that although the
minimum-variance policy is reasonably stable for normally
distributed returns, it is quite unstable when even a small
proportion of the data deviates from the normal distribu-
tion. To see this, note that the minimum-variance portfo-
lio weight on the fourth asset stays in-between —40% and
50% for the data set with & = 0%, but it ranges between
—40% and 160% for the data set with & = 5%. That is, the
width of the minimum-variance portfolio weight boxplots
increases from 90% to 200% when the proportion of the
data deviating from normality increases from 0% to 5%.
From Panel (b), we can see that the 2-var portfolio remains
reasonably stable for the case where 2.5% of the sample
returns deviate from the normal distribution, but it becomes
quite unstable for the case with 5% deviation from normal-
ity. Panel (c) gives the boxplots of the minimum M-risk
portfolio (M-Hub). Note that this portfolio remains reason-
ably stable for all three data sets with % equal to 0%, 2.5%,
and 5%; that is, the width of the boxplots corresponding
to these three cases are quite similar to each other. Finally,
panel (d) gives the boxplots of the minimum S-risk port-
folio (S-Tuk). The boxplots of the S-Tuk portfolio have
virtually the same width for all three data sets with % equal
to 0%, 2.5%, and 5%. Thus, although the stability of the
M-Hub and S-Tuk portfolio weights is not altered by the
presence of return data deviating from normality, the sta-
bility of the 2-var and Min-var policies is quite sensitive to
these deviations.

Figure 2 shows that although the minimum-variance
portfolio computed from the sample covariance matrix is
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Figure 2. Boxplots of unconstrained portfolio weights for simulated data.
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Notes. This figure gives the boxplots of the portfolio weights for the unconstrained policies and for the simulated data sets with 0%, 2.5%, and 5% of
the data deviating from normality. Each of the four panels gives the boxplots for one of the following four unconstrained policies: minimum-variance
(Min-var), 2-step robust minimum-variance (2-var), minimum M-risk portfolio with Huber’s loss function (M-Hub), and minimum S-risk portfolio with
Tukey’s biweight function (S-Tuk). Each panel contains 12 boxplots corresponding to each of the four assets and each of the tree degrees of deviation
from normality. Each boxplot is labelled as wk(h), where k =1, 2, 3,4 is the asset number and # =0, 2.5, 5 is the proportion of the return data deviating
from normality. The boxplots for the portfolio weights for different values of 4 are given side by side. Finally, the box for each portfolio weight has lines
at the 25, 50, and 75 percentile values of the portfolio weights. The whiskers are lines extending from each end of the boxes to show the extent of the
rest of the data. Extreme portfolio weights that have values beyond the whiskers are also depicted.

an efficient estimator when the asset-return distribution
follows a normal distribution, it becomes a relatively inef-
ficient estimator when even a small proportion of the sam-
ple returns deviate from the normal distribution. To see
this, note that the width of the minimum-variance portfolio
weight boxplots increases substantially when the proportion
of the data deviating from normality increases. The tradi-
tional minimum-variance portfolios, however, are unbiased
estimators of the “true” minimum-variance portfolios even
when the asset-return distribution deviates from normality.
To verify this, we have computed the “true” minimum-
variance portfolios corresponding to the “true” asset-return

distribution G for the data sets with & equal to 0%, 2.5%,
and 5%, and we have observed that the “true” portfolios
are very close to the 50th percentile of the distribution of
the weights of the estimated minimum-variance portfolios.®
The reason for this is that the minimum-variance portfolios
computed from the sample covariance matrix assign equal
importance to all sample returns (including those deviating
from the normal distribution). Consequently, the estimated
minimum-variance portfolios are unbiased, but inefficient,
estimators of the true portfolios.

The M- and S-portfolios, on the other hand, assign
a lower weight to sample returns that deviate from the
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Table 1. Simulated data set: Out-of-sample variance, Sharpe ratio, and turnover for the different policies.

Unconstrained policies Constrained policies

Statistic Mean-var Min-var  2-mean 2-var M-Hub S-Tuk  Mean-var Min-var 2-mean 2-var M-Hub S-Tuk
Variance (0%) 0.03243  0.00163 0.04071 0.00163 0.00165 0.00164 0.00272 0.00163 0.00277 0.00162 0.00163 0.00163
p-val.-(min-var) (0.00) (1.00) (0.00) (0.27) (0.00) (0.00) (0.00) (1.00) (0.00) (0.08) (0.00) (0.00)
Variance (2.5%) 0.03766  0.00300 0.04527 0.00301 0.00296 0.00299 0.00478 0.00288 0.00475 0.00295 0.00293 0.00297
p-val.-(min-var) (0.00) (1.00) (0.00) (0.20) (0.01) (0.35) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00)
Variance (5%) 0.04739  0.00410 0.05742 0.00428 0.00411 0.00426 0.00688 0.00399 0.00686 0.00407 0.00410 0.00424
p-val.-(min-var) (0.00) (1.00) (0.00) (0.00) (0.37) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00)
Sharpe rat. (0%) 0.05782 0.12592 0.05453 0.12555 0.12509 0.12602 0.11156 0.12681 0.11111 0.12648 0.12595 0.12679
p-val.-(min-var) (0.00) (1.00) (0.00) (0.06) (0.19) (0.43) (0.01) (1.00) (0.01) (0.08) (0.14) (0.49)
Sharpe rat. (2.5%) 0.09240 0.19845 0.08465 0.20222 0.20187 0.20216 0.18333  0.20237 0.18261 0.20352 0.20265 0.20268
p-val.-(min-var) (0.00) (1.00) (0.00) (0.00) (0.05) (0.08) (0.00) (1.00) (0.00) (0.00) (0.39) (0.40)
Sharpe rat. (5%) 0.12855 0.24333  0.11777 0.24694 0.25916 0.26006 0.23856 0.25776  0.23720 0.25828 0.26074  0.26052
p-val.-(min-var) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.02)
Turnover (0%) 2.13717 0.04555 3.41418 0.04735 0.05740 0.05167 0.14227 0.04047 0.14402 0.04169 0.04978 0.04575
Turnover (2.5%) 2.34580 0.06449 3.64195 0.05628 0.05997 0.05100 0.13756 0.03648 0.14240 0.03914 0.04815 0.04505
Turnover (5%) 2.64896  0.09055 4.09332 0.08814 0.06496 0.05073 0.12607 0.03616 0.13066 0.03731 0.04503 0.04436

Notes. This table reports the out-of-sample variance, p-value of the difference between the variance of each unconstrained or constrained
policy to that of the unconstrained or constrained minimum-variance policy, the Sharpe ratio, p-value of the difference between the Sharpe
ratio of each unconstrained or constrained policy to that of the unconstrained or constrained minimum-variance policy, and the turnover for
the three simulated data sets with proportion of the data deviating from normality h equal to 0%, 2.5%, and 5% (shown in parentheses). The
first column lists the particular out-of-sample statistic that is being reported and for which value of h (0%, 2.5%, or 5%). The remaining 12
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columns report the values of the out-of-sample statistics for each of the portfolio policies considered.

normal distribution. We know from robust statistics that
this is precisely what makes these portfolios efficient esti-
mators for a reasonable range of possible deviations. How-
ever, because the robust portfolios assign a lower weight
to some of the return samples, they are biased estima-
tors of the true minimum-variance portfolios.” That is, the
M- and S-portfolios are biased but efficient estimators of
the true minimum-variance portfolios. Consequently, there
is a trade-off between the traditional minimum-variance
portfolios (which are unbiased but inefficient) and the
M- and S-portfolios (which are biased but efficient).

We now study the impact of imposing short-selling con-
straints on the portfolio policies considered. Figure 4 in
the online appendix gives the boxplots for the Min-var,
2-var, M-Hub, and S-Tuk policies with a constraint on short-
selling. From panel (a), it is clear that constraints help
to induce some further stability in the portfolio weights
of the minimum-variance policy. However, it is also clear
that, even in the presence of short-selling constraints, the
minimum-variance portfolio weights become more unsta-
ble as the proportion of the data deviating from normal-
ity increases. Panel (b) shows that the portfolio weights of
the constrained 2-var policy also become less stable as the
proportion of the data deviating from normality increases.
Panel (d), on the other hand, shows that the stability of the
weights of the constrained S-Tuk portfolio does not change
much as the proportion of the data deviating from normal-
ity increases. Finally, the stability of the constrained M-Hub
policy seems less sensitive to deviations from normality than
that of the constrained Min-var and 2-var policies, but a bit
more sensitive than that of the constrained S-Tuk policy.

Summarizing, the stability of the S-Tuk portfolio weights
(both unconstrained and constrained) is the least sensitive
to the presence of deviations of the return distribution from
normality. The stability of the M-Hub portfolio weights is
also quite insensitive to the presence of deviations from
normality, whereas the stability of the Min-var and 2-var
portfolio weights is much more sensitive to deviations of
the asset-return distribution from normality. Finally, the
portfolio weights of the mean-variance and the two-step
robust mean-variance portfolios are highly unstable even
for normally distributed returns.

5.2.3. Discussion of Variance, Sharpe Ratio, and
Turnover. Table 1 reports the out-of-sample variance,
p-value of the difference between the variance of each pol-
icy and that of the minimum-variance policy, out-of-sample
Sharpe ratio, p-value of the difference between the Sharpe
ratio of each policy and that of the minimum-variance pol-
icy, and turnover of each of the 12 policies considered and
for each of the three simulated data sets with proportion
of the return data deviating from normality A equal to 0%,
2.5%, and 5%.

Our first observation is that portfolios that optimize the
in-sample trade-off between risk and return (i.e., the mean-
variance and the two-step robust mean-variance portfolios)
perform much worse among all three out-of-sample criteria
(variance, Sharpe ratio, and turnover) than the portfolios
that minimize risk. This insight holds for all three data sets
with h equal to 0%, 2.5%, and 5% and both in the absence
and presence of shortselling constraints. This confirms that
estimates of expected returns (standard and robust) are so
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inaccurate that using them for portfolio selection tends to
worsen out-of-sample performance.

We now discuss the performance of the portfolio poli-
cies that are constructed using only estimates of portfolio
risk: Min-var, 2-var, M-Hub, and S-Tuk. We start by study-
ing the performance of these policies in the absence of
short-selling constraints. It is clear from Table 1 that when
the return data follows the normal distribution (h = 0%),
all minimum-risk portfolios (robust and classical) perform
similarly and there are no big differences in their perfor-
mance in terms of variance, Sharpe ratio, or turnover. Note
also that as the proportion of the data deviating from nor-
mality increases, the Sharpe ratios of all portfolios increase
too. This is not surprising because we are reporting results
for the case where the returns that deviate from normal-
ity are equal to the expected return of each asset plus five
times the standard deviation of the asset return—as we
mentioned before, we have tried other types of deviation
and the overall insights from the results are similar. Note,
however, that the out-of-sample Sharpe ratio of the Min-var
portfolio is worse than that of the M-Hub and S-Tuk port-
folios for the data sets where 2.5% and 5% of the returns
deviate from normality, and the difference is statistically
significant for the data set with & = 5%. That is, the per-
formance of the Min-var portfolio gets worse than that of
the M-Hub and S-Tuk portfolios as the proportion of data
deviating from normality increases. The turnover of the
minimum-variance policy also increases substantially when
the asset-return distribution deviates from normality. The
turnover of the unconstrained M-Hub and S-Tuk portfolios,
on the other hand, is quite insensitive to the presence of
return data deviating from normality. Finally, the 2-var pol-
icy is a bit more sensitive to the presence of asset-return
data deviating from normality than the M and S-Tuk port-
folios, but it is less sensitive than the traditional Min-var
portfolio.

We now study the effect of imposing short-selling con-
straints on the portfolio policies constructed using only
estimates of portfolio risk. From Table 1, we observe
that for the data set that follows the normal distribution
(h =0%), the introduction of constraints helps to slightly
reduce the out-of-sample variance, increase the Sharpe
ratio, and decrease the turnover of all of these policies, but
the effect is quite mild. Also, in the absence of any devia-
tions from normality, all short-selling constrained portfolios
(traditional and robust) perform similarly in terms of vari-
ance, Sharpe ratio, and turnover. However, for the data sets
that contain data deviating from normality, the Sharpe ratio
of the constrained Min-var portfolio is worse than that of
the M-Hub and S-Tuk portfolios, and the difference is sta-
tistically significant for the case with & = 5%. Note, how-
ever, that the turnover of the constrained minimum-variance
portfolios is not sensitive to deviations from normality. This
is surprising because from the boxplots in Figure 4 in the
online appendix we observe that the constrained minimum-
variance portfolio does indeed change when / increases

from 0% to 5%. Concretely, the median weight on the sec-
ond asset is 18% for h = 0%, whereas it is 0% for the data
set with 7 =5%. A similar effect can be observed for the
weight for the first asset. Thus, although the constrained
minimum-variance portfolios are indeed sensitive to devia-
tions from normality, their turnover is not because, on aver-
age, 50% of the dates this policy assigns a very stable (zero)
weight to assets 1 and 2. This, however, has a negative
impact on performance, as can be observed from the fact
that the Sharpe ratio of the constrained minimum-variance
portfolio gets worse than that of the constrained M-Hub and
S-Tuk portfolios when & grows increases from 0% to 5%.
The turnovers of the constrained M-Hub and S-Tuk portfo-
lios are very insensitive to deviations of the return distribu-
tion from normality although they keep assigning positive
weights to all four assets.

Summarizing, our results show that the M-Hub and
S-Tuk portfolios attain higher out-of-sample Sharpe ratios
and lower turnovers than the traditional Min-var portfolios
when the asset-return distribution deviates from normality.
The imposition of constraints helps to reduce the impact
of the deviations from normality on the minimum-variance
policy, but our proposed policies have slightly better Sharpe
ratios even in the presence of short-selling constraints when
the return distribution deviates from normality. Also, the
performance of the 2-var portfolio is better than that of
the minimum-variance portfolio, but worse than that of our
proposed policies. Finally, the mean-variance and two-step
robust mean-variance portfolios are substantially and sig-
nificantly outperformed by all policies that ignore estimates
of expected return.

Finally, the simulated data set allows us to explore how
the different portfolios perform on those dates when the
asset returns deviate from normality. We have explored this
issue on a simulated data set containing 5% of returns devi-
ating from normality, including returns deviating both pos-
itively and negatively from the normal distribution. Table 3
in the online appendix gives the results. Our main obser-
vation is that the returns of the proposed minimum M-risk
and S-risk portfolios are not very different from those of the
minimum-variance portfolios on market-crisis and market-
boom dates. Nevertheless, the out-of-sample Sharpe ratio of
the M- and S-portfolios over the totality of the data (includ-
ing all dates) is usually higher than the Sharpe ratio of
the traditional portfolios. This is because although the per-
formance of the traditional and robust portfolios is similar
on market-crisis (or market-boom) days, the robust port-
folios tend to perform better on normal days. Also, we
note that the traditional and robust mean-variance portfo-
lios attain relatively high mean returns on market boom
and market crisis. However, portfolio return variance for
these portfolios is very large and, as a result, their out-
of-sample Sharpe ratios are relatively small for the totality
of the data in the absence of short-selling constraints, and
only slightly larger than that of the minimum-variance port-
folio in the presence of short-selling constraints. Finally,
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Table 2. Ten S&P sector portfolios and market: Out-of-sample variance, Sharpe ratio, and turnover.

Unconstrained policies Constrained policies

Statistic Mean-var Min-var  2-mean 2-var M-Hub S-Tuk  Mean-var Min-var  2-mean 2-var M-Hub S-Tuk
Mean 0.03075 0.00304 0.03937 0.00280 0.00318 0.00306 0.00733 0.00322 0.00703 0.00332 0.00410 0.00372
Variance 0.21249  0.00138 0.29658 0.00135 0.00164 0.00135 0.00674 0.00142 0.00728 0.00141 0.00140 0.00136
p-val.-(min-var) (0.00) (1.00) (0.00) (0.05) (0.00) (0.30) (0.00) (1.00) (0.00) (0.45) (0.39) (0.08)
Sharpe ratio 0.06672  0.08200 0.07230 0.07608 0.07861  0.08330 0.08924 0.08552 0.08233 0.08835 0.10971 0.10059
p-val.-(min-var) (0.45) (1.00) (0.46) (0.14) (0.46) (0.44) (0.50) (1.00) (0.50) (0.27) (0.05) (0.15)
Turnover 43.41806 0.19964 106.38955 0.18824 0.14353 0.21483 0.13805 0.07276 0.14024 0.07078 0.06101  0.07206

Notes. This table reports the out-of-sample mean, variance, p-value of the difference between the variance of each unconstrained or con-
strained policy to that of the unconstrained or constrained minimum-variance policy, Sharpe ratio, p-value of the difference between the Sharpe
ratio of each unconstrained or constrained policy to that of the unconstrained or constrained minimum-variance policy, and turnover for the
data set corresponding to 10 S&P500 sector tracking portfolios and the market. The first column lists the particular out-of-sample statistic
that is being reported. The remaining 12 columns report the values of the out-of-sample statistics for each of the portfolio policies considered.
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because abnormal-market dates are those that really make
a big difference in the evolution of wealth under manage-
ment of any fund, it would be interesting to complement
(in future research efforts) the results in Table 3 with an
out-of-sample analysis of the terminal cumulative return
implied by each portfolio considered. The relative impor-
tance of portfolios’ value-insurance prowess and market-
timing ability at abnormal-market dates is likely to be better
understood in the context of such an analysis.

5.3. Empirical Results

We use an empirical data set with 11 assets. The first
10 assets are portfolios tracking the 10 sectors composing
the S&P500 index and the eleventh asset is the U.S. mar-
ket portfolio represented by the S&P500 index. The data
span from January 1981 to December 2002. The returns are
expressed in excess of the 90-day T-bill.!°

5.3.1. Discussion of Portfolio Weight Stability. Our
first observation is that the weights of the mean-variance
and two-step robust mean-variance portfolios are much
more unstable than those of the minimum-variance port-
folio. For example, in our rolling-horizon experiment, the
mean-variance portfolio weight on the eleventh asset ranges
between —3,200% and —350%, and the two-step robust
mean-variance portfolio weight on this same asset ranges
between —3,600% and —350%, whereas the minimum-
variance weight ranges only between —150% and 70%.

We now focus on the policies that use estimates of port-
folio risk only. Figure 5 in the online appendix gives the
portfolio weight boxplots for the unconstrained Min-var,
2-var, M-Hub, and S-Tuk policies. From the figure, it is
clear that the M-Hub portfolio weights are the most sta-
ble, followed by the S-Tuk, 2-var, and Min-var portfolio
weights, in this order. In particular, the portfolio weight cor-
responding to the eleventh asset ranges between —75% and
15% for M-Hub, —105% and 55% for S-Tuk, —145% and
70% for 2-var, and —150% and 70% for Min-var. Figure 6
in the online appendix gives the boxplots for the con-
strained policies. Although it is clear that the introduction

of short-selling constraints substantially improves the sta-
bility of all policies, it can also be observed that the M-Hub
policy is slightly more stable than the rest of the policies,
even in the presence of constraints.

5.3.2. Discussion of Variance, Sharpe Ratio, and
Turnover. Table 2 gives the out-of-sample results for all
policies. Note that the variance and turnover of the mean-
variance and the two-step robust mean-variance portfolios
are much larger than those of the rest of the portfolios both
in the presence and in the absence of short-selling con-
straints. In addition, the out-of-sample Sharpe ratio of the
mean-variance policy is statistically indistinguishable from
that of the minimum-variance policy. This again confirms
that nothing much is lost by ignoring estimates (standard
or robust) of mean returns.

We now focus on the rest of the policies that are con-
structed from estimates of portfolio risk only: Min-var,
2-var, M-Hub, and S-Tuk. The performance of the uncon-
strained versions of these four policies is quite similar—
their Sharpe ratios are statistically indistinguishable. In
terms of portfolio weight stability, the smallest turnover is
that of the unconstrained M-Hub policy, which is coherent
with the insights obtained from the boxplots. The imposi-
tion of short-selling constraints improves the performance
of all policies, but the improvement is larger for the M-Hub
and S-Tuk policies. In particular, the constrained M-Hub
and S-Tuk policies have higher out-of-sample Sharpe ratios
than the minimum-variance policy, and the p-values for the
differences are relatively significant (5% and 15%, respec-
tively). M-Hub and S-Tuk also have higher Sharpe ratios
than the mean-variance and two-step robust mean-variance
portfolios. Finally, as in the unconstrained case, the con-
strained M-Hub policy has the lowest turnover.

Summarizing, from our empirical results we conclude
that the unconstrained and constrained M-Hub and S-Tuk
policies have the most stable portfolio weights. Also, the
out-of-sample Sharpe ratios of the constrained M-Hub and
S-Tuk policies are larger than that of the constrained
minimum-variance portfolio.
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Finally, we would like to mention that passive indexes
are a good practical alternative to the proposed M- and
S-portfolios because they attain high Sharpe ratios while
being even more stable than our proposed portfolios. For
example, for the S&P500 sectors data set, the value-
weighted index attains a Sharpe ratio of 0.1444, which is
higher than that of the constrained M- and S-portfolios.
Likewise, 5 out of the 10 sector portfolios attain higher
out-of-sample Sharpe ratios than the constrained M- and
S-portfolios; see Table 4 in the online appendix. This is
not surprising given that there is a longstanding discus-
sion in the literature on whether active portfolios offer
any advantage over passive (index) portfolios. The evi-
dence is mixed. DeMiguel et al. (2005) show that the
constrained minimum-variance portfolio outperforms the
value-weighted index in five out of the six data sets con-
sidered in their paper. Likewise, Wermers (2000) finds
that equity mutual funds outperform the market (although
expenses reduce this benefit). Bogle (1995), Malkiel
(1995), and Gruber (1996), on the other hand, find that a
large fraction of active equity managers have been outper-
formed by index funds. In this paper, however, we have
focused on the situation where the investor is interested in
active funds, and for this reason most of our discussion
has focused on the comparison of the proposed M- and
S-portfolios to other active portfolios.

6. Conclusion

We have characterized the influence functions for the
weights of the M- and S-portfolio policies. These influ-
ence functions demonstrate that the weights of the robust
policies are less sensitive to deviations of the asset-return
distribution from normality than those of the traditional
minimum-variance policy. Moreover, our numerical results
confirm that the proposed policies are indeed more stable.
The stability of the proposed portfolios makes them a credi-
ble alternative to the traditional portfolios because investors
are usually reticent to implement policies whose recom-
mended portfolio weights change drastically over time.

The numerical results also show that portfolios that opti-
mize the trade-off between in-sample risk and return are
usually outperformed by minimum-risk portfolios in terms
of their out-of-sample Sharpe ratios. Also, the proposed
M-Hub and S-Tuk portfolios improve the stability proper-
ties of the traditional minimum-variance portfolios while
preserving (or slightly improving) their good out-of-sample
Sharpe ratios. Finally, the explanation for the good behavior
of the proposed policies is that because they are based on
robust estimation techniques, they are much less sensitive
to deviations of the asset-return distribution from normality
than the the traditional portfolios.

7. Electronic Companion

An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes

1. For example, Mandelbrot (1963) observed that asset-
return distributions have heavier tails than the normal
distribution. A number of papers study the use of stable dis-
tributions (instead of normal distributions) to model asset
returns; see Simkowitz and Beedles (1980), Tucker (1992),
Ortobelli et al. (2002), and the references therein. Also,
see Das and Uppal (2004) and the references therein for
evidence on jumps in the returns of international equities.
2. If a solution to the functional form of the first-order opti-
mality conditions is uniquely defined, then the estimators
based on the optimality conditions (20)—(22) are consistent,
see Huber (2004).

3. We have tried other risk aversion parameters such as
v =2 and 5, but the insights from the results are similar,
and thus we report the results only for the case y=1.

4. We have tried other estimation window lengths such as
T = 60 and 240, but the results are similar, and thus we
report the results only for the case T = 120.

5. To compute the p-values, we use the bootstrapping
methodology described in Efron and Tibshirani (1993).
Specifically, consider two portfolios i and n, with u;, u,,
o;, 0, as their true means and variances. We wish to test
the hypothesis that the Sharpe ratio of portfolio i is equal
to that of portfolio n, that is, Hy: u;/0; — n,,/o, =0. To
do this, we obtain B pairs of size T — 7 of the portfo-
lio returns i and n by resampling with replacement. If F
denotes the empirical distribution function of the B boot-
strap pairs corresponding to f,/d; — f,/7,, then a two-
sided p-value for the previous null hypothesis is given
by p = 2F(0). In a similar way, to test the hypothesis
that the variances of two portfolio returns are identical,
H,: 0?/02 =1, if F denotes the empirical distribution func-
tion of the B bootstrap pairs corresponding to /3?2, then,
a two-sided p-value for this null hypothesis is given by
p= 2F (0). For a nice discussion of the application of other
bootstrapping methods to test the significance of Sharpe
ratios, see Ledoit and Wolf (2008).

6. Das and Uppal (2004) calibrate a jump diffusion process
to historical returns on the indexes for six countries. Their
estimates imply that on average there will be a jump on
stock returns every 20 months. This is similar to the 5%
amount of data deviating from the normal distribution we
use in our experiments.

7. We use the nonlinear programming code KNITRO
(Byrd et al. 1999, Waltz 2004) to solve the portfolio
problems. Also, the following policies need to be cali-
brated: Mean-Var, 2-Mean, 2-Var, M-Hub, and S-Tuk. For
Mean-Var and 2-Mean, we set the risk aversion parameter
v =1 (we have also tried y = 2 and 5, and the insights from
the results are similar, and thus we only report the results
for the case y = 1). In addition, for 2-Mean we choose the
breakdown point (the amount of data deviating from the
nominal distribution that a robust estimator can accept while
still giving meaningful information) to 20%. For 2-Var, we
choose the breakdown point to 20%. For M-Hub, we set
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¢ = 0.01 in the Huber loss function. For S-Tuk, we calibrate
the ¢ constant in Tukey’s biweight function so that the cor-
responding breakdown point is also 20%. To keep compu-
tational time short, we calibrate the 2-Mean, 2-Var, M-Hub,
and S-Tuk portfolios “offline;” that is, we consider several
values of the breakdown point and the parameter ¢ and keep
the values that work best for each policy.

8. Note that the true asset-return distribution G for the data
sets with 7 =2.5%, 5% is a mixture of normals, which is
not normal in general. It is easy, however, to calculate the
covariance matrix of G and hence compute the correspond-
ing “true” minimum-variance portfolios.

9. The M- and S-portfolios are unbiased estimators of the
true M- and S-portfolios, which differ in general from the
true minimum-variance portfolio, but should be relatively
close to the true minimum-variance portfolio provided # is
small.

10. We thank Roberto Wessels for creating this data set and
making it available to us. The data set can be downloaded
from http://faculty.london.edu/avmiguel/SPSectors.txt. For
this data set, we have chosen the value of ¢ = 0.0001 for
the Huber loss function and the value of 0.2 for the break-
down point of the 2-Mean, 2-Var, and S-Tuk policies. For
Mean-Var and 2-Mean, we choose the risk aversion param-
eter y =1 (we have also tried y =2 and 5, and the insights
from the results are similar, and thus we only report the
results for the case y = 1).
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