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Forecasting electricity prices in presentday competitive electricity markets is a must for both producers and consumers
because both need price estimates to develop their respective market bidding strategies. This paper proposes a transfer
function model to predict electricity prices based on both past electricity prices and demands, and discuss the rationale
to build it. The importance of electricity demand information is assessed. Appropriate metrics to appraise prediction
quality are identified and used. Realistic and extensive simulations based on data from the PJM Interconnection for year
2003 are conducted. The proposed model is compared with naı̈ve and other techniques.
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Introduction

During the last decade, electricity markets spread through-

out the world seeking lower electricity prices while main-

taining service quality (Sheblé, 1999; Ilic et al, 1998;

Shahidehpour et al, 2002). Electricity markets are based on

either a pool framework or bilateral contracts. In most

markets, whatever the arrangement, market clearing is

conducted once a day and provides hourly electricity prices

(market clearing prices).

To accurately forecast these prices is critical for producers,

consumers and retailers. In order to maximize its profits

(that depend on future prices), any producer should self-

schedule its units deriving in this manner its optimal bidding

strategy in the day-ahead market. To optimally self-schedule

its units, the producer needs accurate forecasts of prices

before bidding time. Analogously, both consumers and

retailers need price forecasts to self-schedule their respective

consumptions and therefore to derive their respective

bidding strategies in the market before bidding time. Many

of these problems can be modelled as mathematical

programmes. An overview of mathematical programming

problems in electricity markets can be found in Conejo and

Prieto (2001).

In this paper, we address the day-ahead electricity price

forecasting problem whose time framework is illustrated in

Figure 1. We assume that the market price forecasts for day

d are required on day d�1, typically at hour hb (around 10

am). On the other hand, data concerning results for day d�1

are available on day d�2 at hour hc (around noon).

Therefore, the actual forecasting of market prices for day d

can take place between hour hc of day d�2 and hour hb of

day d�1. For this reason, to forecast prices for day d, price

data upto hour 24 of day d�1 are considered known.

Reported techniques to forecast electricity prices include

ARIMA models: Fosso et al (1999) and Contreras et al

(2003); dynamic regression models: Nogales et al (2002);

neural network models: Ramsay and Wang (1998), Szkuta

et al (1999), Hong and Hsiao (2002), Zhang et al (2003),

Rodrı́guez and Anders (2004); wavelet transform models:

Kim et al (2002); one-factor diffusion models: Barlow

(2002); and mathematical programming models: Hogan

et al (1996). In respect to forecasting quality, Tashman

(2000) presents a useful discussion and review on out-of-

sample forecast evaluation.

This paper describes the building of time-series models to

forecast electricity prices. These models relate electricity

demands with electricity prices throughout the time and are

known as transfer function models in the engineering

literature and dynamic econometric models in the economics

literature. To assess the importance of demand information,

demand data are in turn, taken and not taken into account

to build the model. Additionally, three benchmark models

are used to appraise the behaviour of the proposed

technique.

Appropriate metrics to assess prediction quality for the

proposed models are identified and used. Detailed computa-

tional simulations are performed using data for the PJM

Interconnection (2004) in the US, a well-established

electricity market. Data for the simulation span year 2003.

In most markets throughout the world, time-series of

electricity prices present generally the following character-

istics:
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1. nonconstant mean and variance,

2. high frequency,

3. high volatility,

4. presence of outliers,

5. daily and weekly seasonality,

6. calendar effect on weekends and holidays.

These characteristics make price time-series inherently

hard to forecast in comparison with electricity demand and,

in general, in comparison with diverse econometric variables.

Moreover, oligopolistic behaviour by major players in

electricity markets (a rather common situation) embodies

non-random effects in the electricity price formation, which

make price prediction still more complicated.

As a result, the application of time-series models to predict

electricity prices has to be carried out with particular care;

since, in general, the straightforward application of standard

prediction software is of no use.

Within the above framework, this paper provides both a

novel application and an in-depth analysis of a particular

time-series technique, the transfer function, which happens

to behave efficaciously to predict electricity prices. Conejo

et al (2005) provides a comparative overview of different

prediction techniques for electricity prices, and identifies the

transfer function technique as a promising procedure;

however, no detailed analysis of this technique is carried

out. This paper provides such detailed analysis.

The rest of this paper is organized as follows. The

following section describes the building of a transfer

function model. The next section describes the prediction

models considered in this paper. The section thereafter

presents detailed simulation results, with appropriate accu-

racy metrics, based on data from the PJM Interconnection

and year 2003. Finally, the last section provides some

relevant conclusions.

Transfer function models

In this section, models that relate electricity demand with

electricity price throughout the time are developed. These

models are known in the engineering literature as transfer

function models whereas in the economics literature are

known as dynamic econometric models. The interest of these

models for forecasting purposes depends on the instanta-

neous/non-instantaneous relationship between demand and

price. If this relationship is instantaneous, forecasting prices

requires demand information. However, since the demand is

not known, a univariate model is needed for it, which

reduces the relevance of demand information. On the other

hand, if the price–demand relationship is not instantaneous

and a variation in the demand affects the price b hours later,

then the demand is an advanced indicator of the price. In

this case, knowledge of the demand may substantially

improve the predictions for the price. The proposed models

in this paper incorporate the possible, not instantaneous

relationship between price and demand.

General structure and building steps

Throughout the paper, pt denotes the electricity price in hour

t ($/MWh) and dt denotes the corresponding electricity

demand (MWh). As these series are not generally stationary,

xt¼ f1(dt) and yt¼ f2(pt) denote the transformations to

obtain stationary series for demand and price, respectively.

The transfer function models represent the relationship

between these two series as

yt ¼ c þ vðBÞxt þ Zt ð1Þ

where B is the backshift operator: Bzt¼ zt�1, B
2zt¼ zt�2,y ,

Bkzt¼ zt�k. The function v is modelled as

vðBÞ ¼ v0 þ v1B þ v2B
2 þ � � � ð2Þ

and is denominated the transfer function. The coefficients vi
in this function describe the dynamic relationship between

the demand and price series and are denominated impulse

response factors.

The number of factors in v(B) can be infinity. Therefore, it

is convenient to use a simpler representation. Moreover, this

representation should embody the double seasonality

structure appearing in the demand and price series (of order

24 and 168, respectively). Then, we propose the following

model for the transfer function:

vðBÞ ¼ wm1;m2;m3
ðBÞ

da1;a2;a3
ðBÞ ð3Þ

wm1;m2;m3
ðBÞ ¼w0 þ w1B þ � � � þ wm1

Bm1

þ w24B
24 þ � � � þ w24m2

B24m2

þ w168B
168 þ � � � þ w168m3

B168m3

ð4Þ

Day d-2 (24 hours) 

Bidding for day d-1 
at hour hb

Bidding for day d 
at hour hb

Market clearing for 
day d-1, hour hc

Market clearing for 
day d, hour hc

Day d-1 (24 hours) 

Forecasting period 
for day d 

Figure 1 Time framework to forecast electricity prices for
day d.
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da1;a2;a3
ðBÞ ¼ð1 � d0B� � � � � da1

BÞ
�ð1 � d24B

24 � � � � � d24a2
B24a2Þ

�ð1 � d168B
168 � � � � � d168a3

B168a3Þ
ð5Þ

and m1, m2, m3 and a1, a2, a3 are integer numbers (small) to

be determined.

As indicated previously, the price can be related to the

demand including a certain delay bX0. To model this effect,

factor Bb is introduced:

vðBÞ ¼ wm1;m2;m3
ðBÞ

da1;a2;a3
ðBÞ Bb

It should be noted that if the relationship between xt and yt
is instantaneous, then b¼ 0.

The part in yt not explained by xt, that is, Zt, is

denominated the perturbation series and, normally, it is

considered to be an ARMA process.

The construction of a transfer function model includes

identification, estimation and diagnosis, as explained below:

Step 0: Several transformations (eg differentiation and/or

Box–Cox) are applied to the original series to

obtain stationary ones. Then, a time-series model is

identified for yt.

Step 1: Coefficients (m1, m2, m3), (a1, a2, a3) and b in the

transfer function are determined as well as the

coefficients in the perturbation series Zt.
Step 2: All parameters in the model, wi and di, are

estimated, as well as the parameters in the

perturbation series Zt.
Step 3: A diagnosis check is used to validate model

assumptions. If the hypotheses of the model are

validated, the procedure concludes and the model is

ready for forecasting; otherwise, the procedure

continues in Step 1 to refine the model.

In the following, each step of the above scheme is detailed:

In Step 0, to stabilize the variance, the following Box–Cox

transformation is proposed:

yt ¼
plt � 1

l
ð6Þ

xt ¼
ðdt=100Þl � 1

l
ð7Þ

where l is the power coefficient of the transformation. This

value is estimated by minimizing the root of the mean

squared error of the original price data. The same value of l
is applied to the demand data.

For the PJM market, the selected value for l is 0.5 for all

the models considered in the paper; that is, the squared root

stabilizes the variance. In addition to the selection of the

power coefficient value, the other issue to consider is that the

direct un-transformation of the forecasts is biased. We have

used the un-transformation method provided in Guerrero

(1993) to adjust for bias when un-transforming forecasts and

confidence intervals for them.

In Step 1, the proposed model for the perturbation term Zt
is considered to be the same as the one for the variable yt.

The final model for Zt might be simpler than that for yt,

because xt explains part of the dynamics of yt. To identify

the function in (3), the following model is first estimated:

yt ¼ c þ ðv0 þ v1B þ v2B
2 þ � � � þ v200B

200Þxt þ Zt ð8Þ

Then, the delay structure of the impulse response factors is

analysed. A high number of factors in (8) is due to

seasonality of orders 24 and 168. In successive trials, the

observation of the residuals obtained in Step 3 (observed

values minus predicted ones) helps to refine the structure of

the model.

In Step 2, parameter estimation is based on maximizing a

conditional likelihood function for the available data, as

described in Hillmer and Tiao (1979). Instead of the exact

likelihood function, a conditional function should be used,

because long lag models are considered, that is, models that

contain large delay operators and/or parameters with high

order. It should be noted that the exact likelihood function

method may originate numerical instability. Moreover, given

the number of observations used (more than 1400), both

functions produce similar results.

In Step 3, once a model is estimated and before accepting

it, several diagnosis tests are required to validate model

assumptions:

1. Tests for randomness are used to check if the residuals

(actual prices minus fitted prices, as estimated in Step 1)

satisfy normality and incorrelation assumptions (based

on Ljung–Box statistics).

2. By means of cross-correlations, the unidirectional repre-

sentation of the model is verified, that is, xt influences

ytþ k, for kX0, but not the other way.

3. By means of cross-correlations, the incorrelation between

xt and Zt is verified.

If these hypotheses are validated, the model can be used to

forecast prices. Otherwise, the residuals contain a certain

structure that should be studied to refine the model in Step 1.

Prediction models

In this section, several prediction models that explain the

price are shown. The first model is based on the transfer

function methodology described in the previous section. To

verify the influence of the demand data, demand is

eliminated from this model, which results in one additional

model. Finally, to assess the performance of the proposed

models, we considered two benchmark models. As a result,

four prediction models are considered for electricity price

forecasting.
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General model: M1

Next, a model that explains the price as a function of the

demand is presented. This model has been developed

following the methodology shown in the section on General

structure and building steps.

Model 1:

vðBÞ ¼ w0 þ w1B þ w2B
2 þ w24B

24 þ w168B
168

ð1 � d24B24Þð1 � d168B168Þ ð9Þ

with

ð1 � f1BÞð1 � f24B
24Þð1 � f168B

168ÞZt
¼ ð1 � y1B� y168B

168Þð1 � y24B
24 � y48B

48Þð1 � y168B
168Þat
ð10Þ

where at is the white noise.

It should be noted that the parameters of the numerator in

(9) describe the initial effects of the demand, that is, the price

at hour t is related, following a decay pattern, to the values

of demands at hours t, t�1, t�2, t�24 and t�168. The

denominator in (9) characterizes the decay pattern of these

effects in the price. Eq. (10) establishes the relationship

between past prices and actual prices as an ARMA process

with double seasonality. Moreover, in this model no delay

factor is considered (b¼ 0). Therefore, we conclude that an

instantaneous relation between demand and price does exist.

No demand model: M2

In order to verify the influence of the demand data, demand

modelling is eliminated from Model 1, which results in

Model 2.

Model 2:

ð1 � f1BÞð1 � f24B
24Þð1 � f168B

168Þyt
¼ c þ ð1 � y1B� y168B

168Þð1 � y24B
24 � y48B

48Þ
�ð1 � y168B

168Þat

ð11Þ

Benchmark models: M3 and M4

To assess the performance of the proposed models with

respect to straightforward ones, we considered two bench-

mark models. The first one is a naı̈ve model for which price

forecasts equal real prices corresponding to one day before.

Model 3:

yt ¼ yt�24 þ at ð12Þ

where at is the white nose

For the second benchmark model, we have adapted

the standard exponentially weighted moving average

(frequently used in practice without seasonality) to include

the seasonality of orders 24 and 168, respectively. The

motivation of this model is in the following forecast

function:

ŷtþ h ¼ ayt þ ð1 � aÞŷt þ byt�24 þ ð1 � bÞŷt�24

þ gyt�168 þ ð1 � gÞŷt�168

ð13Þ

where 0oa, b, go1 are the smoothing parameters. This

function expresses past predictions as weighted combina-

tions of past prices and past predictions of orders 1, 24 and

168, respectively. This forecast function coincides with the

forecast function of the following time-series model.

Model 4:

ð1 � BÞð1 � B24Þð1 � B168Þyt
¼ ð1 � y1BÞð1 � y24B

24Þð1 � y168B
168Þat

ð14Þ

where at is the white noise.

Numerical results

In this section, detailed simulation results are provided.

First, appropriate metrics to appraise prediction quality are

identified. Then, results from realistic and extensive simula-

tions based on data from the PJM Interconnection and year

2003 are presented. Finally, the proposed transfer function

model is compared with other models.

Accuracy metrics

To appraise the accuracy of the proposed models, we use

metrics that capture the error for each hour in the considered

forecast period. For clarity, the measures used in this paper

are defined below.

Note that pt,d denotes the electricity price in hour t of day

d and p̂t;d its forecast value.

The percentage error and the quadratic percentage error

incurred at hour t of day d are computed as

et;d ¼ jp̂t;d � pt;d j
pt;d

and e2t;d ¼ ðp̂t;d � pt;dÞ2

pt;d

respectively.

The mean percentage error and the mean quadratic

percentage error in day d are defined, respectively, as

emeand ¼ 1

24

X24

t¼1

et;d and emean2d ¼ 1

24

X24

t¼1

e2t;d

Similarly, the median percentage error and the maximum

percentage error in day d are defined, respectively, as

emediand ¼ medianfe1;d ; . . . ; e24;dg and

emaxd ¼ maximumfe1;d ; . . . ; e24;dg

We have selected the median as a measure of the mean

error due to the high number of outliers that price series

present.
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Finally, we define measures for the whole forecasting

period. The mean absolute percentage error (MAPE) and

the mean of the median percentage error (more robust in the

presence of outliers) are defined, respectively, as

MAPE ¼ 1

D

XD
d¼1

emeand and MAPE2 ¼ 1

D

XD
d¼1

emediand

Finally, the maximum mean percentage error and the root of

the mean squared error are defined, respectively, as

EMax ¼ 1

D

XD
d¼1

emaxd and RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD
d¼1

emean2d

vuut

respectively.

The rather standard metrics above provide a comprehen-

sive picture of forecasting errors and allows characterizing

and comparing different forecasting procedures.

In addition, a part from comparing real prices with

predicted ones, it is often valuable to compute confidence

intervals of the forecasts. These confidence intervals provide

information on the potential variability of these forecasts.

We have computed 95% confidence intervals for all models

using the un-transformation proposed by Guerrero (1993) to

correct bias.

Case study

The PJM electricity market is used to carry out predictions.

This is a well-established electricity market in the US, whose

day-ahead price information is publicly available and easily

reachable in PJM (2004).

The four models presented in the section on Prediction

models are evaluated for their out-of-sample forecasting

performance as explained in the following. First, we select a

fixed number of days for the estimation period and a fixed

number of days for the forecasting horizon period. In our

case, the estimation period contains 61 days (2 months), that

is 1464 h, which are immediately previous to the forecasting

period of 62 days: 1 July 2003 to 31 August 2003.

Using the estimation period, the four models are estimated

and 24 h-ahead forecasts (confidence intervals included)

are computed for all the models. The differentiation and

transformation (square root) for the forecasts are reversed

and the accuracy indices presented in the previous section

are computed. Finally, the time window is moved forward

by 24 h and the procedure is repeated to obtain updated

forecasts until the last day of the prediction horizon (31

August 2003) is forecast.

Forecasts for Model 1 are based on true demand, because

it is useful to separate electricity price models from demand

models. In this manner, the impact of demand information

on price predictions can be efficiently assessed by Model 2.

All models have been implemented in the SCA System

(Liu and Hudak, 1994). This system estimates the models,

obtains 24-h ahead forecasts for yt and finally reverses the

differentiation and Box–Cox transformations to obtain

forecasts in original units, p̂t. The cases have been run on

a Pentium IV computer with 1.5 Gb of RAM at 1.70 GHz.

Running time for next-day forecasts, including estimation

and forecasting of prices and confidence intervals, is under

30 CPU seconds for each model.

Table 1 presents summaries of the error measures

presented in the previous section for forecasts calculated

daily during the period 1 July 2003 to 31 August 2003.

For the sake of illustration, Figure 2 shows the evolution

of emediand for Models 1, 2, 3 and 4. Observe that Model 1

clearly outperforms the two benchmark models (Models 3

and 4) and produces considerably smaller error of predic-

tion. Moreover, the impact of demand information on price

predictions can be assessed comparing Models 1 and 2. It

can be observed that a small but significant improvement in

prediction is attained in the model with demand when

compared to the same model without demand. For the

proposed model, the demand information improves the

mean of the median percentage error in about 19%.

Finally, to provide information on the potential variability

of these forecasts, confidence intervals for the proposed

model (Model 1) are presented. Figure 3 shows 95%

confidence intervals obtained for the first week of July

2003 (shadow area), together with the evolution of the actual

price for the same period (solid line).

It should be noted that, actual price lies below lower

forecasting limit in hours 98, 132, 134, 135, 136, 137 and 138,

and lies above upper forecasting limit in hours 42, 110, 111,

112, 113 and 114. That is, 7.7% of the time the actual price is

outside the corresponding confidence intervals but, as can be

observed, the violation is very small.

In summary, observing Table 1 and analysing Figures 2

and 3, the following conclusions are drawn.

1. Naı̈ve techniques are clearly outperformed by the

procedure proposed, which allows concluding the prac-

tical interest of the technique developed. This can be

observed in Figure 2 and Table 1.

2. Comparing rows 1 and 2 of Table 1, we conclude that

demand information does improve predictions substan-

tially. This is also concluded from Figure 2.

3. As illustrated in Figure 3, the confidence intervals for

the forecasts are sufficiently accurate for practical

applications.

Table 1 Error forecasting measures in the PJM market for the
period 1 July 2003 to 31 August 2003

Model MAPE MAPE2 EMax RMSE

M1 0.109 0.095 0.278 0.836
M2 0.133 0.117 0.330 1.028
M3 0.157 0.137 0.394 1.230
M4 0.164 0.148 0.379 1.295
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Conclusions

This paper analyses exhaustively a transfer function model

to forecast day-ahead electricity prices. The effectiveness of

this technique is assessed using different naı̈ve techniques.

The use of electricity demand series as an explicative variable

improve predictions but not in a drastic manner. Exhaustive

analysis using data from the PJM Interconnection reveal an

appropriate forecasting functioning of the technique pro-

posed. From a detailed analysis of the numerical results

available in the technical literature, it can be concluded that

the quality of predictions using the proposed technique is

generally superior to the quality of predictions using

alternative procedure such as standard time-series models

(ARIMA) or neural networks.
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Sheblé GB (1999). Computational Auction Mechanisms for
Restructured Power Industry Operation. Kluwer Academic
Publishers: Norwell, MA.

Szkuta BR, Sanabria LA and Dillon TS (1999). Electricity price
short-term forecasting using artificial neural networks. IEEE
Trans Power Syst 14: 851–857.

Tashman L (2000). Out-of-sample tests of forecasting accuracy: an
analysis and review. Int J Forecasting 16: 437–450.

Zhang L, Luh PB and Kasiviswanathan K (2003). Energy
clearing price prediction and confidence interval estimation
with cascaded neural networks. IEEE Trans Power Syst 18:
99–105.

Received June 2004;
accepted February 2005 after one revision

356 Journal of the Operational Research Society Vol. 57, No. 4


