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Abstract

In this paper we analyze the lexicographical solution for fuzzy TU games, we study its properties and obtain a charac-
terization. The lexicographical solution was introduced by Sakawa and Nishizaki (Fuzzy Sets and Systems 61 (1994) 265
–275) as a solution for crisp TU games, and then extended as a value for fuzzy TU games. We approach the problem by
means of the close relationship that exists between the lexicographical solution for crisp TU games and the least square
nucleolus, a crisp value de9ned by Ruiz et al. (Internat. J. Game Theory 25 (1996) 113–134). Previously, and also based
on this relationship, we axiomatically characterize the equalizer solution for fuzzy TU games. Both values, the equalizer
and the lexicographical solutions, are based on the consideration of a measure of dissatisfaction of players rather than
coalitions. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cooperative games with fuzzy coalitions had been introduced by Aubin [1]. As in the nonfuzzy case, where
only crisp coalitions are allowed to form, the study of solution concepts for games with fuzzy coalitions is
a question of principal interest. Aubin [2,3] generalizes classical solution concepts such as the core and the
Shapley value. Sakawa and Nishizaki [11] introduce a solution concept for crisp games, the lexicographical
solution, and extend it to fuzzy games. The lexicographical solution for crisp games is a solution concept for
TU games based on the lexicographical framework which deals with well-established solution concepts, such
as the nucleolus [12] and the prenucleolus [15], but considers a measure of dissatisfaction of players rather
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than coalitions. On the other hand, Ruiz et al. [10] propose another solution concept for crisp TU games, the
least square nucleolus. The least square nucleolus, as the nucleolus, is based on the coalition excess vector.
However, it diIers in the assessment of the relative fairness with respect to that given by the lexicographical
order. As a 9nal payoI, it selects the imputation which minimizes the variance of the resulting excesses of
coalitions over the imputation set. That is, both values are inspired on the nucleolus but each one takes a
diIerent feature into account. By extending the formulation of the least square nucleolus to fuzzy games, we
prove that the lexicographical solution is the natural extension of this crisp value to fuzzy games.
Section 2 is devoted to a general presentation of notions and notations on a fuzzy game. In Section 3 we

propose a new solution concept for fuzzy games, the equalizer solution, closely related to the lexicographical
solution. We study its properties and give an axiomatic characterization. Finally, in Section 4 we give an
alternative characterization of the lexicographical solution of Sakawa and Nishizaki, which turns out to be a
better approach in order to analyze it. We study its properties and propose a polynomial algorithm to calculate
it.

2. Cooperative games with fuzzy coalitions

An n-person cooperative game in characteristic function form with transferable utility (TU game) is an
ordered pair (N; v), where N is a 9nite set of n players and v :P(N )→R is a map assigning a real number
v(S), called the value of S, to each coalition S ⊆N , and where v(∅)= 0. The real number v(S) represents the
reward that coalition S can achieve by itself if all its members act together.
Based on this concept, Aubin [1] de9nes a fuzzy game with transferable utility (TU fuzzy game) considering

the concept of fuzzy coalition.

De�nition 1 (Aubin). Let N be a set of n players. Then a fuzzy coalition of N is de9ned as a fuzzy subset
of N .

Then, a fuzzy coalition is a function � :N→ [0; 1], where �(i) represents the rate of participation of player
i in the fuzzy coalition �. In this context, a fuzzy coalition � is identi9ed with the vector �∈ [0; 1]n, where
�i= �(i), for all i∈N .
The term fuzzy coalition arises when the possibility of graduating the membership of a player in a coalition

is considered. Billot [5] describes a fuzzy coalition as a collection of economic agents, i.e., players, who
transfer fractions of their representation to a collective decision maker, the fuzzy coalition.
Of course, in many real cooperative games only crisp coalitions are possible. However, in other cases the

restriction to crisp coalitions is an excessive idealization. Butnariu [6] argues the necessity of fuzzy coalitions
in political games for dealing with those situations in which a country cannot transfer all its decisional rights
to a coalition but can be simultaneously a member in many coalitions. As an example, he gives the position
of the United Kingdom “which refuses to transfer its economical decisional rights to the West-European
Parliament, but is a member of E.E.C. and of the Commonwealth in spite of their contradictory request in
many questions” ([6], p. 190).

Remark 1. Since a crisp coalition S ⊆N is a subset of N , it can be identi9ed with its characteristic vector,
�S ∈{0; 1}n, where �Si =1, if i∈ S, and �Si =0, if i =∈ S. Therefore, crisp coalitions are special cases of fuzzy
coalitions. From now on, we will denote crisp coalitions by S ⊆N .

De�nition 2 (Aubin). A TU game with fuzzy coalitions is an ordered pair, (N; ṽ), where N is a 9nite
set of players and the characteristic function, ṽ, is de9ned on its fuzzy subsets, i.e., ṽ : [0; 1]n→R, being
ṽ(0)= 0.
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In fact, the concept of TU game with fuzzy coalitions appeared in Shapley and Shubik [14], who spoke of
players participating in a coalition at fractional levels of intensity (via “bundles of personal commodities”).
One of the main topics dealt with in cooperative game theory is, given a game (N; ṽ), to divide the amount

ṽ(N ) between players if the grand coalition N is formed. A payoI vector is any x∈Rn. A payoI vector is said
to be eOcient or a preimputation if

∑
i∈N xi= ṽ(N ) and an imputation if it is eOcient and individually rational,

i.e., xi¿ṽ({i}), for all i∈N . PI(ṽ) denotes the set of preimputations; whereas I(ṽ) the set of imputations.
For any payoI vector x∈Rn and any fuzzy coalition � �= 0, the excess of � with respect to the payoI

vector x is de9ned as ẽ(�; x)= ṽ(�) − x�. Here, the scalar product x� is the total amount that coalition �
achieves according to the payoI vector x, when it is assumed linearity on the distribution of payments. Then,
the excess of a fuzzy coalition can be interpreted as a measure of dissatisfaction of coalition � if x were
suggested as a 9nal payoI.
Alternatively, Sakawa and Nishizaki [11] consider a measure of dissatisfaction of players. They de9ne the

excess of a player by means of the excesses of all coalitions which he=she belongs to. That is, let x∈Rn be
a payoI vector, then the excess of player i with respect to the payoI vector x is de9ned to be

w̃(i; x) =
∫
[0;1]n

�iẽ(�; x) d�:

Consequently, each player can evaluate a payoI vector by means of all coalitions which he=she belongs to
from a global point of view. By de9ning this measure of dissatisfaction, they make use of a lexicographical
minimization procedure as the criteria to select the 9nal payoI vector. For any payoI vector x∈Rn, let �(x),
which we will refer to as the excess vector, be the n-tupla whose components are the excesses w̃(i; x), i∈N ,
arranged in a weakly decreasing order. Then, the lexicographical solution is de9ned as follows:

De�nition 3 (Sakawa–Nishizaki [11]). The lexicographical solution of a TU fuzzy game, (N; ṽ), denoted L(ṽ),
is the imputation which minimizes, according to the lexicographical order on Rn, the excess vector, i.e.

�(L(ṽ))6L �(x); ∀x ∈ I(ṽ):

The involved excesses are usually nonnegative and therefore, the excesses are regarded as losses or com-
plaints; whereas the excess vectors �(x)∈Rn are interpreted as complaint vectors. Now the lexicographical
order on Rn is used to order the excess vectors by taking their largest complaint into account or, if such
should be the case, their second largest complaint and so on.

3. The equalizer solution

From now on, F�n will denote the class of all n-person fuzzy games with side payments and F�n1 the
subclass of F�n composed by those games, (N; ṽ), such that ṽ∈L1(�), where � is the Lebesgue measure on
[0; 1]n, i.e.,

∫
[0;1]n |ṽ| d�¡∞.

After introducing the lexicographical solution, Sakawa and Nishizaki [11] point out the interest of a solution
equalizing the resulting excesses of all players and de9ne the solution which takes the same excess for all
of players. The problem of this solution being that its existence cannot be assured over the entire class F�1,
not even, over the subclass of F�1 composed by those games with non-empty imputation set. We overcame
this problem by enlarging the set of feasible payoI vectors to the set of preimputations.

Proposition 1. For any game (N; ṽ)∈F�n1 there exists a unique preimputation x verifying

w̃(1; x) = w̃(2; x) = · · · = w̃(n; x): (1)
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It is given by

xi =
ṽ(N )
n

+ 12(ci(ṽ)− Pc(ṽ)); i = 1; : : : ; n; (2)

where

ci(ṽ) =
∫
[0;1]n

�iṽ(�) d� and Pc(ṽ) =

∑n
j=1 cj(ṽ)

n
:

Proof. For any eOcient payoI, x, the excess of player i with respect to x takes the following expression:

w̃(i; x) =
∫
[0;1]n

�iẽ(�; x) d� =
∫
[0;1]n

�iṽ(�) d�− 1
3
xi − 1

4

∑
j �=i

xj = ci(ṽ)− 1
12
xi − 1

4
ṽ(N ): (3)

Let x be a preimputation satisfying Eq. (1), then

xi − xj = 12(ci(ṽ)− cj(ṽ)); ∀i; j ∈ N:
Let us consider the constants dij =12ci(ṽ)− 12cj(ṽ), for all i; j∈N . Then, the system of constants {dij}i; j∈N
is compatible in the sense of Hart and Mas-Colell [8], i.e., dii=0, dij = − dji and dij + djk =dik , for all
i; j; k ∈N . Moreover, it follows from (3) that x has to preserve diIerences according to that system. Therefore,
x exists, it is unique and is given by

xi =
1
n

ṽ(N ) +
n∑
j=1

dij

 ; xj = xi − dij:

Equivalently,

xi =
ṽ(N )
n

+
12
n

nci(ṽ)− n∑
j=1

cj(ṽ)

 ; i = 1; : : : ; n:

Hart and Mas-Colell interpret the property of preserving diIerences as measuring the “relative position” (or
“relative strengths”) of the players by means of the diIerence between ci(ṽ) and cj(ṽ).

De�nition 4. Let (N; ṽ)∈F�n1 . Then, the equalizer solution for the game (N; ṽ), denoted E(ṽ), is de9ned as
the unique preimputation verifying Eq. (1).

Remark 2. Consider the game (N; ṽ)∈F�n1 . If its equalizer solution is individually rational, then it coincides
with the lexicographical solution of the game (see Sakawa and Nishizaki [11]).

Remark 3. This property, to give out the global excess among the players in equal amounts, characterizes
the least square prenucleolus for crisp TU games [10], which is de9ned as the unique preimputation which
minimizes the variance of the resulting excesses of the coalitions over the preimputation set. For any TU
game (N; v), its least square prenucleolus, denoted �(v), takes the following expression:

�i(v) =
v(N )
n

+
1

n2n−2

nai(v)−∑
j∈N

aj(v)

 ; i = 1; : : : ; n;
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where

ai(v) =
∑
S⊂N
i∈S

v(S):

Thus, the equalizer solution extends the least square prenucleolus to fuzzy games by means of its alternative
characterization. The following proposition shows that the equalizer solution extends this crisp value by means
of its original de9nition too.
Consider the following problem for any fuzzy game (N; ṽ)∈F�n1 :
Problem 1:

min
∫
[0;1]n

(ẽ(�; x)− PE(ṽ; x))2 d�

s:t:
∑
i∈N

xi = ṽ(N );

where PE(ṽ; x) is the average excess at x, given by

PE(ṽ; x) =
∫
[0;1]n

ẽ(�; x) d�:

Lemma 1. For any TU fuzzy game (N; ṽ)∈F�n1 ; the average excess is the same for all e?cient payo@
vectors.

Proof. Let x be any eOcient payoI vector, then

PE(ṽ; x) =
∫
[0;1]n

(
ṽ(�)−

∑
i∈N

xi�i

)
d� =

∫
[0;1]n

ṽ(�) d�− 1
2

∑
i∈N

xi =
∫
[0;1]n

ṽ(�) d�− 1
2
ṽ(N );

which does not depend on x.

In the sequel we will denote the average excess at any eOcient payoI vector by PE(ṽ), instead of PE(ṽ; x).

Proposition 2. For any fuzzy game (N; ṽ)∈F�1; there exists a unique solution to Problem 1 and it is the
equalizer solution.

Proof. First, we will show that the Karush–Kuhn–Tucker conditions are necessary and suOcient conditions
for global optimality for the following problem:

min f(x)

s:t: h(x) = 0;

x ∈ Rn;
where

f(x) =
∫
[0;1]n

(ẽ(�; x)− PE(ṽ))2 d� and h(x) =
∑
i∈N

xi − ṽ(N ); ∀x ∈ Rn:

In that case, it follows straightforward from the de9nition that f is strictly convex. Thus, since it is diIer-
entiable, it is pseudoconvex. Moreover, the unique constraint function is linear. Therefore, the Karush–Kuhn–
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Tucker conditions are necessary and suOcient conditions for global optimality and x∈Rn is the solution of
the above problem if, and only if, there exists a scalar, �, such that

∇f(x) + �∇h(x) = 0; (4)

h(x) = 0: (5)

Now we will show that E(ṽ) is the unique vector in Rn which satis9es the KKT conditions for that
problem.
The characteristic function of the game is integrable in [0; 1]n. Then, f is diIerentiable with continuity and

the partial derivative of f at x is given by

9f
9xi

(x) =
∫
[0;1]n

9(ẽ(�; x)− PE(ṽ))2

9xi
(x) d� = −2w̃(i; x) + PE(ṽ) (6)

for all i∈N . Thus, Eq. (4) can be expressed as follows:

−2w̃(i; x) + PE(ṽ) + � = 0; ∀i = 1; : : : ; n: (7)

It is deduced from expression (3) of the excess of a player with respect to any x∈Rn verifying (5), i.e.,
eOcient, that condition (7) above can be expressed as −2ci(ṽ)+ 1

6xi+
1
2 ṽ(N )+ PE(ṽ)+�=0, for all i=1; : : : ; n.

Then, xi=12ci(ṽ)− 3ṽ(N )− 6 PE(ṽ)− 6�, for all i=1; : : : ; n. Thus, by eOciency, we get

6� = 12 Pc(ṽ)− 3n+ 1
n

ṽ(N )− 6 PE(ṽ):

Therefore,

xi =
ṽ(N )
n

+ 12(ci(ṽ)− Pc(ṽ)) = Ei(ṽ); ∀i = 1; : : : ; n:

After characterizing the equalizer solution as the unique preimputation which minimizes the variance of the
resulting excesses of coalitions over the preimputation set, we study other properties.

Notation. For all vector �∈ [0; 1]n−1, and for every scalar t ∈ [0; 1], (ti; �) denotes the array (�1; : : : ; �i−1;
t; �i+1; : : : ; �n)∈ [0; 1]n, for all i=1; : : : ; n.

De�nition 5. Let (N; ṽ)∈F�n be a given TU fuzzy game. Player i is said to be a dummy player if, and only
if,

ṽ(ti; �) = ṽ(0i ; �) + tṽ({i}); ∀t ∈ [0; 1]; ∀� ∈ [0; 1]n−1:

De�nition 6. Let (N; ṽ)∈F�n be a given TU fuzzy game. Players i; j∈N are said to be substitutes if, and
only if

ṽ(t′i ; t
′′
j ; �) = ṽ(t′′i ; t

′
j; �); ∀t′; t′′ ∈ [0; 1]; ∀� ∈ [0; 1]n−2:

De�nition 7. Two fuzzy games, (N; ṽ) and (N; w̃), are said to be strategically equivalent if there exist a
positive number k¿0 and n real constants a1; : : : ; an such that, for all �∈ [0; 1]n,

w̃(�) = kṽ(�) +
∑
i∈N

ai�i:

Essentially, if two games are strategically equivalent, we can obtain one from the other simply by changing
linearly the scale of measure and assigning a 9xed bene9t (ai¿0) or cost (ai¡0) associated to the presence
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of each player in a coalition. In that case, the 9xed amount with which a player contributes to coalition � is
proportional to his=her participation rate in that coalition.

De�nition 8. A value on F�n1 , ’ :F�n1 →Rn, satis9es the property of:
(i) Equal treatment: If ’i(ṽ)=’j(ṽ), for every pair of substitutes i; j, and for all (N; ṽ)∈F�n1 .
(ii) Anonymity: Let ! :N→N be any permutation of the set N of players. If we set

!ṽ(�) = ṽ(�!(1); : : : ; �!(n)); ∀� ∈ [0; 1]n

as the permuted game, (N; !ṽ). Then

’i(!ṽ) = ’!−1(i)(ṽ); ∀i ∈ N; ∀(N; ṽ) ∈ F�n1 :
(iii) Additivity: If for any pair of games (N; ṽ), (N; w̃)∈F�n1 ,

’i(ṽ+ w̃) = ’i(ṽ) + ’i(w̃); ∀i ∈ N;
where the sum game (N; ṽ+ w̃) is de9ned as (ṽ+ w̃)(�)= ṽ(�) + w̃(�), for all �∈ [0; 1]n.

(iv) Inessential game: If for any inessential game (N; ṽ), that is ṽ(�)=
∑

i∈N �iṽ({i}), ∀�∈ [0; 1]n, holds

’i(ṽ) = ṽ({i}); ∀i ∈ N:
(v) Strategic equivalence: If for any pair of strategically equivalent games, (N; ṽ); (N; w̃)∈F�n1 ,

’i(w̃) = k’i(ṽ) + ai; ∀i ∈ N;
where k and a are the constants such that w̃(�)= kṽ(�) +

∑
i∈N ai�i, ∀�∈ [0; 1]n.

(vi) Dummy player: If for any dummy player i∈N in a fuzzy game (N; ṽ)∈F�n1 , ’i(ṽ)= ṽ({i}).
(vii) Average marginal contribution monotonicity: If ci(ṽ)¿cj(ṽ), then ’i(ṽ)¿’j(ṽ), for all i; j∈N , for all

(N; ṽ)∈F�n1 .
(viii) Coalitional monotonicity: If for any set of players N , and any two characteristic functions ṽ, w̃ on

N , the existence of a subset of players T ⊆N for which conditions 1, 2, 3 and 4 below are ful9lled,
implies ’i(ṽ)¿’i(w̃), ∀i∈T .
1. ṽ(�)= w̃(�); ∀�∈ [0; 1]n such that T "Sop(�)= {i∈N=�i¿0 }.
2. ṽ(�)¿w̃(�); ∀�∈ [0; 1]n such that T ⊆Sop(�).
3. The diIerence game (N;f)∈F�n1 , de9ned as f(�)= ṽ(�)− w̃(�); ∀�∈ [0; 1]n, is weakly increasing

in members of T ; whereas it is weakly decreasing in members of N\T .
4. Players in T (respectively, in N\T ) are substitutes in the diIerence game.

(ix) Strict coalitional monotonicity: If the diIerence game above is strictly increasing in members of T ;
whereas it is strictly decreasing in members of N\T , over (0; 1)n, then for all i∈T , ’i(ṽ)¿’i(w̃).

(x) Weak continuity: If for any sequence of fuzzy games {(N; ṽk)}k∈N in F�n1 , such that the sequence
{ṽk}k∈N converges uniformly to ṽ0 holds (N; ṽ0)∈F�n1 and limk→∞’(ṽk)=’(ṽ0).

Anonymity implies equal treatment and, obviously, strict coalitional monotonicity implies coalitional mono-
tonicity.

Remark 4. The inequality ci(ṽ)¿cj(ṽ) can be equivalently expressed as∫
{�i¿�j}

(�i − �j)ṽ(�) d�¿
∫
{�j¿�i}

(�j − �i)ṽ(�) d�:

Then, property (vii) can be interpreted as follows: Let us consider the weighted aggregated value of those
coalitions in which player i’s participation is greater than player j’s participation. If this value is not less than
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the weighted aggregated value of those coalitions in which, on the contrary, it is player j who participates
more, then i should not receive less than j.

Coalitional monotonicity properties are the fuzzy extension of those crisp monotonicity properties introduced
by Young [17]. Those properties establish that if a group of players cooperate to make an investment to develop
a more eOcient project, which implies an improvement of their productivity, then that group should not be
penalized. For instance, let #¿0 be the pro9t increment generated by the improvement in the production
process of T members, and let

f(�) =
∏
i∈T

�i
∏
i =∈T

(1− �i)#; ∀� ∈ [0; 1]n

be the characteristic function of the diIerence game. Then, the pro9t increment is expanded in a multilinear
way to other coalitions which are diIerent from T . EOciency of fuzzy coalition � production process increases
proportionally to, on the one hand, the presence of T members and, on the other, the absence of N\T
members.

Proposition 3. The equalizer solution; E :F�n1 →Rn; veriAes properties (i) to (x); but not (vi).

Proof. Properties (i), (ii), (iii), (iv), (v) and (vii) can easily be deduced from expression (2) of the equalizer
solution obtained in Proposition 1.
With respect to continuity, let {(N; ṽk)}k∈N be any sequence in F�n1 . If {ṽk}k∈N converges uniformly to

ṽ0, then ṽ0 ∈L1(�) and, for each i∈N , holds

lim
k→∞

ci(ṽk) = lim
k→∞

∫
[0;1]n

�iṽk(�) d� =
∫
[0;1]n

lim
k→∞

�iṽk(�) d� =
∫
[0;1]n

�iṽ0(�) d� = ci(ṽ0):

Since limk→∞ ṽk(N )= ṽ0(N ), for each i∈N , holds

lim
k→∞

Ei(ṽk) = lim
k→∞

(
ṽk(N )
n

+ 12(ci(ṽk)− Pc(ṽk))
)

=
ṽ0(N )
n

+ 12(ci(ṽ0)− Pc(ṽ0)) = Ei(ṽ0):

Now, we will prove that the equalizer solution is strict coalitional monotonic. Let (N; ṽ), (N; w̃) be any two
games for which conditions 1; 2; 3 and 4 hold. Then, by additivity, E(ṽ)=E(w̃) + E(f).
Given that players in T (respectively, in N\T ) are substitutes in the diIerence game (N;f), by anonymity,

we have

Ei(ṽ) = Ei(w̃) +
f(N )
n

+ 12(a1 − Pa); ∀i ∈ T;

Ei(ṽ) = Ei(w̃) +
f(N )
n

+ 12(a2 − Pa); ∀i =∈ T;

where a1 = ci(f); ∀i∈T , a2 = ci(f); ∀i =∈T , and Pa=(ta1 + (n − t)a2)=n, being t= |T |. Since f(N )¿0, if
T =N then

Ei(ṽ) = Ei(w̃) +
f(N )
n

¿Ei(w̃); ∀i ∈ N:

Otherwise, T N , by proving a1¿ Pa, or equivalently a1¿a2, the inequality Ei(ṽ)¿Ei(w̃) follows.
For each pair of players i∈T , j =∈T , by the monotonicity of the diIerence game, holds

f(t′i ; t
′′
j ; �)¿ f(t′′i ; t

′′
j ; �)¿ f(t′′i ; t

′
j; �); ∀t′ ¿ t′′ and ∀� ∈ [0; 1]n−2;
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whereas

f(t′i ; t
′′
j ; �)¿f(t′′i ; t′′j ; �)¿ f(t′′i ; t

′
j; �); ∀1¿ t′ ¿ t′′ ¿ 0 and ∀� ∈ (0; 1)n−2:

Then, ∫
{�i¿�j}

(�i − �j)f(�) d�¿
∫
{�i¡�j}

(�j − �i)f(�) d�

and, therefore, a1¿a2.

Now we will prove the coincidence between the least square prenucleolus [10] of a crisp game and the
equalizer solution of the fuzzy game de9ned by its multilinear extension [9]. It gives us, on the one hand, a
method for calculating the least square prenucleolus of a crisp game by means of its multilinear extension,
and, on the other, it enables us to show that the equalizer solution does not satisfy all those properties which
are not satis9ed by the least square prenucleolus.

Proposition 4. Let (N; v) be a given crisp game. Consider the TU fuzzy game (N; ṽ) deAned by its multilinear
extension. Then; �(v)=E(ṽ); where �(v) is the least square prenucleolus of (N; v).

Proof. The fuzzy game de9ned by the multilinear extension of (N; v) is given by

ṽ(�) =
∑
S⊂N

∏
i∈S

�i
∏
i =∈S

(1− �i)v(S); ∀� ∈ [0; 1]n:

Thus, each ci(ṽ), i=1; : : : ; n, can be expressed as follows:

ci(ṽ) =
∫
[0;1]n

�iṽ(�) d� =
∑
S⊂N

∫
[0;1]n

�i
∏
j∈S

�j
∏
j =∈S

(1− �j)v(S) d�

=
1

3 · 2n−1

∑
S⊂N
i∈S

v(S) +
1

3 · 2n
∑
S⊂N
i =∈S

v(S) =
1

3 · 2n ai(v) +
1

3 · 2n
∑
S⊂N

v(S); (8)

where

ai(v) =
∑
S⊂N
i∈S

v(S):

Then

Pc(ṽ) =
1

3n · 2n
∑
j∈N

aj(v) +
1

3 · 2n
∑
S⊂N

v(S):

Therefore

Ei(ṽ) =
ṽ(N )
n

+ 12(ci(ṽ)− Pc(ṽ)) =
v(N )
n

+
1

n2n−2

nai(v)−∑
j∈N

aj(v)

 ; i = 1; : : : ; n;

which is the explicit expression of the least square prenucleolus of (N; v).
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Remark 5. It follows from the previous proposition that:
1. The equalizer solution fails to verify the dummy axiom.
2. The equalizer solution of a game with non-empty core does not always belong to its core.

Certainly, let (N; ṽ) be a multilinear fuzzy game. If i∈N is a dummy player in (N; ṽ), so she=he is in the
crisp game (N; v). Therefore, since Ruiz et al. [10] prove that least square prenucleolus fails to verify the
dummy axiom, claim 1 holds. With respect to claim 2, as the core of (N; ṽ) equals the core of (N; v) (see
Tejada [16]), it is deduced from the fact that least square prenucleolus veri9es strict coalitional monotonicity,
which implies that least square prenucleolus of a balanced game does not always belong to its core (see Ruiz
et al. [10]).
Now, we oIer an axiomatization involving axioms which are usual in the characterization of certain solution

concepts plus a new axiom: to satisfy the property of average marginal contribution monotonicity.

Theorem 1. The equalizer solution is the unique value on F�n1 ; ’ :F�n1 →Rn; which veriAes the following
axioms:
A1: E?ciency.
A2: Inessential game.
A3: Additivity.
A4: Average marginal contribution monotonicity.

Proof. It has been proved in Proposition 3 that the equalizer solution, which is by its de9nition eOcient,
veri9es A2–A4. Now, we will show that it is the unique value on F�n1 satisfying A1–A4.
Let ’ be a value on F�n1 which satis9es A1–A4. Let (N; ṽ) be a game in F�n1 . We will prove that

’(ṽ)∈PI(ṽ) preserves diIerences according to the system of compatible constants {dij} previously de9ned.
For any pair of distinct players i; j∈N , let (N; ṽij) be the game de9ned as the sum of the original game,

(N; ṽ), and the inessential game, (N; w∗
ij), which is given by

w∗
ij(�) = ai�i + aj�j; ∀� ∈ [0; 1]n;

where

ai = − 36
7 (ci(ṽ)− cj(ṽ)) and aj = 48

7 (ci(ṽ)− cj(ṽ)):

As (N; w∗
ij) is an inessential game, by axiom A2, ’i(w∗

ij)= ai and ’j(w
∗
ij)= aj. Additivity implies

’i(ṽij) = ’i(ṽ) + ’i(w∗
ij) = ’i(ṽ)− 36

7 (ci(ṽ)− cj(ṽ)); (9)

’j(ṽij) = ’j(ṽ) + ’j(w∗
ij) = ’j(ṽ) + 48

7 (ci(ṽ)− cj(ṽ)): (10)

Since ci(ṽij)= ci(ṽ)= cj(ṽij), by axiom A4, ’i(ṽij)=’j(ṽij). Therefore, it follows from expressions (9) and
(10), that ’i(ṽ)−’j(ṽ)= 12(ci(ṽ)− cj(ṽ)), for all i; j∈N . Given that E(ṽ) is the unique preimputation which
preserves diIerences according to that system of constants, E(ṽ)=’(ṽ).

Proposition 5. The axioms A1–A4 are logically independent.

Proof. To show the independence of these four axioms we will prove that for every group of three axioms
there exists a solution which satis9es them all except the fourth one.

(@A1) Let ’1 be the value on F�n1 de9ned as

’1
i (ṽ) =

∫
[0;1]n

6�i(ṽ(�)− ṽ((1− �i)i ; �)) d�; ∀i ∈ N; ∀(N; ṽ) ∈ F�n1 ;



E. Molina, J. Tejada / Fuzzy Sets and Systems 125 (2002) 369–387 379

which can be expressed as

’1
i (ṽ) = 6

(
2ci(ṽ)−

∫
[0;1]n

ṽ(�) d�
)
; ∀i ∈ N; ∀(N; ṽ) ∈ F�n1 : (11)

Then, it follows from (11) that ’1 satis9es A2–A4. Now, we will show that ’1 is not eOcient in
general. Let (N; ṽ) be a multilinear fuzzy game, i.e., a fuzzy game de9ned as the multilinear extension
of a certain crisp game (N; v). Then, by replacing in expression (11) the value of ci(ṽ), i∈N , by
that one obtained in (8), and taking into account that∫
[0;1]n

ṽ(�) d� = 1
2n
∑
S⊆N

v(S)

for each player i∈N , holds

’1
i (ṽ) =

1
2n−1

∑
S⊆N
i∈S

v(S)−
∑
S⊆N
i =∈S

v(S)

 =
1

2n−1

∑
S⊆N
i∈S

(v(S)− v(S\{i})) = $i(v):

Thus, ’1(ṽ)= $(v), where $(v) is the Banzhaf–Coleman value (Banzhaf [4], Coleman [7]) of (N; v).
Therefore, as ṽ(N )= v(N ) and the Banzhaf–Coleman value does not verify eOciency, neither does
’1.

(@A2) The value in F�n1 , ’
2, de9ned as

’2
i (ṽ) =

ṽ(N )
n

+ (ci(ṽ)− Pc(ṽ)); ∀i ∈ N; ∀(N; ṽ) ∈ F�n1 (12)

satis9es all axioms except inessential game.
(@A3) Let ’3 be the value on F�n1 which assigns to each (N; ṽ)∈F�n1 , the payoI vector obtained at the end

of the following algorithm:

Step 1: Consider the set K = { j∈N=Ej(ṽ)¡ṽ({j})}. If K = ∅, then ’3(ṽ) :=E(ṽ). Stop. Otherwise,
go to Step 2.

Step 2: Let j0 ∈K be the player such that Ej0 (ṽ)= minj∈K Ej(ṽ).
Consider the partition of the player set, S; T , given by

T := {i ∈ N\K=ci(ṽ)¡cj0 (ṽ)};
S := {i ∈ N=ci(ṽ)¿ cj0 (ṽ)}:
If T = ∅, then ’3(ṽ) :=E(ṽ). Stop.
Otherwise, go to Step 3.

Step 3:

’3
j (ṽ) :=

Ej(ṽ)− s'
t

if j ∈ T;
Ej(ṽ) + ' if j∈ S;

where '= ṽ({j0})− Ej0 (ṽ)¿0; s= |S| and t= |T |. Stop.
’3 veri9es all axioms except additivity. Let (N; ṽ1) and (N; ṽ2) be the TU fuzzy games de9ned by
N = {1; 2; 3} and

ṽ1(�) = �1�2�3 + �1�3 − �2�3 + �2; ∀� ∈ [0; 1]n;
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ṽ2(�) = �1�3 + 2�1�2 + 2�2�3 − �2 − 2�1�2�3; ∀� ∈ [0; 1]n:

Then,

E(ṽ) K T S ' ’3(ṽ)

ṽ1 ( 56 ;
5
6 ;

1
3 )K = {2} {3} {1; 2} 1

6 (1; 1; 0)

ṽ2 ( 56 ;
1
3 ;

5
6 ) ∅ ( 56 ;

1
3 ;

5
6 )

ṽ1 + ṽ2 ( 53 ;
7
6 ;

7
6 ) ∅ ( 53 ;

7
6 ;

7
6 )

(@A4) Let ’4 be the value on F�n1 de9ned as the Shapley value [13] of the crisp game, (N; v), given by
the restriction of ṽ to crisp coalitions, i.e.

’4
i (ṽ) =

∑
S⊂N
i∈S

(s− 1)!(n− s)!
n!

(ṽ(xS)− ṽ(xS\{i})) ∀i ∈ N; ∀(N; ṽ) ∈ F�n1 :

Obviously, ’4 satis9es A1–A3. With respect to A.M.C. monotonicity, let (N; ṽ) be a fuzzy multilinear
game. Then, it follows from (8) that

ci(ṽ)¿ cj(ṽ) ⇔ ai(v)¿ aj(v):

Thus, since the Shapley value fails to verify crisp A.M.C. monotonicity 1 (see Ruiz et al. [10]), so
does ’4.

4. The lexicographical solution

In this section we analyze the lexicographical solution [11] as the extension of the least square nucleolus
[10] to fuzzy games. First, we will prove that the lexicographical solution admits a characterization in terms
of the excesses of coalitions, rather than players, which is analogous to that which de9nes the least square
nucleolus. This approach will enable us to oIer a polynomial algorithm to calculate the lexicographical solution
of a fuzzy game by means of its equalizer solution, for which we have obtained a simple analytical expression.
Formally, consider the following problem for any fuzzy game (N; ṽ)∈F�n1 :
Problem 2:

min
∫
[0;1]n

(ẽ(�; x)− PE(ṽ))2 d�

s:t:
∑
i∈N

xi = ṽ(N );

xi ¿ ṽ({i}); i = 1; : : : ; n:

In order to characterize the lexicographical solution as the unique solution of Problem 2, we 9rst establish
the following.

1 If ai(v)¿aj(v), then player i should not receive less than player j.
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Lemma 2. For any fuzzy game (N; ṽ)∈F�n1 with non-empty imputation set there exists a unique solution
of Problem 2. It is characterized as imputation z satisfying for all j∈N;

zj¿ṽ({j}) ⇒ w̃(j; z) = max
i∈N

w̃(i; z): (13)

Proof. The feasible set of Problem 2, the set of imputations, is compact. The objective function f, given by

f(x) =
∫
[0;1]n

(ẽ(�; x)− PE(ṽ))2 d�; ∀x ∈ Rn

is strictly convex. Thus, the minimum always exists and it is unique.
Obviously, if I(ṽ)= {(ṽ({1}); : : : ; ṽ({n}))}, then (ṽ({1}); : : : ; ṽ({n})), which trivially ful9lls condition (13),

is the unique solution of Problem 2.
Otherwise, in order to prove that the unique solution of Problem 2 is the unique imputation which

ful9lls condition (13) for every player j∈N , 9rst, we will show that the Karush–Kuhn–Tucker condi-
tions are necessary and suOcient conditions for global optimality for the following problem, whenever
I(ṽ) �= {(ṽ({1}); : : : ; ṽ({n}))}.

min f(x)

s:t: gi(x)6 0; i = 1; : : : ; n;

h(x) = 0;

x ∈ Rn;

where f is as previously de9ned, gi(x)= ṽ({i})− xi, i=1; : : : ; n, and h(x)=
∑

i∈N xi − ṽ(N ).
(a) f is diIerentiable and the constraint functions are linear. Moreover, ∇gi(x)= (−1i ; 0), for all x∈Rn,

i=1; : : : ; n, and ∇h(x)= 1; ∀x∈Rn. Then, the vectors {∇h(x);∇gi(x); i∈ I}, I = {i=gi(x)= 0}, are lin-
early independent whenever I(ṽ) �= {(ṽ({1}); : : : ; ṽ({n}))}.

(b) The objective function is pseudoconvex and the constraint functions are quasiconvex and quasiconcave
for all x∈Rn.

Therefore, the Karush–Kuhn–Tucker conditions are necessary and suOcient conditions for global optimality.
Then, z∈Rn is the solution of the problem above if, and only if, there exist scalars v∈R; u1; : : : ; un; ui¿0;
∀i=1; : : : ; n, such that

∇f(z) +
n∑
i=1

ui∇gi(z) + v∇h(z) = 0; (14)

uigi(z) = 0; i = 1; : : : ; n: (15)

It follows from (6) that the Karush–Kuhn–Tucker conditions can be expressed as follows:

−2w̃(i; z) + PE(ṽ)− ui + v = 0; i = 1; : : : ; n; (16)

uigi(z) = 0; i = 1; : : : ; n: (17)

Then, it follows from (17) that uj =0, for every j∈N with zj¿ṽ({j}). Therefore, it follows from (16), that

w̃(j; z) =
PE(ṽ) + v

2
:
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Since ui¿0, ∀i=1; : : : ; n, by (16), we have

w̃(i; z) =
PE(ṽ) + v− ui

2
6

PE(ṽ) + v
2

= w̃(j; z); ∀i = 1; : : : ; n:

Thus, the unique solution of Karush–Kuhn–Tucker equations is an imputation which satis9es condition (13),
for all j∈N . In particular, there exists an imputation in such conditions.
Now, we will prove that if z∈ I(ṽ) ful9lls condition (13), then it solves Karush–Kuhn–Tucker equations.

Let us consider

v = 2M − PE(ṽ);

ui = 2(M − w̃(i; z)); i = 1; : : : ; n;

where M = maxi∈N w̃(i; z). Obviously, ui¿0, ∀i=1; : : : ; n, v∈R and Eqs. (16) and (17) are ful9lled.

Proposition 6. For any TU fuzzy game; (N; ṽ)∈F�n1 ; with non-empty imputation set; its lexicographical
solution is the unique solution to Problem 2.

Proof. First of all, we will prove that for any fuzzy game, (N; ṽ)∈F�n1 , the sum of the excesses of all players
is the same for all eOcient payoI vectors. Let x be any eOcient payoI vector, then it follows from expression
(3) that∑

i∈N
w̃(i; x) =

∑
i∈N

ci(ṽ)− 1
12

∑
i∈N

xi − n
4
ṽ(N ) =

∑
i∈N

ci(v)− 1 + 3n
12

ṽ(N ) = $:

Let z be the solution to Problem 2, which exists and is unique according to Lemma 2. Consider the set
M = {j∈N=zj = v({j})}. Then, by Lemma 2, w̃(j; z)= w̃(k; z), for all j; k =∈M . Therefore,

w̃(j; z) =
$ − P$
n− m

; ∀j =∈ M;

where P$=
∑

i∈M w̃(i; z) and m= |M |.
Now, we shall show that any imputation, x, such that �(x)6L�(z), satis9es w̃(i; x)= w̃(i; z), for all i ∈ N .

(a) First, we prove that if �(x)6L�(z), then w̃(j; x)= w̃(j; z), for all j =∈M . Let x be any imputation, then
it follows from expression (3) of w̃(i; x) that w̃(i; x)6w̃(i; z), for all i∈M . Therefore,∑
i∈M

w̃(i; x)6
∑
i∈M

w̃(i; z) = P$:

Thus∑
i =∈M

w̃(i; x)¿ $ − P$: (18)

By contradiction, suppose that w̃(j; x)¡($ − P$)=(n − m) for some player j =∈M . Then, it follows from
(18) that there exists ‘ �= j; ‘ =∈M , such that w̃(‘; x)¿($ − P$)=(n− m). Hence

�1(x) = max
i∈N

w̃(i; x)¿
$ − P$
n− m

= max
i∈N

w̃(i; z) = �1(z):
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That is, �(x)¿L�(z). Therefore, if x is an imputation such that �(x)6L�(z), then

w̃(j; x)¿
$ − P$
n− m

; ∀j =∈ M:

On the other hand, �(x)6L�(z) implies

max
i∈N

w̃(i; x)6 max
i∈N

w̃(i; z) =
$ − P$
n− m

:

So, w̃(j; x)= ($ − P$)=(n− m)= w̃(j; z), for all j =∈M .
(b) Now, we prove that if x is an imputation such that �(x)6L�(z), then w̃(i; x)= w̃(i; z), for all i∈M .

Let x be an imputation such that �(x)6L�(z), then it follows from (a) that w̃(j; x)= ($ − P$)=(n − m)
for all j =∈M . Therefore,∑
i∈M

w̃(i; x) = P$ =
∑
i∈M

w̃(i; z):

Furthermore, w̃(i; x)6w̃(i; z), for all i∈M . Hence, w̃(i; x)= w̃(i; z), for all i∈M .

It is deduced from (a) and (b) that w̃(i; x)= w̃(i; z);∀i∈N , whenever �(x)6L�(z). Then, it follows from
expression (3) that x= z. Therefore, the solution to Problem 2 is the lexicographical minimum.

Remark 6. The least square nucleolus admits a characterization analogous to that given in Lemma 2 (see
Ruiz et al. [10]). Then, by adapting Proposition 6 to crisp games, it follows that the least square nucleolus
can be characterized as the unique imputation which minimizes, according to the lexicographical order, the
players’ excess vector.

Lemma 2 oIers an alternative characterization of the lexicographical solution which makes use of the
following algorithm, proposed by Ruiz et al. [10] as a method to calculate the least square nucleolus, valid
to calculate the lexicographical solution starting from the equalizer solution.

Algorithm (Ruiz et al: [10]): Construct a sequence of pairs (x‘;M‘), ‘=1; : : : ; k, 16k6n, where x‘ is a
payoI vector and M‘ a subset of N , inductively de9ned by
Step 1: x1 :=E(ṽ), M 1 :={j∈N=Ej(ṽ)¡ṽ({j})} and ‘=1, where E(ṽ) is the equalizer solution of the

game.

Step 2: x‘+1
j :=

 x‘j +

∑
j∈M‘(x‘j − ṽ({j}))

n− m‘
for all j =∈ M‘;

ṽ({j}) for all j ∈ M‘

and M‘+1 :=M‘ ∪{j∈N=x‘+1
j ¡ṽ({j})}.

Step 3: If M‘+1 =M‘, then z := x‘+1. Stop.
Otherwise, let ‘ := ‘ + 1 and go to Step 2.

Obviously, this process must end after at most n− 1 steps and the closing payoI vector z is an imputation
satisfying condition (13).
Next proposition, which shows how to obtain the least square nucleolus of a crisp game by means of its

multilinear extension [9], supports the lexicographical solution as the natural extension to fuzzy games of such
value.
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Proposition 7. Let (N; v) be a given crisp game. Consider the TU fuzzy game (N; ṽ) deAned by its multilinear
extension. Then; /(v)=L(ṽ); where /(v) is the least square nucleolus of (N; v).

Proof. The excess of each player i∈N with respect to any imputation x in the fuzzy game (N; ṽ) can be
expressed in terms of the corresponding excess in the crisp game as follows:
It follows from expressions (3) and (8) that

w̃(i; x) =
1

3 · 2n ai(v)−
1
12
xi − 1

4
v(N ) +

1
3 · 2n

∑
S⊆N

v(S):

Thus

3 · 2nw̃(i; x) = ai(v)− 2n−2xi − 2n−2ṽ(N )− 2n−1ṽ(N ) +
∑
S⊆N

v(S):

On the other hand, the excess of player i∈N with respect to x∈PI(v)=PI(ṽ) in the crisp game (N; v) is
given by

w(i; x) =
∑
S⊆N
i∈S

e(S; x) = ai(v)− 2n−1xi − 2n−2
∑
j �=i

xj = ai(v)− 2n−2xi − 2n−2v(N ):

Therefore, w̃(i; x)= kw(i; x) + a, for all x∈ I(v)= I(ṽ), where k and a are de9ned as

k =
1

3 · 2n¿0;

a =

∑
S⊆N v(S)− 2n−1v(N )

3 · 2n :

Thus, the excess of each player in the fuzzy game is obtained as a positive linear transformation of the
corresponding excess in the crisp game. Then, since the imputation set is the same for both games, the result
holds.

We end up showing which of the least square nucleolus properties keep being ful9lled by the lexicographical
solution.

Proposition 8. The lexicographical solution; L : IF�n1 →Rn; where IF�n1 is the subset of F�n1 composed by
those games in F�n1 which have non-empty imputation set; veriAes the following properties: (i) Equal
treatment; (ii) Anonymity; (iv) Inessential game; (v) Strategic equivalence and (x) Weak continuity.

Proof. Properties (i), (ii), (iv) and (v) can easily be deduced from the de9nition of the lexicographical
solution by using the expression of the excess of a player given at the beginning of this section.
With respect to continuity, let {(N; ṽr)}r∈N be any sequence of fuzzy games in IF�n1 . If the sequence

(ṽr)r∈N converges uniformly to ṽ0 and L(ṽr)→L0 as r→∞, then ṽ0 ∈L1(�) and I(ṽ0) �= ∅, i.e., ṽ0 ∈ IF�n1 .
For each i∈N holds

lim
r→∞ w̃r(i; L(ṽr)) = lim

r→∞

∫
[0;1]n

�i

ṽr(�)−∑
j∈N

�jLj(ṽ
r)

 d�

=
∫
[0;1]n

�iṽ0(�) d�− 1
3
Li(ṽ0) +

1
4

∑
j �=i

Lj(ṽ0) = w̃0(i; L0):
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Let us show that L0 ∈ I(ṽ0) ful9lls condition (13) established in Lemma 2.
Let i∈N be a player such that L0i¿ṽ0({i}). The sequences (Li(ṽr))r∈N and (ṽr({i}))r∈N converge to L0i

and ṽ0({i}), respectively, as r approaches to ∞. Therefore, if we set

P = {r ∈ N=Li(ṽr)¿ṽr({i})}

then |P|=∞. Thus,

lim
r→∞
r∈P

L(ṽr) = L0; (19)

lim
r→∞
r∈P

w̃r(j; L(ṽr)) = w̃0(j; L0); ∀j ∈ N: (20)

On the other hand, since L(ṽr) is the lexicographical solution of (N; ṽr), we get

max
j∈N

w̃r(j; L(ṽr)) = w̃r(i; L(ṽr)); ∀r ∈ P

then, by the continuity of the maximum function, it follows from (20) that

w̃0(i; L0) = lim
r→∞
r∈P

w̃r(i; L(ṽr)) = lim
r→∞
r∈P

max
j∈N

w̃r(j; L(ṽr)) = max
j∈N

w̃0(j; L0):

Thus, L0 ful9lls condition (13), which characterizes the lexicographical solution.

Assuring individual rationality causes the lost of additivity as well as A.M.C. monotonicity (Example 1).
However, if we only consider (0; 1)-normalized games monotonicity can be guaranteed.

Example 1. Consider the fuzzy game (N; ṽ) with 3 players and characteristic function

ṽ(�) = �2 − �2�3 + �1�3 + �1�2�3:

Then, c1(ṽ)= 3
8 , c2(ṽ)=

3
8 and c3(ṽ)= 1

3 . Thus, the equalizer solution is E(ṽ)= (56 ;
5
6 ;

1
3 ). Since E2(ṽ)=

5
6¡ṽ({2}), then, according to the algorithm, we get L(ṽ)= (34 ; 1;

1
4 ). As c1(ṽ)= c2(ṽ) the lexicographical

solution does not satisfy A.M.C. monotonicity property.

Proposition 9. Let F̃�
n
1 = {(N; ṽ)∈ IF�n1 =ṽ({i})= ṽ({j}) ∀i; j∈N}. If we keep to F̃�n1 ; then the lexicograph-

ical solution veriAes A.M.C. monotonicity.

Proof. The proof follows from the application of the previous algorithm. Given a fuzzy game (N; ṽ)∈ F̃�n1 ,
let i; j∈N be any two players. We can assume without loss of generality that ci(ṽ)¿cj(ṽ). Then, we will
show that Li(ṽ)¿Lj(ṽ).
If the equalizer solution of the game, E(ṽ), is individually rational, then L(ṽ)=E(ṽ). Therefore, as the

equalizer solution veri9es the monotonicity property, Li(ṽ)=Ei(ṽ)¿Ej(ṽ)=Lj(ṽ). Otherwise, two cases are
possible:
1. If Ei(ṽ)¡ṽ({i}), then ṽ({j})= ṽ({i})¿Ei(ṽ)¿Ej(ṽ). Thus

Li(ṽ) = ṽ({i}) = ṽ({j}) = Lj(ṽ):
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2. If Ei(ṽ)¿ṽ({i}), then we have to consider the following cases:
(a) If Ej(ṽ)¡ṽ({j}), then Lj(ṽ)= ṽ({j})= ṽ({i})6Li(ṽ).
(b) If Ej(ṽ)¿ṽ({j}), then there exist pi¿0 and pj¿0 such that

Li(ṽ) = Ei(ṽ)− pi;

Lj(ṽ) = Ej(ṽ)− pj:

Since Ei(ṽ)¿Ej(ṽ) and ṽ({i})= ṽ({j}), then, according to the algorithm, we get pi¿pj. Moreover, it
holds:

If pj ¡ pi ⇒ Lj(ṽ) = ṽ({j}) = ṽ({i})6 Li(ṽ);

If pj = pi ⇒ Lj(ṽ) = Ej(ṽ)− pi 6 Ei(ṽ)− pi = Li(ṽ):

If we take the (0; 1)-normalization of the game given in Example 1

ṽ(0;1)(�) = −�2�3 + �1�3 + �1�2�3;

then L(ṽ(0;1))=L(ṽ)− (0; 1; 0)= (34 ; 0;
1
4 ), which does not contradict the monotonicity with respect to average

marginal contributions condition since the normalization operation does not respect the relative order among
the contribution coeOcients of the players. In that case, we have

c1(ṽ(0;1)) = c1(ṽ)−
∫
[0;1]3

�1�2 d� =
1
8
¿

1
24

= c2(ṽ)−
∫
[0;1]3

�22 d� = c2(ṽ(0;1)):

5. Concluding remarks

In this paper, we have analyzed some aspects of the lexicographical solution for fuzzy games by adopting
a coalition excess approach. The approach followed by Sakawa and Nishizaki [11] shows the idea behind
this value more clearly, but the formulation of Ruiz et al. [10] is the one to be used for obtaining good
results. According to this reasoning, we have extended the formulation of the least square nucleolus to fuzzy
games dealing with an alternative characterization of the lexicographical solution. Then, we have given an
algorithm to calculate the lexicographical solution which is an eIective method of calculus. Moreover, we
have introduced a new value for fuzzy games with side payments, the equalizer solution, which shows good
behaviour as a solution concept.
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