An integrated transport system for Alacant's students. Univer city
Joaqui Sanchez-Soriano; Natividad Llorca; AnaMeca; Elisenda Molina; Manuel P...
Annals of Operations Research; Jan 2002; 109, 1; ABI/INFORM Global

pg. 41

k“ Annals of Operations Research 109, 41-60, 2002
1~ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Integrated Transport System for Alacant’s Students.
UNIVERCITY

JOAQUIN SANCHEZ-SORIANO, NATIVIDAD LLORCA, ANA MECA, ELISENDA MOLINA and
MANUEL PULIDO

Dpto. Estadistica y Matemdtica Aplicada and C.1.0., Universidad Miguel Herndndez de Elche,
Avda del Ferrocarril s.n., 03202 Elche (Alicante), Esparia

Abstract. The dispersion between the different university campuses in Alacant raises the social necessity
of designing a transport system capable of efficiently connecting the villages and cities of Alacant with the
campuses. In this paper, we develop a centralized transport system for university students in the province
of Alacant.
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1. Introduction

The university campuses in Alacant are widely dispersed. In addition, the social struc-
ture in Spain is focused on the family as a cellular unit and the majority of university
students live with their parents while they study. The public transport system in this
province does not cover the students’ needs and, moreover, it is expensive. Therefore
there is a real social need for a transport system capable of efficiently connecting the
villages and cities of Alacant with the different university campuses. But at the same
time, taking into account that the university system in Spain is mainly state controlled,
such a system should also be economical. The Comunitat Valenciana government is
aware of this problem and it has established a grants mechanism to reduce the fees and
to encourage private firms to offer the transport service which society is demanding. This
transport grants system is such that Student Unions (which have been formed to obtain
cheap services), town councils and private firms can all apply for financial support. At
present, all these entities fail to cooperate with one another. Yet there are many advan-
tages in changing this situation and promoting an atmosphere of cooperation. One of the
most important parameters to be taken into account in the financial support system is
the number of students who apply for grants in each city. Then, if all town councils of
Alacant apply for financial support, they will all together receive a total amount of finan-
cial support which would exceed what they are now receiving. For instance, during the
last academic period some cites did not receive any financial support because no institu-
tion (town councils, Student Unions or private firms) applied. In more than half of the
towns only private firms applied. Since, in this case, the rules for the grants specify that
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42 SANCHEZ-SORIANO ET AL.

the maximum number of students taken into account will be a percentage of the student
Census, the financial support for the remaining percentage was lost.

On this basis, an analysis of this problem has been carried out in order to make a
proposal to the Diputacio d’Alacant, where all town councils are represented. This will
be the intermediary body between the students (through their corresponding town coun-
cils) and the Generalitat Valenciana for organising an integrated university transport
system in the whole province. We indeed propose that the management of the transport
system should be taken over by the Diputacié d’Alacant. There would be many advan-
tages in centralizing the management of such a transport network into only one public
institution. In fact, a joint transport system managed by the Diputacio would allow:

(1) the design of an optimal network (the best routes);
(2) an increase in the financial support obtained from the Generalitat Valenciana;

(3) alow fare for the bus service, since the negotiating position of the students, repre-
sented by the Diputacid, would be strengthened;

(4) areduction in traffic problems, because the students would not need to drive their
own cars.

Moreover, if the new transport system turns out to be efficient and cheap, the
Diputacié d’Alacant by implication will receive political gains. Furthermore, a good
service for the students could have positive effects by reducing family expenses. On the
other hand, new trends in town planning consider that this kind of transport system would
allow universities to integrate into cities. This is the so-called “UniverCity”. Hence, co-
operation clearly is worthwhile and, furthermore, there is an agent (the Diputacid) who
will be able to centralize the management of the whole transport system.

In order to design such a centralized transport system for university students who
live and study in the province of Alacant, we consider three different steps: firstly,
obtaining and analyzing data, secondly, designing optimal routes and schedules, and
thirdly, once the optimal transport system has been designed, evaluating all the costs
arising from the use of that system. Finally, these costs must be distributed among the
users of the system, the students. This last stage is precisely the aim of this paper.

The problem we face, setting the fees for using the system, is a cost sharing prob-
lem. We will analise the problem in two contexts. In any case, prior to allocating the
costs, we will divide the full network into several independent transport subsystems.

In section 3, we will focus on the cost sharing problem within the context of the
cooperative game theory. Application of game theory to cost allocation problems is very
common nowadays. Examples of cost sharing problems that are worked out in this set-
ting are numerous, see for instance [3,8,13,14,21,22]. We will consider the town councils
as the agents of the game and we will define the corresponding stand alone cost game
(see [27,33], among others), which we refer to as tree buses game played by the cities.
Then we will propose to share the total costs of the transport subsystem according to
rules such as the Egalitarian Nonseparable Cost (ENSC) method or the Alternate Cost
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Avoid (ACA) method (see [5,33]). Obviously, once the costs have been allocated to the
cities, the cost share for each city is distributed equally among its students.

This approach, however, does not permit us to take into account all the special
features of this problem. Therefore we have decided to resolve this situation by means
of an alternative approach, which is considered in section 4. We will propose a cost
sharing rule which embraces the principles of fairness that every public institution should
respect. On this basis, we will first distinguish two types of costs, and will then propose a
particular method to allocate them among the users. We will refer to this specific method
as the aggregated egalitarian solution. In particular, the different agents involved in the
decision making process, the students as the users, and the Diputacio as the agent who
must set the fees, have different interests. A thorough study of this fact has lead us to
consider a compensatory monetary system. To be exact, we will propose the financial
support to be covered by the Diputacio.

Section 5 contains the conclusions and future research of our work.

2. Anintegrated transport system

As mentioned above, we must accomplish three different analyses in order to design the
integrated transport system. The game theory will be used in the last stage of our study.
Once the optimal transport system has been designed, we must evaluate all the costs
resulting from the hiring and use of that system. Then the cost of the system is to be
distributed among its users.

There are two types of costs to be distinguished, the fixed costs and the variable
costs: the fixed costs are related to the costs paid per bus, no matter the distance covered.
In many cases the unit hire fees depend on the amount x of buses that are hired. Gen-
erally, the unit price is reduced according to the number of buses contracted, although
hiring x + 1 buses is usually more expensive than hiring x. That is, if f(x) represents
the unit price per bus, when x € Z, buses are hired, then

fx) =2 fx+1) and xf(x) <x+Df(x4+1).

The variable costs are prices paid per kilometer travelled by a bus. Among others, these
costs include the maintenance costs of the buses. Therefore, if c(k) represents the vari-
able cost of hiring a bus for travelling a total distance of & kilometres (including the
return trip), then the total cost of contracting x = (x, ..., x;) buses which are going to
cover distances of k = (ky, ..., k;) kilometres, respectively, is given by

H(x, k) = (Zx,)f(zx,) + Y xjelk)). (1)
j=l1 j=1 j=1

In the situation we deal with, the number of buses hired will probably exceed the num-
ber which qualify for the lowest (highest) price, making it impossible to apply further
price reductions (or rises), due to decreasing (increasing) returns to scale, when a large
number of buses are hired (when long distances are covered). Hence, we will work on
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the particular case of constant fixed cost (f = F) and linear variable cost (c(k) = K -k).
Then, it follows

H(x, k) = (ij)F+(ijk,>K, (2)
j=1 j=1

where F is the fixed cost of hiring a bus and K is the variable cost paid per kilometer
covered.

Even though the transport system as a whole is too large, in practice it is made
up of several independent transport subsystems. We will consider different subsystems
for each destination, i.e., for each University Campus. Moreover, for each subsystem,
we will distinguish between the routes by means of their area origins. We will put two
routes together if, and only if, they converge on the final stages of their journey. Thus, the
original problem will be simplified to allocate the costs of each independent subsystem,
which we will refer to as trees of routes with common sections, among its users. Note
that we can restrict ourselves to trees without loss of generality, since graphs with cycles
cannot be optimal routes in our situation. In fact, if there were a cycle we would remove
a link obtaining a new subgraph of shorter length.

Example 1. The buses covering the routes connecting the area of Marina Baixa with the
Universidad Miguel Herndndez, campus of Sant Joan, and the Universitat d’Alacant will
be considered as the Marina Baixa area—Alacant transport subsystem. Graphically, the
tree with common sections which represents that subsystem is in figure 1. The vertexes
represent the cities:

Vertex 1 Vertex 2 Vertex3  Vertex 4 Vertex 5
L’ Alfas del Pi Calpe Altea Benidorm  La Vila Joiosa

s; is the number of students of city j, j = 1,...,5, d; is the distance (measured in
kilometers) from city j to the next city on the route, and k; is the distance from city j to
the university campus: k; = dj +d4 +ds and k; = ZL,. de, i =2,...,5.

Now, we should allocate the total costs of the Marina Baixa transport subsystem
among university students who live in that area and take a bus from these routes to arrive

(s1,k1)

(s5,ks)

d a
(D) # !
UMH-UA 7 @ 4

5
(347 k4) d3 do

(s3,ks3) (s2,k2)

Figure 1. Marina Baixa subsystem.
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at Sant Joan. That is, we should distribute the total costs H (x*, k) given by (2), where
x* = (xf, ..., x%) is the optimal fleet of buses. Here, x; represents the number of buses
which depart from city i, i = 1,...,5, and x* is the most economical fleet of buses,
which will be determined by:

H((x*, k) =min H(x, k)
S.t. bx1 2 S1,
bxy = 2,
b(xy + x3) = 52 + 53, 3)
b(xy +x2 + x3 +x4) = 51+ 52+ 53 + 54,
b(xy +x3 + x3 + x4 + x5) = 51+ 52 + 53 + 54 + 55,
xi€Z+, i=1,...,5,

where b € Z is the capacity of the buses.

The cost sharing problem we deal with, which we will refer to as a tree buses
situation, can formally be described by means of the 5-tuple B := (T,s, d, b, H),
where T = (V, E) is a directed tree (V is the set of vertices — cities and the campus
terminus — and E is the set of edges — sections), the elements of s € ZK (where V =
V \ {campus terminus}) represent the number of students using the transport subsystem
in each city, d € Rf is the vector of distances, b € Z, is the capacity of the buses (we
will assume all buses have the same capacity, to simplify the situation), and H is the
cost function. Here, H (X, k) represents the cost of hiring and making use of a fleet of
x;,i € V, buses which are covering total distances of k; kilometres, i € V, respectively.

Now, let B = (T, s, d, b, H) be a tree buses situation. Let x* be the cheapest fleet
of buses covering the routes of 5. Then we will approach the problem of allocating
the total costs H (x*, k) within two contexts. The first approach is analyzed in the next
section. The second is postponed to section 4.

3. Cooperative game theoretical approach: tree buses game played by the cities

In our first attempt to distribute the cost of each subsystem we have fallen back on the
cooperative game theory. This approach will make sense if the agents involved in the
situation we have focused on, are able and willing to make binding agreements on the
individual cost shares. It is debatable whether the students are qualified to make binding
agreements. However, it is likely that the representatives of the town councils have the
authority to make such agreements. Thus, we have decided to consider the cities as the
players of the game. We then define the corresponding stand alone cost game, which is
the usual approach in this setting.

The stand alone cost game, which we will refer to as tree buses game played by
the cities, formally is given by the pair (V, ¢g), where c5(S) is defined as the minimum
quantity needed to hire and use buses for taking all the students living in any city of
coalition S to the campus, for all nonempty coalition S C V, while cg(#) = 0. So, given
a tree buses situation B = (T, s, d, b, H), (V, cp) refers to the hypothetical situation
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where each coalition S C V is associated with the cost of serving them first. Thus, the
cost of each nonempty coalition S C V is obtained by means of solving the following
optimization problem:

¢5(S) = min {H (x5, Ks) | bxsR” > ssR7}, (4)

X56Z+
where sg = (5i)ics, Xs = (x)ics, ks = (k;)ics, and RS is the following square matrix
of size |S|:

R = Vi, j € S.

{1, ifi=jorje P@),
0, otherwise,

P(i) C V denotes the set of cities in the unique path in the tree T connecting city i to
the root of the tree, the campus.

Note that in the Marina Baixa example, if b is the capacity of the buses, then the
optimal fleet x* previously determined coincides with the optimal one obtained when
solving the optimization problem (4) for S = V. Moreover, the optimal fleet obtained
as the solution of the previous problem is the same for every “reasonable” cost function,
i.e., for any function that is nondecreasing in each variable. In such a way, the optimal
solution can be defined recursively. First, we must assign the buses which depart from
the cities located at each leaf of the tree. We must assign to each of these cities the min-
imum number of buses needed to move their students. Then, recursively, we complete
the following cities taking into consideration the remaining seats in the buses coming
from the previous cities.

Example 1 (continued). If we assume that the capacity of each bus is 55 seats, and the
number of students in each city is s; = 42, s, = 81, s3 = 87, s4 = 437 and s5 = 200.
Then, the optimal fleet of buses is x{ = 1, x5 = 2, x5 = 2, xj = 7 and x = 4. But the
optimal allocation of buses for coalition of cities {1, 4, 5} is x; = 1, x4 = 8 and x5 = 4.
Thus, if we consider a fixed cost of F = 5000 pesetas/bus (pts. of 1999), and a variable
cost of K = 143 pts/km, then

cg(V) =16 -5000 + 1 - 143k; +2 - 143k, + 2 - 143k3 + 7 - 143k4 +4 - 143ks  and
cg({1,4,5}) =13-5000 4 1 - 143k, + 8 - 143ky + 4 - 143ks.

Now we can propose different mechanisms to distribute the total costs of each
transport subsystem. It is sufficient to consider the cost sharing mechanism induced by
the stand alone cost game together with some value of TU games as the solution concept
for this class of games. This is the approach put forward by Shubik [27], and followed
by Legros [17] and Sudhélter [28]. Once the costs have been allocated to the cities, the
cost share of each city would be distributed equally among its students. However, we
are aware of the impossibility of recovering all the information we need for explicitly
defining the characteristic function of the stand alone cost game. Therefore we could
only consider allocation rules which do not require the explicit knowledge of all coalition
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costs. In particular, we would propose sharing the total cost of the transport subsystem
according to rules such as the Egalitarian Nonseparable Cost (ENSC) method or to the
Alternate Cost Avoided (ACA) method, which are two separable cost allocation methods.
For a discussion and interpretation of these rules, the reader may refer to [5,33]. More
information on separable costs and related allocation methods can be found in [6,30].

Although there are conditions relating the ACA and ENSC methods with the
7-value [32] and the nucleolus [24] of the corresponding savings game (see [5]), it is
easy to find examples to check that these games do not satisfy such conditions. In this
case, we cannot easily analyze the properties of the ACA and ENSC methods. More-
over, this approach does not permit us to take into account all the special features of this
problem. For instance, the agents have been involved in a strategic environment which
is not suitable for the situation we deal with. We must remember that the organization
responsible for setting the fees for using the system is the Diputacid. Therefore we have
decided to tackle the situation by means of an alternative approach. To be exact, we fall
back on a cost sharing framework.

4. A cost sharing approach: aggregated egalitarian allocation rule

In the existing cost sharing literature, more important than the solutions themselves, are
the principles of fairness which are represented there. This fact has led us to define a
particular cost sharing rule which embraces the principles of fairness which every public
institution should respect. The Diputacio should avoid any resentment between students
(and cities) arising from the proposed allocation rule. That is, such a rule should respect
the basic statement: “all students are equal, and equals should be treated equally”. The
key to this basic statement is when two students may be considered as equal. For in-
stance, if there were only fixed costs, then every student would use the system up to the
same amount. Every student would use one bus. In such a case, all students would be
equal. Since everybody should be treated equally, the total costs F - ), 3 x; should be
shared equally among the students. In order to extend this reasoning to a general tree
buses situation, we will first distinguish two types of costs, fixed and variable costs, and
then we will propose a method to allocate them among the users. We refer to this method
as the aggregated egalitarian solution.

4.1. Variable costs allocation

First, we will focus on allocating the variable costs. If we wish to apply the principles of
fairness described above to this problem, we should look for those partial subproblems
in which all students can be considered as equals. We will thus allocate the total variable
costs of the transport system by means of an aggregation process. First, we distribute
the variable cost of each link — road joining two adjacent cities in the tree — among its
users. Then, the variable cost share of each student will be obtained as the sum of all
their partial shares.
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Let B = (T, s, d, b, H) be a tree buses situation. For every link ¢ = (i, j) € E, let
N, be the set of students whose bus pass through stage e. That is, the set of all students
who live in any city located in “branch” B, = {{ € V | eisin path P(£)} of the tree
routed at edge ¢ = (i, j) € E. Since every student of N, is requesting the same service
during link e, and everybody should be treated equally, the total variable costs related to
this link

Ve, = < Z x;f)deK,

j€B,

should be shared equally among the students in N,. Thus, we define the aggregated
egalitarian allocation of the variable costs as follows. Let j € V be any city of the tree.
Then, according to the egalitarian allocation, the cost shares of every student i living in
city j will be given by

o (D, DK
T Dl AL A
7l = E - ,

e
6€Pj

where n, = |N,| is the number of students using link e, and P; is defined as the set of
links which are on the unique path in the tree T connecting city j to the root of the tree,
the campus. The joint cost shares of all students living in j will be

‘ O ., xHd.K _
Fad =sj<ZZ’€Be—’e) forall j e V.

ne
eer

Example 1 (continued). Let us consider the example of the Marina Baixa subsystem
with distances d = (6,9, 10,9,33) and k = (48, 61, 52,42, 33). Then, taking into
account that the variable cost is K = 143 pesetas per km and the optimal fleet is
xi =1, x; =2, x5 =2, x; =7 and xi =4, it holds that:

Link Students Total cost Partial shares City Shares per est.
1’ Alfas-Benidorm 42 858 20.43 1’ Alfas 133.44
Calpe-Altea 81 2574 31.78 Calpe 178.84
Altea—Benidorm 168 5720 34.05 Altea 147.06
Benidorm-La Vila 647 15444 23.87 Benidorm 113.01
La Vila-Campus 847 75504 89.14 La Vila 89.14

Remark 1. The situation studied above generalizes a class of cost sharing problems
which has been studied extensively, the problem of sharing the cost of a tree network.
This problem has been studied within the context of the standard tree games (mainte-
nance games). The study of these types of situations, or similar ones, has resulted in a
long list of papers (see [2,4,9—12,16,20]). The special case when the underlying struc-
ture of the game is a chain, is also known as the airport problem and has been considered
by several authors [1,18,19,29]. The generalization is given by the fact that in a standard
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tree game, it is assumed that the maintenance cost of each link is the same, regardless of
the number of users it serves.

The cost sharing method we have proposed has been deduced on the basis of a prin-
ciple of fairness. Nevertheless, there are some questions which must be asked before as-
suming the fitness of the aggregated egalitarian solution. The most interesting properties
in the cost sharing literature concern the dynamics of a cost sharing mechanism: how
the cost sharing mechanism should adjust the individual cost shares if the parameters of
the problem are perturbed. Obviously, the mechanism we have defined above, favours
technological advances. It is trivial to check that the aggregated egalitarian rule verifies
monotonicity in costs properties. Nevertheless, in this setting, the allocation rule should
provide an incentive for agents to cooperate (population monotonicity properties). How-
ever, below we will give an illustrative example which shows some drawbacks of the
allocation mechanism we have proposed.

Example 2. Let us consider the following situation, with buses of capacity 55 (figure 2).

Let us suppose that last year no student was living in city 2, therefore students
living in cities 1 or 3 only needed 1 bus to reach the campus. This year 5 new students
live in city 2. If they join the transport system, then the variable cost of link e is doubled.
The partial variable cost share of each student living in city 1 or 3 is almost doubled, too.
Hence, these 5 new students are “bad partners” for students in 1 or 3. However, since it
is a public transport system, the five students of city 2 must be served. But the question
is: who should pay the increase in costs, who should cover the originated deficit?

Example 2 shows a situation in which a group of students are subsidizing other
students. This seems unfair. Students who are paying an additional subsidy to other
students could feel that they are being treated unfairly. However, as we have pointed
out before, the Diputacié must provide the service to every student. Therefore it seems
reasonable that this public institution should pay this additional subsidy. That is, we
propose to create a compensatory monetary system.

4.1.1. Compensatory monetary system
If we define a cooperative cost game associated with the cost sharing problem we are
analyzing (a variable cost tree game), and the aggregated egalitarian allocation turns out

31235

¢ O
CCampus>—C)
53 = 20 2

32=5

Figure 2. Example 2.
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to be in the core of the game, then it is clear that in such a case no group of students
would be subsidizing other students. Formally, the core of a cost game (N, ¢) is the set

C(N,c)={zeR" | z(5) < c(S)forall S C N, and z(N) = c¢(N)},

where z(S) = ), szi. If z € C(N, ¢), then no coalition S has an incentive to split off
if z is the proposed vector of cost shares. That is, a core allocation provides incentives
for voluntary cooperation. However, each core condition can be rewritten as z(S) >
c(N) —c(N\ S), S € N. If this condition is violated for some S, then it could be said
that coalition N \ S is subsidizing S. Thus, even if there is no need to give the agents
an incentive to cooperate, there is still an argument for a core on equity grounds.! The
problem arises when the core of the corresponding cost game is empty. Then, to prevent
unfair situations, some external financing is needed. We will look at a certain extension
of the core for calculating the minimum financial support which is needed to avoid unfair
situations like the example: the additive e-tax core (introduced in [25,26]). The additive
e-tax core of a cost game (N, ¢) is the set

CHe)={zeRY | 2(S) < c(S) +¢lS|forall S C N, and z(N) = c(N)}.

Since we have obtained the aggregated egalitarian allocation link by link, we will also
calculate the financial support link by link. So let us define as many games, which we
will refer to as link games, as links in the tree.

Definition 1. Let B = (T, s, d, b, H) be a given tree bus situation. Then for each link
e = (i, j) € E, the link game (N,, c.) is defined as follows:

(i) The cost of any nonempty coalition S & N, is given by the variable cost of the
minimum number of buses needed to take all the students in S from city j to city i,
i.e., c.(S) = [s/b]d. K, where s is the number of students in coalition S, and [s/b]
represents the upper integer part of s/b.

(ii) The cost of the grand coalition N, will be exogeneously determined. It will be
given by the variable cost related to link e (which is determined by the optimal fleet,

obtained when solving problem (4) for § = V). That is, c.(N,) = (3_ jeB, X} )de K.
81 = 15
S5 = 70
s9 =35
S84 = 30
83 = 65

Figure 3. Example 3.

1 This idea has been discussed extensively in the literature on public pricing. See references in [33].
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Example 3. Let us consider the following situation with buses of capacity 55 (figure 3).

We only need [145/55] = 3 buses for moving all students in N, from city 4 to
city 5. In fact, however, there are x| + x5 + x5 +x; = 1+ 1+ 2+ 0 buses going through
link e. Therefore the cost ¢.(N,.) must be equal to 44, K, instead of [145/551d,.K, in
order to cover the real costs. This difference exists because there is a surplus SB(e) =
> jes, X; — [ne/bl of 1 bus covering link e. Note that the surplus of buses covering
a link will be positive when, according to the optimal fleet x*, there were more buses
covering link e = (7, j) than the amount strictly needed to move all the students from
city i to city j. The possible difference arises from the prohibition of transshipment
in each node, because in the definition of the optimization problem (4) it is implicitly
assumed that all contracted buses arrive at the university.

Remark 2. These games are similar to the type of games introduced and studied in [7].
There are two main differences between link games and “bus games”. On the one hand,
the costs of the grand coalition do not coincide. On the other hand, the agents of a
“bus game” are travel agencies (cities), whereas the agents in a link game are students
(travellers).

Theorem 1. Let B = (T, s, d, b, H) be a tree buses situation and let ¢ € E. Then, the
partial aggregated egalitarian allocation? is in the additive e-tax core of the correspond-
ing link game (N,, ¢.) if, and only if, ¢ > g,, with

0 if n, < b and SB(e) = 0,
SB ——1
@@ =D =1, ¢ ifn, <bandSBe) > 1.
ne(ne - 1)
—1sB
€a © .k ifn,>bandr, =0,
ne
B b—
<S e) + re)deK otherwise,
| 7 bn,

where r, is the remainder of the quotient n,/b (n, = mb +r,,m,r, € Zy and0 < r, <
b), and SB(e) = ) jeB, x;‘ — [n./b] is the surplus of buses covering link e.

Proof. Let (N,, c.) be any link game. Then, taking c.(N,) = (O
account, it follows that the egalitarian allocation equals
. (ZjeBe x;‘)deK

z; = ——————— foralli € N,.
ne

jen, XD K into

On the other hand, the cost of coalition S C N, is given by ¢.(S) = [s/b]d. K, where s
is the number of students in S; whereas the stand alone cost is ¢, ({i}) = d.K, for every

2 Here, by the partial aggregated egalitarian allocation we refer to the cost shares related to link e prescribed
by the aggregated egalitarian allocation. In the sequel we will refer to it as “egalitarian allocation”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52 SANCHEZ-SORIANO ET AL.

student i € N,. Therefore, the egalitarian allocation is in the additive e-tax core if, and

only if,
O .p xNHd.K
Q. jen, x)dK s < P—‘de[ors-s forall S C N,.
n, b
Thatis, forall s € {1, ..., n, — 1}, must be
oo Cpen3i/ns = I5/8 | Fpen X5 = [s/Bme

s ST,

Equivalently, taking } ;5 x7 = SB(e) + [n./b], into consideration

SB(e)deK + [ne/bls — [s/bln,
ne ST,

€2

de K. (Ias)

Let us show that ¢, is the minimum ¢ satisfying (lag) for all S € N,. In fact, since the
first right-hand term does not depend on S, it suffices to give an upper bound, &, for the
second one, i.e.,

z 2 rne/b-ls - rs/b-lne

ST,

d,K =g(s) forallse{l,...,n,—1}. T'ag)

Three cases can arise:

(A) If n, < b, then inequalities (I'ag) can be rewritten as follows

. S—n,
£ > S—deK = g(s).

e

Since g(-) is an increasing function, then

~ 1
) 2 g(ne - 1) = —mde[{.
e e

Therefore, an upper bound ¢ for the original sum must satisfy

B 1 B -1-1
S(e)deK——deK=S(e)(ne ) LK.
ne (ne - l)ne (ne - l)ne
Now, if SB(e) = 0, then g(s) < 0 and inequalities (Iag) are fulfilled for all ¢ > 0 =
g,. Otherwise,

€z

_ (Be)(n, — 1) — Nd.K
B (ne - 1)”6 .

(B) If n, > b and n, is a multiple of » (;m > 1 and r, = 0), then inequalities (I'ag) can
be rewritten as follows

a

s M= [s/blmb &
N2

Let « and § be two nonnegative integers such that s = «b+ 6 and § < b. Two cases
are possible:
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(B.1) ifae > 0and § = 0, then g(s) = 0;
(B.2) ifae > 0and § > 0, then g(s) < 0O follows from being § < b.

Therefore, the inequalities (I'ag) hold for all £ > 0 and, consequently, &, =
(SB(e)/n,) d.K.
(C) Otherwise, n, = mb+r, with1 <r, < b—1and m > 1, inequalities (I'ag) can be
rewritten as follows
5> (m+ s —[s/b](mb +r.)

SH,

d.K forallse{2,...,n,—1}.

Let o and & be two nonnegative integers such that s = ab 4 8 and § < b. As in the
previous case, two possibilities can be distinguished:

(C.1) If @ > O0and § = 0, then

SB SB b—
e> 8@ ki BO kDT ik — e, foralls withs = ab.
N, N, bn,
(5)
(C2) If ¢ > 0and § > 0, then
8 1 b—r,)—
gy dmrDrebor)=n , o G 5.
(ab + d)n,

G.(a, -) := g5(-) is an increasing function for every fixed « > 0. Therefore,

it holds
Gy(a,8) < Gy(a,b) foralla 2 0andé ef{l,...,b—1}.
It can be easily checked that G (o, b) = (b —r,)/bn.)d. K, for all @ > O.

Thus,
SB b—r, SB
e, =89 kP g B9k 4 Gl s)
Re bn, e 6)
— SB(e) deK + I-ne/b]s - rs/b-lne deK,
n, SHe
foralls e {1,...,b—1}andforalla € {0, ...,b — 1}.
Then, it follows from (5) and (6),
B b— B b—
e, =BO g oo g (SB@ Do),k 0
n, bn, n, bn,

The previous theorem shows that the financial support that each student receives
depends on the number of vacant seats per bus covering the link, as well as the number
of spare buses (according to the optimal fleet). For instance, if we go back to examples 2
and 3, and we calculate the financial support per link, then: with respect to example 2,
link (2,3) is not financed, whereas the financial support of link e = (3, Campus) equals
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the price of the 55 — 5 extra seats of the bus departing from city 2; with respect to
example 3, the financial support of link e equals the cost of the extra bus plus the cost of

the 20 seats which would be vacant even if only 3 buses were used.

Example 1 (continued). The Diputacié financing would be given by:

Link L’Alfas—Ben. Calpe-Altea Altea—Ben. Ben-La Vila La Vila—Campus
Fin./student 0 8.38 8.05 0.47 3.34
Fin./link 0.00 678.6 1352 304.2 2831.4

Note that the total financial support (5166.2 pts.) represents 5.16% of the total vari-
able cost of the transport subsystem (100100 pts.). This amount will be covered by the
Diputacio d’Alacant. Then the financed variable cost share that each student should pay
is:

L’Alfasdel Pi Calpe Altea Benidorm La VilaJoiosa
129.63 158.6 135.2 109.2 85.8

The next proposition shows the amount that each student should pay per kilometer,
and per link, once the Diputacio has financed them.

Proposition 1. Let 5 = (T, s, d, b, H) be a tree buses situation and let e € E. Then
the fare per kilometer that each student should pay after subtracting financial support is

given by
nl K if n, < band SB(e) =0,
e
Be = ! K ifn, < band SB(e) > 1,
n,—1
% K if n, > b.

Proof. The variable cost per kilometer that each student should pay after subtracting
financial support is given by

(X jep, XD /n) - d.K — &,
d, '

Then, taking this amount into account the statement can be easily established. O
4.2. Fixed costs allocation

At the beginning of this section we have argued that if there were only fixed costs, then
the total costs F -, v x;* should be shared equally among the students. Therefore, since

i
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the variable cost have already been allocated, an egalitarian allocation of fixed costs
should prescribe to divide the total costs equally. However, the same problems arise in
this case. It could be the case that some students were subsidizing other students. So, to
avoid such an unfair situation, we will consider an associated fixed cost game, (N, cy),
defined as follows.

Let B = (T,s, d, b, H) be a tree buses situation, and let N = {1, ..., n} be the set
of all students living in the cities located in the tree. Then, the total fixed costs c¢¢(N) :=
o iV x;f) - F have to be distributed among students in N. However, each coalition of
students S & N with |S| = s only needs [s/b] buses?. Thus, the maximum amount that
students in S are willing to pay is given by c¢¢(S) := [s/b] - F.

Note that the associated fixed costs game is equal to a link game (N,, c.) with
N, = N and d, = F. Therefore, all previous results can be applied.

According to theorem 1, the amount per student financed by the Diputacio has to

be given by
0 ifn < band SB =0,
SBn—1)—1 .
—————F ifn<band SB > 1,
nn—1)
=1{ SB
e —F if n > b and » is a multiple of b,
n
SB b-—r )
— 4+ F  otherwise,
n bn

where r is the remainder of the quotient n/b and SB = () _ jev X;) — [n/b] is the surplus
of buses covering the routes, which can be interpreted as follows.

If the variable cost to be paid per kilometer covered was equal to zero, then the
structure of the tree would not influence in the determination of the optimal fleet. Specif-
ically, the costs would only depend on the number of buses hired. Therefore, the optimal
strategy would be to contract [n/b]. Then, the surplus of buses covering the routes can
be read as the surplus of buses which have to be hired for reducing the variable costs (as
well as the time spent by the students on the trip).

Thus, the financed fixed costs share of each student will be given by

— ifn <band SB =0,
n
F .
B = 7 ifn <band SB > 1,
n_
F
— if n > b.
b

3 Note that since we are not dealing with variable costs, the distance covered by a bus is not being consid-
ered.
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Example 1 (continued). If we consider a fixed cost of 5000 pesetas per bus, then each
student must pay 5000/55 = 90.91 pesetas, whereas the financial support given by the
Diputacié has to be 33 - (5000/55) (the 33 seats which are free in a fleet of 16 buses,
with 55 seats, used by 847 students). Therefore, the total financial support (3000 pts.)
represents 3.75% of the total fixed costs of the transport system (16-5000 = 80000 pts.).

4.3. Financed aggregated egalitarian rule

Up to the present time, we have determined the total financial support that the Diputacio
should accept in order to transform the aggregated egalitarian allocation into a stable
one: the amount it has to finance of the variable costs of every link, as well as the
amount corresponding to the fixed costs. Formally, let j € V be a city of the tree. Then,
the financed cost shares of every student i living in city j will be given by

=B+ Bed,
ecP j
whereas the joint (financed) cost shares of all students living in j will be
vl =s; <,B +> ﬁede> forall j € V. (7
ecP j
Finally, the total financial support required will be
FS(B) = nes + Znesa(e),
ecE

where ¢, (e) is the financial support per student over link e (see theorem 1).

The partial results we have obtained previously can be summarized in the following
theorem. First, we define a fotal financed tree buses game. Second, we prove that the
proposed fare per city, see (7), turns out to be a core allocation of the financed game.

Definition 2. Let B = (T, s, d, b, H) be a tree buses situation and let (V, cg) be the
corresponding tree buses game played by the cities (see p. 5). Then, we define the
financed tree buses game, (V, c{;) as follows:
c[;(S) :=cp(S) foral S & V,
ch(V):=cp(V) — FS(B).

Note that students receive financial support from the Diputacié if, and only if, they all
cooperate.

Theorem 2. Let B = (T, s, d, b, H) be a tree buses situation. Then, the allocation y =
(¥))jcv given by expression (7) belongs to the core of the financed tree buses game

V., ch).
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Proof.  Since the total financial support FS(B) is obtained as the sum of every student’s
support, y is efficient. Let us show it. On the one hand,

y(V) = ny = ZSJ<IB+ Z‘Bede) :nlB+Zsj<Z:Bede)~
jev jev ecP; jev ecP;

Then, since a link e is in the path of j, P;,if, and only if, j is in the branch B,, it follows

(V) =nﬂ+z<zsj)ﬂede =nf+ Y nefede. ®)

ecE " jeB, ecE
On the other hand,
c{s(V) =cj(V)—FS(B) = FZX; +K Zx;‘kj - (n e+ Znesa(e)).
jev jev ecE

Taking SB =}, .y xj — [n/bland k; = 3 . p, de into account, it follows
c{;(V) = <’V%—‘ +SB)F —nes+ Z <deK Z xj— nesa(e)),
ecE j€B,
which coincides with

qﬂ + SB)F —nes + Z (@K([%W + SB(e)) - nesa(e)) )

ecE

because SB(e) = ) jeB, x;‘ — [n./b]. Therefore, it follows from (8), (9) and
() np = ([n/b] + SB)F — ney,
(i) nefed, = d.K([n./b] + SB(e)) — n.e,(e) foralle € E,

that y(V) = c{;(V). Now, we prove that y is stable. Let S & N be any nonempty
coalition of players. We denote by E(S) = {e € E | SN B, # @} the set of all links
which students in S have to cover to reach the campus. Then,

y(S) ::ZijZSjﬁ+ZSj<Zﬁede)IﬁZSj-i- Z deﬂe( Z Sj).
jes jes jes ecP; jes ecE(S) j€B.NS
The cost of coalition S is given by

ch(S) i=ca(S)=F Y x"()+ K Y x*(S)k

jes jes

=FZx*(S) +K Z;;*(S)( Zde)

jeS jes ecP;

=FY x"()+K > de< > x*(S)),

jes ecE(S) jeB.NS
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where x*(S) is the optimal allocation of buses which determines the cost c¢z(S). There-
fore, the inequality y(S) < c[; (S) is obtained from the following inequalities:

) ,BZjesSj < FZ,‘GSX*(S)’
(ii) deIBe(ZjeBgnS sj) < deK(ZjeBemSX*(S)) for all e € E(S). O

Example 1 (continued). The subsidised fare that each student should pay is:

L’AlfasdelPi  Calpe Altea  Benidorm La Vila Joiosa
220.54 249.51 226.11 200.11 176.71

and the fare that each student should pay without subsidy is:

L’Alfasdel Pi  Calpe Altea  Benidorm La Vila Joiosa
227.89 27329 24152 207.46 183.59

These figures have been calculated according to the prices which we have been able to
obtain when hiring (privately) only 1 bus. Obviously, if the project we have proposed
to the Diputacio (UNIVERCITY Project) is developed, the costs would be drastically
reduced. Nevertheless, even in this situation (with the high prices), the fare that each
student paid in 1999 for a similar service (see table below) is greater than the fare pre-
scribed by the aggregated egalitarian solution, with and without subsidy, for all students
except Benidorm students. Since Benidorm students contracted 8 buses (instead of 1),
they were able to obtain lower prices.

L’Alfasdel Pi Calpe Altea Benidorm La Vila Joiosa
240 295 245 195 187.5

5. Concluding remarks

The transport system for university students in the province of Alacant introduced in
this paper is called An Integrated Transport System (UNIVERCITY) since it consists
of a joint transport system among town councils in the Alacant province, managed by
the Diputacio, which tries to connect villages and towns in Alacant efficiently with the
different university campuses.

When computing the financial support to be covered by the Diputacio, we could
have followed another approach. To be exact, we could have considered the multiplica-
tive g-tax core (introduced by Tijs and Driessen [31]). In fact, we have also considered
this approach in previous versions of this paper. Nevertheless, the financial support, as
well as the financed cost sharing rule which we have obtained coincide. The reader in-
terested in the equivalent multiplicative approach may refer to [23].

It should be noted that the model we have proposed in this paper is a first approach
to the real problem. The whole project has been presented to the Diputacio d’Alacant
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and is being evaluated. If the project were to be developed, it would permit collecting all
the necessary data. This would therefore allow us to study possible generalizations of the
model described here. For instance, a possible extension would concern the timetables.
We have considered that each student goes on a return-trip except during holidays. The
real meaning behind this assumption should be considered carefully. In fact, there is
no problem since each student must pay a monthly fare, no matter the days they take
the bus. Even so, at least two timetables should be taken into consideration, one in the
morning and one in the afternoon. How does this situation modify the allocation? A new
situation could be studied in which each tree appears twice but with different information
(morning and afternoon trees), or another in which different trees are used, and so forth.
Another possible extension could be given by considering more complicated transport
subsystems. We could consider subsystems with two Campuses. One of them would be
the root of the tree, whereas the other one would be the terminus of some routes and, at
the same time, the intermediate bus stop of some other routes.
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