p-spline mixed models for spatio-temporal data

María Durbán

joint work with Dae-Jin Lee

DEPARTMENT OF STATISTICS
UNIVERSIDAD CARLOS III DE MADRID

June 2009
Outline

1. **P-splines**
 - Mixed models approach
 - Multidimensional P-splines

2. **P-splines for spatial count data**
 - Spatial smoothing
 - Smooth-CAR model
 - Application: Scottish Lip Cancer data

3. **Spatio-temporal data Smoothing with P-splines**
 - ANOVA-Type Interaction Models
 - Application: Environmental spatio-temporal data

4. **Spatio-temporal Disease Mapping**
Outline

1. **P-splines**
 Mixed models approach
 Multidimensional P-splines

2. **P-splines for spatial count data**
 Spatial smoothing
 Smooth-CAR model
 Application: Scottish Lip Cancer data

3. **Spatio-temporal data Smoothing with P-splines**
 ANOVA-Type Interaction Models
 Application: Environmental spatio-temporal data

4. **Spatio-temporal Disease Mapping**
Penalized Likelihood splines (Eilers & Marx, 1996):

- Given the data \((x_i, y_i), i = 1, ..., n\)
- Fit a sum of local basis functions:
 \[y_i = f(x_i) + \epsilon_i, \quad \epsilon \sim N(0, \sigma^2) \]
 where \(f(x_i) = B\theta\) and
 \[B = B(x) \text{ is a Regression Basis, and} \]
 \[\theta \text{ is a vector of coefficients.} \]

- Control the fit through a smoothing parameter \((\lambda)\).
B-splines Basis:

- \(p + 1 \) Piece-wise polynomials of degree \(p \).
- Connected by knots.
- In general the choice is \(p=3 \), cubic spline.
P-splines

“The Flexible Smoother”

B-splines Basis:

- \(\hat{y} = f(x_i) = B\hat{\theta} \)

B-splines Regression:

\[
\min_{\theta} S(\theta; y) = \| y - B\theta \|^2 \\
\theta = (B'B)^{-1}B'y
\]

- Optimal selection of knots (**Complex**).

- **P-Splines:** add a penalty to control smoothness.

» Methodology
P-splines

“The Flexible Smoother”

- **B-splines Basis:**
 \[\hat{y} = f(x_i) = B\hat{\theta} \]

- **B-splines Regression:**
 \[
 \min \ S(\theta; y) = \|y - B\theta\|^2 \\
 \hat{\theta} = (B'B)^{-1}B'y
 \]

- Optimal selection of knots *(Complex)*.

- **P-Splines:** add a penalty to control smoothness.

Example:
P-splines

“The Flexible Smoother”

B-splines Basis:

- \(\hat{y} = f(x_i) = B\hat{\theta} \)

B-splines Regression:

\[
\min_{\theta} S(\theta; y) = \|y - B\theta\|^2
\]

\(\hat{\theta} = (B'B)^{-1}B'y \)

- Optimal selection of knots (Complex).

P-Splines: add a penalty to control smoothness.
Methodology:

- Minimize the penalized sum of squares (PSS):

\[S(\theta; y, \lambda)_p = \|y - B\theta\|^2 + \text{PENALTY} \]

- The PENALTY term, controls the smoothness of the fit by \(\lambda \).

 - Eilers & Marx (1996):
 \(\Rightarrow \) (discrete) Penalty over adjacent coefficients \(\theta \).

 - Lang & Brezger (2004):
 \(\Rightarrow \) “Bayesian P-splines”: random walk priors for \(\theta \), e.g.:

\[
\theta | \theta_{m-1} \sim \mathcal{N}(\theta_{m-1}, \tau^2), \text{ or } \\
\theta | \theta_{m-1}, \theta_{m-2} \sim \mathcal{N}(2\theta_{m-1} - \theta_{m-2}, \tau^2)
\]
Methodology:

- Minimize the **penalized sum of squares (PSS)**:

\[
S(\theta; y, \lambda)_p = \| y - B\theta \|^2 + \text{PENALTY}
\]

- The **PENALTY** term, controls the smoothness of the fit by \(\lambda \).

 - **Eilers & Marx (1996):**
 \(\Rightarrow \) *(discrete)* **Penalty** over adjacent coefficients \(\theta \).

 - **Lang & Brezger (2004):**
 \(\Rightarrow \) “**Bayesian P-splines**”: random walk priors for \(\theta \), e.g.:
 \[
 \theta | \theta_{m-1} \sim \mathcal{N}(\theta_{m-1}, \tau^2), \text{ or}
 \theta | \theta_{m-1}, \theta_{m-2} \sim \mathcal{N}(2\theta_{m-1} - \theta_{m-2}, \tau^2)
 \]
Methodology:

- Minimize the penalized sum of squares (PSS):

\[S(\theta; y, \lambda)_p = \| y - B\theta \|^2 + \text{PENALTY} \]

- The PENALTY term, controls the smoothness of the fit by \(\lambda \).

 - Eilers & Marx (1996):
 \[\Rightarrow \text{(discrete) Penalty over adjacent coefficients } \theta. \]

 - Lang & Brezger (2004):
 \[\Rightarrow \text{“Bayesian } P\text{-splines”}: \text{ random walk priors for } \theta, \text{ e.g.:} \]
 \[\theta|\theta_{m-1} \sim \mathcal{N}(\theta_{m-1}, \tau^2), \text{ or} \]
 \[\theta|\theta_{m-1}, \theta_{m-2} \sim \mathcal{N}(2\theta_{m-1} - \theta_{m-2}, \tau^2) \]
\textbf{P-splines}\\
“The Flexible Smoother”\\

- \textbf{PSS} becomes:

\[S(\theta; y, \lambda)_p = \|y - B\theta\|^2 + \theta' P\theta \]

- \[P = \lambda D'D. \]
- \[\lambda \text{ is the smoothing parameter.} \]
- \[D \text{ are difference matrices.} \]

- For given \(\lambda \), \(\min\ S(\theta; y, \lambda)_p \)

\[\hat{\theta} = (B'B + \lambda D'D)^{-1} B'y \]

- \(\lambda \) can be selected by CV, GCV, AIC or BIC.
\textbf{P-splines} \hfill “The Flexible Smoother”

- **PSS** becomes:

\[S(\theta; y, \lambda)_p = \|y - B\theta\|^2 + \theta' P\theta \]

\[\Rightarrow P = \lambda D'D. \]

\[\Rightarrow \lambda \text{ is the smoothing parameter.} \]

\[\Rightarrow D \text{ are difference matrices.} \]

- For given \(\lambda \), \(\min S(\theta; y, \lambda)_p \)

\[\hat{\theta} = (B'B + \lambda D'D)^{-1} B'y \]

\[\Rightarrow \lambda \text{ can be selected by CV, GCV, AIC or BIC.} \]
- P-splines
 “The Flexible Smoother”

- **PSS** becomes:

\[S(\theta; y, \lambda)_p = \|y - B\theta\|^2 + \theta' P\theta \]

 - \(P = \lambda D'D \).
 - \(\lambda \) is the smoothing parameter.
 - \(D \) are difference matrices.

- For given \(\lambda \), \(\min S(\theta; y, \lambda)_p \)

\[\hat{\theta} = \left(B'B + \lambda D'D \right)^{-1} B'y \]

 - \(\lambda \) can be selected by **CV**, **GCV**, **AIC** or **BIC**.
P-splines

“The Flexible Smoother”

- **1d P-splines:**
 - No penalty over coefficients.
 - Penalty over coefficients.

Example:

- B-splines basis and θ without penalty
1d P-splines:

- No penalty over coefficients.
- Penalty over coefficients.

Example:

B-splines basis and θ with penalty
Advantages over other smoothers:

- **Low-Rank**: “\(\dim(B) < \dim(\text{data}) \)”.
- **Computationally efficient**: “\# knots \(\leq 40 \)”.
- **Selection of number** and **Location** of knots is **NOT** an issue.
- **Discrete Penalties** over the \(\theta \), not over the fitted curve.
- **Easy extension to**:
 - Mixed models,
 - non-gaussian data (GLM’s) and
 - Multidimensional smoothing.
 - Spatial and Spatio-temporal smoothing.
Reformulate:

- Model $y = B\theta + \epsilon$, into

$$y = X\beta + Z\alpha + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

- where X and Z are “fixed” and “random” effects matrices.

- with coefficients β and $\alpha \sim \mathcal{N}(0, G)$, and $G = \sigma^2 \Lambda$

- $\lambda = \frac{\sigma^2}{\sigma^2 \alpha}$
Reformulate:

- Model $y = B\theta + \epsilon$, into

$$y = X\beta + Z\alpha + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

- where X and Z are “fixed” and “random” effects matrices.

- with coefficients β and $\alpha \sim \mathcal{N}(0, G)$, and $G = \sigma^2_\alpha R$

- $\lambda = \frac{\sigma^2}{\sigma^2_\alpha}$

» Reparameterization
Reparameterization:

\[B \equiv [X : Z] \Rightarrow B\theta = X\beta + Z\alpha \]

We use the Singular Value Decomposition (SVD) on \(D'D \)
P-splines
A mixed model approach

Singular Value Decomposition (SVD)

\[D' D = U \Sigma U' \]

- with \(U = [U_n : U_s] \)

\[
\begin{align*}
D' D &= [U_n : U_s] \begin{bmatrix} 0_d & \tilde{\Sigma} \end{bmatrix} \begin{bmatrix} U_n' \\ U_s' \end{bmatrix} \\
\tilde{\Sigma} &\equiv \text{non-null eigenvalues.} \\
U_n &\equiv \text{eigenvectors corresponding to the null eigenvalues.} \\
U_s &\equiv \text{eigenvectors corresponding to the non-null eigenvalues.}
\end{align*}
\]
P-splines

A mixed model approach

- The **fix effects** \(\beta \) are **unpenalized** and
- The **Penalty** \(\theta' P \theta \) becomes

\[
\alpha' F \alpha
\]

where \(F = \lambda \tilde{\Sigma} \) is diagonal.

- And the **random effects** \(\alpha \) covariance matrix \(G \):

\[
G = \sigma^2 F^{-1}
\]

- Mixed Model Basis:

\[
X = [1 : x] \\
Z = BU_s
\]
Advantages:

- Flexibility:
 - Easy incorporation of smoothing in complex models ("spatial" random effects and/or correlated errors).

- Mixed Models Theory:
 - Estimation and Inference.

- Software Implementation:
 - R, Splus, MATLAB or SAS.

- Extension to non-gaussian data:
 - Generalized Linear Mixed Models (GLMM)
Multidimensional P-splines

Example: 2d-array

- **Data** $Y = y_{ij}$, $i = 1, \ldots, n_1$ and $j = 1, \ldots, n_2$

- **Array structure**: n_1 rows and n_2 columns

$$Y = \begin{bmatrix}
y_{11} & y_{12} & \cdots & y_{1n_2} \\
y_{21} & y_{22} & \cdots & y_{2n_2} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n_11} & \cdots & \cdots & y_{n_1n_2}
\end{bmatrix}$$

- **Regressors**:

$$x_1 = (x_{11}, \ldots, x_{1n_1})'$$

$$x_2 = (x_{21}, \ldots, x_{2n_2})'$$
Multidimensional \(P \)-splines

Use of Tensor Products of \(B \)-splines (Durbán et al, 2002):

Example: 2d-array

- **Marginal Basis:**
 - \(B_1 = B_1(x_1) \), of dim. \(n_1 \times c_1 \).
 - \(B_2 = B_2(x_2) \), of dim. \(n_2 \times c_2 \).

- **2d \(B \)-splines Basis:**
 - Kronecker Product (\(\otimes \)) of marginal basis:
 \[
 B = B_2 \otimes B_1, \quad \text{of dim.} \quad n_1 n_2 \times c_1 c_2
 \]
Multidimensional p-splines

Use of Tensor Products of B-splines (Durbán et al, 2002):

Example: 2d-array

- **Marginal Basis:**
 - $B_1 = B_1(x_1)$, of dim. $n_1 \times c_1$.
 - $B_2 = B_2(x_2)$, of dim. $n_2 \times c_2$.

- **2d B-splines Basis:**
 - Kronecker Product (\otimes) of marginal basis:

 $$B = B_2 \otimes B_1,$$

 of dim. $n_1 n_2 \times c_1 c_2$
Multidimensional P-splines

Model:

$$y = f(x_1, x_2) + \epsilon,$$

with $y_{n_1n_2 \times 1}$

- In matrix form, $\hat{y} = B\theta$ can be written as:

 $$\hat{Y} = B_1AB_2, \text{ of dim } n_1 \times n_2$$

 where A is a matrix $c_1 \times c_2$ of coefficients θ of length $c_1c_2 \times 1$.

IDEA:

- Set penalties over Θ.

 - Row-wise Penalty: $\theta' \left(I_{c_2} \otimes D_1'D_1\right) \theta$

 - Column-wise Penalty: $\theta' \left(D_2'D_2 \otimes I_{c_1}\right) \theta$
Multidimensional P-splines

Model:

$$y = f(x_1, x_2) + \epsilon,$$

with $y_{n_1 n_2 \times 1}$

- In matrix form, $\hat{y} = B\theta$ can be written as:

$$\hat{Y} = B_1 A B_2,$$

of dim $n_1 \times n_2$

where A is a matrix $c_1 \times c_2$ of coefficients θ of length $c_1 c_2 \times 1$.

IDEA:

- Set penalties over Θ.

- **Row-wise** Penalty:

$$\theta' \left(I_{c_2} \otimes D_1' D_1 \right) \theta$$

- **Column-wise** Penalty:

$$\theta' \left(D_2' D_2 \otimes I_{c_1} \right) \theta$$
Multidimensional P-splines

- **Penalty Matrix in $2d$:**

\[
P = \lambda_1 I_{c_2} \otimes D_1' D_1 + \lambda_2 D_2' D_2 \otimes I_{c_1}
\]

- λ_1 and λ_2 are the smoothing parameters in each dimension.
- **Anisotropy:** ($\lambda_1 \neq \lambda_2$)
As in 1d Case:

Example:

The Mixed Model consists of:

\[\hat{y} = X\hat{\beta} + Z\hat{\alpha} \]

(Linear/Fixed) + (Non-Linear/Random)
Multidimensional P-splines

Mixed Models Representation:

- As in 1d case, the aim is:

 \[B \equiv [X : Z] \implies B\theta = X\beta + Z\alpha \]

- The SVD over P allows the simultaneous diagonalization of $D_1^\prime D_1$ and $D_2^\prime D_2$.

- The penalty P becomes F (block diagonal matrix):

 \[
 F = \begin{pmatrix}
 \lambda_2 \tilde{\Sigma}_2 \otimes I_2 \\
 \lambda_1 I_2 \otimes \tilde{\Sigma}_1 \\
 \lambda_1 I_{c_2-2} \otimes \tilde{\Sigma}_1 + \lambda_2 \tilde{\Sigma}_2 \otimes I_{c_1-2}
 \end{pmatrix}
 \]
Multidimensional P-splines

ANOVA-type Decomposition of Smooth Surfaces:

$$\hat{y} = f(x_1) + f(x_2) + f(x_1, x_2)$$

(additive term for x_1)
(additive term for x_2)
(interaction term for x_1, x_2)

» Advantages
Multidimensional P-splines

Advantages:

- Extension to d-dimensions:
 \[B = B_2 \otimes B_1 \otimes \cdots \otimes B_d \]

- Efficient algorithms:

- Anisotropy (different smoothing for each dimension):

- Complex models: spatial data smoothing
Outline

1. P-splines
 - Mixed models approach
 - Multidimensional P-splines

2. P-splines for spatial count data
 - Spatial smoothing
 - Smooth-CAR model
 - Application: Scottish Lip Cancer data

3. Spatio-temporal data Smoothing with P-splines
 - ANOVA-Type Interaction Models
 - Application: Environmental spatio-temporal data

4. Spatio-temporal Disease Mapping
We propose:

- **2d P-splines:**
 - **Geostatistics:** at sampling locations.
 - **Regional/areal:** at the centroids.

Models of the form:

\[y = f(\text{lon}, \text{lat}) + \epsilon \]

where

- \(f(\text{lon}, \text{lat}) \) is a large-scale spatial smooth trend: \(X\beta + Z\alpha \).
- The mixed model allows the simultaneous estimation of smoothing and spatial correlation.

Spatial count data
We propose:

- 2d P-splines:

- Geostatistics: at sampling locations.

- Regional/areal: at the centroids.

Models of the form:

$$y = f(\text{lon}, \text{lat}) + \epsilon$$

where

- $f(\text{lon}, \text{lat})$ is a large-scale spatial smooth trend: $X\beta + Z\alpha$.

- The mixed model allows the simultaneous estimation of smoothing and spatial correlation.
We propose:

• 2d P-splines:
• Geostatistics: at sampling locations.
• Regional/areal: at the centroids.

Models of the form:

\[y = f(\text{lon}, \text{lat}) + \epsilon \]

where

• \(f(\text{lon}, \text{lat}) \) is a large-scale spatial smooth trend: \(X\beta + Z\alpha \).
• The mixed model allows the simultaneous estimation of smoothing and spatial correlation.
We propose:

- 2d P-splines:
- Geostatistics: at sampling locations.
- Regional/areal: at the centroids.

Models of the form:

$$y = f(lon, lat) + \epsilon$$

where

- $f(lon, lat)$ is a large-scale spatial smooth trend: $X\beta + Z\alpha$.
- The mixed model allows the simultaneous estimation of smoothing and spatial correlation.
\(B \)-spline Basis for spatial data:

- Given that data are **NOT** in an array

\[
B = B_2 \otimes B_1 \text{ replace by } B_2 \square B_1
\]

\(\square \) denotes the “Row-wise Kronecker” or **Box-Product**.

\[
B_2 \square B_1 = (B_2 \otimes 1_{c_1}) \odot (1_{c_2} \otimes B_1)
\]

\(\odot \) is the “element-wise” product.
P-splines for spatial count data

In many applications:

- Collect count data **observed in regions or areas**.
 - **E.g.**: # of cases of disease or deaths
- Counts are **Poisson** distributed.

\[y \sim \mathcal{P}(\mu) \]

Penalized-GLMM

- **P-splines as mixed models**:
 - **Linear Predictor**:
 \[\eta = B\theta \implies X\beta + Z\alpha \]
 - **Penalized log-Likelihood**:
 \[\ell_p(\beta, \alpha; y) = \ell(\beta, \alpha; y) - \frac{1}{2}\alpha'F\alpha \]

- **Estimation via PQL**
In many applications:

- Collect count data observed in regions or areas.
 - E.g.: # of cases of disease or deaths
- Counts are Poisson distributed.

\[y \sim \mathcal{P}(\mu) \]

Penalized-GLMM

- *P*-splines as mixed models:
 - Linear Predictor:
 \[\eta = B\theta \implies X\beta + Z\alpha \]
 - Penalized log-Likelihood:
 \[\ell_p(\beta, \alpha; y) = \ell(\beta, \alpha; y) - \frac{1}{2} \alpha' F \alpha \]
 - Estimation via PQL
Most popular approach:

- Conditional Autoregressive Models (CAR), Besag (1991)
 - Spatial Dependence across "neighbours"
 - Different neighbourhood criteria.
 - Common border.
 - Centroids distance, 4-nearest neighbours.
Smooth-CAR model

Most popular approach:

- Conditional Autoregressive Models (CAR), Besag (1991)
- Spatial Dependence across “neighbours”.
- Different neighbourhood criteria.
 - Common border.
 - Centroids distance, 4-nearest neighbours.
Smooth-CAR model

CAR model

- Most popular approach:
 - Conditional Autoregressive Models (CAR), Besag (1991)
 - Spatial Dependence across “neighbours”.
 - Different neighbourhood criteria.
 - Common border.
 - Centroids distance, 4-nearest neighbours.
Smooth-CAR model

CAR model

- Most popular approach:
 - Conditional Autoregressive Models (CAR), Besag (1991)
 - Spatial Dependence across “neighbours”.
 - Different neighbourhood criteria.
 - Common border.
 - Centroids distance, 4-nearest neighbours.
Smooth-CAR model

Formulation:

\[y = X\beta + b, \]

where \(b = (b_1, b_2, ..., b_n)' \) is a vector for the spatial effects.

- Impose a spatial dependency structure by a prior distribution for \(b \):
 \[b \sim \mathcal{N}(0, G_b) \]

where \(G_b \) depends on the “neighbourhood structure”:
- defined by Contiguity matrix (\(Q \))
Smooth-CAR model

CAR model

Formulation:

\[y = X\beta + b, \]

where \(b = (b_1, b_2, ..., b_n)' \) is a vector for the spatial effects.

- Impose a spatial dependency structure by a prior distribution for \(b \):

 \[b \sim \mathcal{N}(0, G_b) \]

where \(G_b \) depends on the “neighbourhood structure”:

- Defined by Contiguity matrix \(Q \)
✓ We follow an **Empirical Bayes** approach:

Intrinsic CAR:

\[G_b = \sigma_b^2 Q^- + \kappa^{-1}I \]
(Besag, 1991)

- Two independent and separate variance components:
 - **Spatially-structured variation:** \(\sigma_b^2 Q^- \)
 - **Unstructured non-spatial correlation:** \(\kappa^{-1}I \)

Alternative CAR models structures:

\[G_b = \sigma_b^2 (\phi Q^- + (1 - \phi)I)^{-1} \]
(Leroux et al, 1999)

\[G_b = \sigma_b^2 (\phi Q^- + (1 - \phi)I) \]
(Dean et al, 2001)

where

- \(\phi \) measures the relative weight between *structured* and *unstructured* variability
- \(0 \leq \phi \leq 1 \)
✓ We follow an **Empirical Bayes** approach:

Intrinsic CAR:

\[G_b = \sigma_b^2 Q^+ + \kappa^{-1} I \]

(Besag, 1991)

- Two independent and separate variance components:
 - **Spatially-structured variation:** \(\sigma_b^2 Q^+ \)
 - **Unstructured non-spatial correlation:** \(\kappa^{-1} I \)

Alternative CAR models structures:

\[G_b = \sigma_b^2 (\phi Q^+ + (1 - \phi)I)^{-1} \]

(Leroux et al, 1999)

\[G_b = \sigma_b^2 (\phi Q^- + (1 - \phi)I) \]

(Dean et al, 2001)

where

- \(\phi \) measures the relative weight between *structured* and *unstructured* variability
- \(0 \leq \phi \leq 1 \)
We propose a “hybrid” model:

- **Spatial P-spline** with **CAR** structure: “Smooth-CAR” model
- **Model:**
 \[\eta = X\beta + Z\alpha + b , \]
 where \(b \sim \mathcal{N}(0, G_b) \)

Our approach:

\[\eta = \text{Spatial Trend} + \text{Local area-level spatial correlation} \]

\[X\beta + Z\alpha \quad \text{(Large-scale)} \]

\[\text{Spatial Random Effects} \quad \text{(Small-scale)} \]
We propose a “hybrid” model:

- **Spatial** P-spline with **CAR** structure: “Smooth-CAR” model
- Model:
 \[\eta = X\beta + Z\alpha + b , \]
 where \(b \sim \mathcal{N}(0, G_b) \)

Our approach:

\[\eta = \underbrace{X\beta + Z\alpha}_{\text{Spatial Trend (Large-scale)}} + \underbrace{\text{Local area-level spatial correlation}}_{\text{Spatial Random Effects (Small-scale)}} \]
Smooth-CAR model

Summary:

<table>
<thead>
<tr>
<th>Model</th>
<th>Linear Predictor</th>
<th>Area-level var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>$X\beta + Z\alpha$</td>
<td>$-$</td>
</tr>
<tr>
<td>CAR</td>
<td>$X\beta + b$</td>
<td>$b \sim \mathcal{N}(0, G_b)$</td>
</tr>
<tr>
<td>Smooth-CAR</td>
<td>$X\beta + Z\alpha + b$</td>
<td>$b \sim \mathcal{N}(0, G_b)$</td>
</tr>
</tbody>
</table>

The Smooth-CAR:

- Allow us model the **spatial trend** ($X\beta + Z\alpha$) along large geographical distances and
- **Local area-level** correlation by a **CAR** component (b).
Application: Scottish Lip Cancer data

Example: Scottish Lip Cancer

• Breslow and Clayton (1993)
• Observed \((y)\) and Expected \((e)\)
cases of lip cancer
• 56 counties in Scotland
We fit several models:

- **Smooth P-spline models:**

 \[\eta = \log(e) + X\beta + Z\alpha \]
 (Poisson)

 \(\log(e) \) is the **offset** term.

- **CAR models:**

 \[\eta = \log(e) + X\beta + b, \quad b \sim \mathcal{N}(0, G_b), \]
 (Dean)

 with:

 \[G_b = \sigma_b^2 (\phi Q^- + (1 - \phi)I) \]

- **Smooth-CAR model:**

 \[\eta = \log(e) + X\beta + Z\alpha + b, \quad b \sim \mathcal{N}(0, G_b) \]
We fit several models:

- **Smooth P-splines** models:

 \[\eta = \log(e) + X\beta + Z\alpha \]

 \(\log(e) \) is the **offset** term.

- **CAR** models:

 \[\eta = \log(e) + X\beta + b, \quad b \sim \mathcal{N}(0, G_b), \]

 with:

 \[G_b = \sigma_b^2 (\phi Q^- + (1 - \phi)I) \]

- **Smooth-CAR** model:

 \[\eta = \log(e) + X\beta + Z\alpha + b, \quad b \sim \mathcal{N}(0, G_b) \]
Application: Scottish Lip Cancer data

Fitted Models

We fit several models:

- **Smooth \(P \)-splines models:**
 \[
 \eta = \log(e) + X\beta + Z\alpha
 \]
 \((\text{Poisson}) \)

 \(\log(e) \) is the **offset** term.

- **CAR models:**
 \[
 \eta = \log(e) + X\beta + b, \quad b \sim \mathcal{N}(0, G_b),
 \]

 with:
 \[
 G_b = \sigma_b^2 \left(\phi Q^- + (1 - \phi)I \right)
 \]
 \((\text{Dean}) \)

- **Smooth-CAR model:**
 \[
 \eta = \log(e) + X\beta + Z\alpha + b, \quad b \sim \mathcal{N}(0, G_b)
 \]
In order to compare the proposed models we use:

\[\text{AIC} = \text{Dev} + 2 \times \text{df} \]
\[\text{BIC} = \text{Dev} + \log(n) \times \text{df} \]

where:
- \(\text{df} \) is the effective dimension of the model ("degrees of freedom").
- is a measure of the complexity of the fitted model,
- Calculated as the trace(\(H \)).

\[\hat{y} = Hy \]
In order to compare the proposed models we use:

\[
\text{AIC} = \text{Dev} + 2 \times \text{df}
\]

\[
\text{BIC} = \text{Dev} + \log(n) \times \text{df}
\]

where:

- \(\text{df} \) is the effective dimension of the model (“degrees of freedom”).
- \(\text{df} \) is a measure of the complexity of the fitted model,
- Calculated as the \(\text{trace}(H) \),

\[
\hat{y} = Hy
\]
Application: Scottish Lip Cancer data

Comparisons of fitted models

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>AIC</th>
<th>BIC</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth: Poisson</td>
<td>λ_1 = 11.75</td>
<td>λ_2 = 3.63</td>
<td>σ^2_s = -</td>
<td>κ^-1 = -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114.04</td>
</tr>
<tr>
<td>CAR: Dean</td>
<td>-</td>
<td>-</td>
<td>σ^2_s = 0.78</td>
<td>κ^-1 = 0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89.36</td>
</tr>
<tr>
<td>Smooth-CAR: Dean</td>
<td>λ_1 = 30.11</td>
<td>λ_2 = 16.37</td>
<td>σ^2_s = 0.53</td>
<td>κ^-1 = -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87.46</td>
</tr>
</tbody>
</table>

Observations:

- \(\phi \approx 1 \)
 Overdispersion is due to “structured” spatial correlation (\(\sigma^2_s Q^- \)).
- Smooth-CAR performs better in terms of the selected criteria.
Dean’s CAR model:

(a) Large-scale linear trend: $X\beta$

(b) CAR structured random effects: $b \sim \mathcal{N}(0, G_b)$

(c) $X\beta + b$
Smooth-CAR model:

(a) Smooth Trend
(b) CAR component
(c) Trend + CAR

(a) Smooth large-scale spatial trend: $X\beta + Z\alpha$
(b) CAR structured random effects: $b \sim \mathcal{N}(0, G_b)$
(c) $X\beta + Z\alpha + b$
Outline

1. **P-splines**
 Mixed models approach
 Multidimensional \(P \)-splines

2. **\(P \)-splines for spatial count data**
 Spatial smoothing
 Smooth-CAR model
 Application: Scottish Lip Cancer data

3. **Spatio-temporal data Smoothing with \(P \)-splines**
 ANOVA-Type Interaction Models
 Application: Environmental spatio-temporal data

4. **Spatio-temporal Disease Mapping**
Spatio-temporal data

- Response variable, y_{ijt}
 - measured over geographical locations, $s = (x_i, x_j)$, with $i, j = 1, \ldots, n$
 - and over time periods, x_t, for $t = 1, \ldots, T$

- ISSUE: huge amount of data available
 - e.g.: Environmental data, epidemiologic studies, disease mapping applications, ...

- Smoothing techniques:
 - Study spatial and temporal trends.
 - Space and time interactions.
 - ✓ 3-dimensional smoothing: P-splines and GLAM.
Example of GLAM in $3d$
Currie et. al (2006)

- **3d-case:**
 \[f(x_1, x_2, x_3) = B\theta \]

- **Basis:** $B = B_1 \otimes B_2 \otimes B_3$

 - θ can be expressed as a $3d$-array $A = \{\theta\}_{ijk}$ of dim. $c_1 \times c_2 \times c_3$
• **3d-Penalty matrix:**

 • Set penalties over the 3d-array A:

 $$ P = \lambda_1 D_1' D_1 \otimes I_{c_2} \otimes I_{c_3} + \lambda_2 I_{c_1} \otimes D_2' D_2 \otimes I_{c_3} + \lambda_t I_{c_1} \otimes I_{c_2} \otimes D_t' D_t $$

 - row-wise
 - column-wise
 - layer-wise

• For spatio-temporal data:

 $$ f(longitude, \text{latitude}, \text{time}) $$

 - **Spatial anisotropy** ($\lambda_1 \neq \lambda_2$), different amount of smoothing for latitude and longitude.
 - **Temporal smoothing** (λ_t)
 - Space-time interaction.
For spatio-temporal data, we propose:

\[B = B_s \otimes B_t, \]

where

\[B_s \equiv \text{is the spatial } B\text{-spline basis } (B_1 \square B_2) \] and
\[B_t \equiv \text{is the } B\text{-spline basis for time of dim. } t \times c_3. \]

✓ as GLAM:

Given \(y_{ijt} = Y_{t \times n} \), and \(\theta_{ijt} = A_{ct \times c_s} \), we have

\[\mathbb{E}[Y] = B_t AB_s' \]

✓ as Mixed models

\[B\theta = X\beta + Z\alpha \]
Spatio-temporal data Smoothing with P-splines

ANOVA-Type Interaction Models

Smooth-ANOVA decomposition models

- Chen (1993), Gu (2002):
 - “Smoothing-Spline ANOVA” (SS-ANOVA).
 - Interpretation as “main effects” and “interactions”.
 - Models of type:
 \[
 \hat{y} = f(x_1) + f(x_2) + f(x_t) \\
 + f(x_1, x_2) + f(x_1, x_t) + f(x_2, x_t) \\
 + f(x_1, x_2, x_t)
 \]
 “Main/additive effects”
 “2-way interactions”
 “3-way interactions”

- PROBLEMS:
 - identifiability, and
 - basis dimension (“curse of dimensionality”)
Lee and Durbán (2009a), consider:

\[y = \gamma + f_s(x_1, x_2) + f_s(time) + f_{st}(x_1, x_2, time) + \epsilon, \]

where

- \(f_s(x_1, x_2) \) ≡ Spatial 2d smooth surface
- \(f_t(time) \) ≡ Smooth time trend
- \(f_{st}(x_1, x_2, time) \) ≡ Space-time interaction

We need to construct an identifiable model.

Our approach is based on:

- low-rank basis (\(P \)-splines)
- the mixed model representation and SVD properties.
Basis, Coefficients and Penalty

- For each smooth term $f(\cdot)$, in spatio-temporal ANOVA model we have
 - **$B-$spline basis:**
 \[B = [1_{nt} : B_s \otimes 1_{t} : 1_{n} \otimes B_t : B_s \otimes B_t] \]
 - **vector of coefficients:**
 \[\theta = (\gamma, \theta^{(s)}, \theta^{(t)}, \theta^{(st)})' \]
 - and a blockdiagonal **Penalty:**
 \[P = \begin{pmatrix} 0 & P_s & P_t & P_{st} \\ P_s & P_t & P_{st} & 0 \\ P_t & P_{st} & P_{st} & 0 \\ P_{st} & 0 & 0 & 0 \end{pmatrix} \]
 where
 - $P_s = 2d$-spatial penalty
 - $P_t = 1d$-penalty for time
 - $P_{st} = 3d$ space-time penalty

Uc3m/ Dept. of Statistics
Basis, Coefficients and Penalty

- For each smooth term $f(\cdot)$, in spatio-temporal ANOVA model we have
 - B—spline basis:
 $$B = [1_{nt} : B_s \otimes 1_t : 1_n \otimes B_t : B_s \otimes B_t]$$
 - vector of coefficients:
 $$\theta = (\gamma, \theta^{(s)}', \theta^{(t)}', \theta^{(st)}')$$
 - and a blockdiagonal Penalty:
 $$P = \begin{pmatrix} 0 & P_s & P_t & P_{st} \\ P_s & 0 & & \\ P_t & & 0 & \\ P_{st} & & & 0 \end{pmatrix}$$
 where
 - $P_s = 2d$-spatial penalty
 - $P_t = 1d$-penalty for time
 - $P_{st} = 3d$ space-time penalty
Basis, Coefficients and Penalty

- For each smooth term \(f(\cdot) \), in spatio-temporal ANOVA model we have
 - \(B \)-spline basis:
 \[B = [1_{nt} : B_s \otimes 1_t : 1_n \otimes B_t : B_s \otimes B_t] \]
 - vector of coefficients:
 \[\theta = (\gamma, \theta^{(s)'}, \theta^{(t)'}, \theta^{(st)'})' \]
- and a blockdiagonal penalty:
 \[P = \begin{pmatrix} P_{st} & 0 \\ P_{t} & P_s \end{pmatrix} \]
 where
 \[P_s = 2d\text{-spatial penalty} \]
 \[P_t = 1d\text{-penalty for time} \]
 \[P_{st} = 3d\text{ space-time penalty} \]
Basis, Coefficients and Penalty

- For each smooth term \(f(\cdot) \), in spatio-temporal ANOVA model we have
 - \(B \)-spline basis:
 \[
 B = [1_{nt} : B_s \otimes 1_t : 1_n \otimes B_t : B_s \otimes B_t]
 \]
 - vector of coefficients:
 \[
 \theta = (\gamma, \theta^{(s)}', \theta^{(t)}', \theta^{(st)}')'
 \]
 - and a blockdiagonal Penalty:
 \[
 P = \begin{pmatrix}
 0 & P_s \\
 P_s & P_t \\
 P_t & P_{st}
 \end{pmatrix},
 \]
 where
 \[
 P_s = 2d\text{-spatial penalty}

 P_t = 1d\text{-penalty for time}

 P_{st} = 3d\text{ space-time penalty}
 \]
✓ However, B is **NOT full column-rank** (“linear dependency”)

✓ Model is **NOT identifiable**

Solution:

- Reparameterize as a mixed model (using SVD).
- For each term we have:

 Basis $[X : Z]$

\[
\begin{align*}
 f_s(x_1, x_2) &\equiv x_1 : x_2 & (1) \\
 f_t(x_t) &\equiv x_t & (2) \\
 f_{st}(x_1, x_2, x_t) &\equiv x_1 : x_2 : x_t & (3)
\end{align*}
\]

- Some terms in (1) and (2) also appear in (3).
The **mixed model representation**, allow us to **identify the columns to remove** in order to maintain the identifiability of the model.

and obtain a blockdiagonal penalty F

$$F = \begin{pmatrix} 0 & F_s & F_t \\ F_s & F_t & F_{st} \end{pmatrix},$$

with $\lambda_1, \lambda_2, \lambda_t, \tau_1, \tau_2, \tau_t$

In P-splines context, this is equivalent to

✓ apply constraints over **regression coefficients** $\theta_{i,j,k}$
For the **ANOVA spatio-temporal model**, the resultant mixed model reparameterization is equivalent to apply the next constraints:

- **time effect coefficient:**
 \[
 \sum_{t=1}^{c_t} \theta_t^{(t)} = 0,
 \]

- **constraints over the spatio-temporal array of coefficients, \(\Theta^{(st)} \), of dimensions \(c_t \times c_s \):**
 \[
 \sum_{i}^{c_1} \theta_{t,ij}^{(st)} = \sum_{j}^{c_2} \theta_{t,ij}^{(st)} = \sum_{i}^{c_1} \sum_{j}^{c_2} \theta_{t,ij}^{(st)} = 0.
 \]
In practice

We only need to construct the matrices X, Z and penalty F

\[
\begin{array}{cccc}
 f_s(x_1, x_2) & f_t(x_t) & f_{st}(x_1, x_2, x_t) \\
\end{array}
\]

\[
X \equiv \text{by columns} \quad x_1 : x_2 \quad x_t \quad (x_1, x_2, x_t)
\]

\[
Z \equiv \text{by blocks} \quad '' \quad '' \quad ''
\]

\[
F \equiv \text{blockdiagonal} \quad F_s \quad F_t \quad F_{st} \\
(\lambda_1, \lambda_2) \quad \lambda_t \quad (\tau_1, \tau_2, \tau_t)
\]
Ozone pollution in Europe
Lee and Durbán (2009a)

- Sample of 45 monitoring stations
- Monthly averages of O_3 levels (in $\mu g/m^3$ units)
- from January 1999 to December 2005 ($t = 1, \ldots, 84$)

Models:
- **Additive:**
 \[f_s(x_1, x_2) + f_t(x_t) \]
- **Spatio-temporal Interaction:**
 ✓ **ANOVA:**
 \[f_s(x_1, x_2) + f_t(x_t) + f_{st}(x_1, x_2, x_t) \]
Spatio-temporal data smoothing with P-splines

Application: Environmental spatio-temporal data

Spatial 2d + time

\[f_s(x_1, x_2) + f_t(x_t) \]

✓ Space-time interaction is not considered
✓ Time smooth trend is additive
Spatio-temporal ANOVA model

\[\hat{y} = f(\text{space}) + f(\text{time}) + 1999 : 1 + f(\text{space},\text{time}) \]
Comparison of fitted values
Additive VS ANOVA

✓ **Additive model** assumes a spatial smooth surface over all monitoring stations that remains constant over time.

✓ **ANOVA model** captures individual characteristics of the stations throughout time.
Comparison of Models

ANOVA and Additive

<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>14280.73</td>
<td>366.03</td>
</tr>
<tr>
<td>Additive</td>
<td>16506.28</td>
<td>65.98</td>
</tr>
</tbody>
</table>

► **Observations:**

- Best overall performance of ANOVA in terms of AIC
- **ANOVA model** is more realistic than Additive, and easier to decompose and interpret in terms of the fit.
Outline

1. \(P \)-splines
 - Mixed models approach
 - Multidimensional \(P \)-splines

2. \(P \)-splines for spatial count data
 - Spatial smoothing
 - Smooth-CAR model
 - Application: Scottish Lip Cancer data

3. Spatio-temporal data Smoothing with \(P \)-splines
 - ANOVA-Type Interaction Models
 - Application: Environmental spatio-temporal data

4. Spatio-temporal Disease Mapping
P-spline ANOVA model for disease mapping

- \(Y \) and \(E \) are \(t \times n \) arrays of observed and expected cases of disease over \(t \) time periods, and \(M = \log \left(\frac{Y}{E} \right) \).

- Consider an ANOVA model for \(\eta \)

\[
 f_s(x_1, x_2) + f_t(x_t) + f_{st}(x_1, x_2, x_t)
\]
New flexible approach for spatial and spatio-temporal data smoothing:

- based on P-splines as mixed models and
- ANOVA decomposition

Methodology also extensible for disease mapping applications.

Computationally efficient algorithms (GLAM)
Smooth-CAR mixed models for spatial count data.
Computational Statistics and Data Analysis 53(8):2968-2979.

P-spline ANOVA-Type interaction models for spatio-temporal smoothing.
Submitted.

Fast and compact smoothing on large multidimensional grids.
Computational Statistics and Data Analysis, 50(1):61-76.

Generalized linear array models with applications to multidimensional smoothing.