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1 Introduction

Regression analysis is a collection of statistical techniques for modeling and investigating
the relationship between a response variable of interest and a set of regressors or predictor
variables. A very important type of regression model is the linear regression model. Examples
of this family of models are:

yi = β0 + β1xi + εi simple linear regression

yi = β0 + β1xi1 + . . . βkxik + εi multiple linear regression

yij = µ + αi + βj + εij factorial model

for i = 1, . . . , n, where we assume that εi form a random sample from N(0, σ2). Here, y is
the dependent variable, x1, . . . , xk are the independent variables, and β0, ....βk are unknown
parameters

1.1 Matrix representation of the linear regression model

All models shown above maybe written in matrix from:

Y = Xβ + ε ε ∼ Nn(0, σ2I)

where (in the case of multiple regression),

Y =


y1

y2
...

yn

 X =


1 x11 . . . x1k

1 x21 . . . x2k
...

. . .
...

1 xn1 . . . xnk

 β =


β0

β1
...

βk

 ε =


ε1

ε2
...
εn


The assumption ε ∼ Nn(0, σ2I) ⇒ Y ∼ Nn(Xβ, σ2I) (see results 7.2 and 7.4 of Review of
Matrix Algebra).

2 Parameter estimation

The maximum likelihood estimates of the parameters are calculated via the minimization of

L(β0, . . . , βk, σ
2|x) = −n

2
ln(2πσ2)−

∑n
i=1(yi − β0 − β1xi1 − . . .− βkxik)

2

2σ2
,

minimizing of this function with respect to βj is equivalent to minimize

S =
n∑

i=1

(yi − β0 − β1xi1 − . . .− βkxik)
2

or in matrix form:
S(β) = (Y −Xβ)′(Y −Xβ) (1.1)
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This is called the least squares method, and it chooses β such that the sum of squares of
the errors εi is minimized.
Taking the partial derivative with respect to β (see results in section 6 of Review in Matrix
Algebra), and setting it to 0, we get:

2X ′Y = 2X ′Xβ normal equations

if X is of full-rank, the X ′X is non-singular, and so the solution to the minimization problem
is:

β̂ = (X ′X)−1XY

2.1 Distribution of the parameter estimates

We write
β̂ = (X ′X)−1X ′(Xβ + ε) = β + (X ′X)−1X ′ε

Now E(ε) = 0, hence, E(β̂) = β, i.e., β̂ is unbiased.
Further,

β̂ − β = (X ′X)−1X ′ε = Lε

Thus, since ε ∼ Nn(0, σ2I),
β̂ − β ∼ Nn(0, σ2LL′),

and LL′ = (X ′X)−1, and so we rewrite the expression above as,

β̂ ∼ Nn

(
β, σ2(X ′X)−1

)
,

2.2 Estimation of σ2

Define
S(β̂) = (Y −Xβ̂)′(Y −Xβ̂) (1.2)

as the residual sum of squares (SSR), then

S(β̂)/σ2 ∼ χ2
g

where g = n− p, thus g = number of independent observations minus number of parameters
fitted. Furthermore, S(β̂) and β̂ are independent.
Hence,

1. E(S(β̂)) = gσ2, and so ŝ2 = S(β̂)/g is our unbiased estimator of σ2.

2.
(β̂j − βj)√

vjjs2
∼ tn−p

where vjj are the diagonal elements of (X ′X)−1
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2.3 Example 1

In an effort to model executive compensation for the year 1979, 33 firms were selected, and
data were collected on compensation (y), sales (x1), profits (x2) and employment (x3), data
are available in the file reg1.txt.

reg1<-read.table("reg1.txt",header=TRUE)

pairs(reg1)

fit1<-lm(y~x1+x2+x3,data=reg1)

summary(fit1)

Call:

lm(formula = y ~ x1 + x2 + x3, data = reg1)

Residuals:

Min 1Q Median 3Q Max

-152.820 -71.659 9.047 55.077 239.180

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -155.07 170.69 -0.908 0.371

x1 12.37 58.48 0.212 0.834

x2 67.13 44.05 1.524 0.138

x3 12.30 33.40 0.368 0.715

Residual standard error: 92.94 on 29 degrees of freedom

Multiple R-Squared: 0.497, Adjusted R-squared: 0.4449

F-statistic: 9.55 on 3 and 29 DF, p-value: 0.0001510

y
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Figure 1: Pairwise scatterplot of variables
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Figure 1 shows pairwise plots between all variables. Note that there is a strong relations
among the explanatory variables.
The vector of estimated parameters is β = (−155.07, 12.37, 67.13, 12.30)′, and ŝ2 = 92.932.

3 Residuals

Define the fitted values as Ŷ = Xβ̂ and define ε̂ = Y − Ŷ as the residuals. Then we can
check that

Ŷ = X(X ′X)−1X ′Y = HY ,

where H is a projection matrix, i.e., it satisfies H = H ′ = HH ′.
Then, ε̂ = (I −H)ε and so

22 2

ˆ 0

ˆˆ

ε

ε

′ =

= +

X

Y Y
Y

ε̂

Ŷ

ε ∼ Nn(0, σ2I) ⇒ ε̂ ∼ Nn(0, σ2(I −H))

Similarly, Ŷ ∼ N(Xβ, σ2H).

3.1 Scaling residuals

In many occasions scaled residuals convey more information than do the ordinary residuals

Standardized residuals

Standardized residuals are defined as

di =
ε̂i√

V ar(ε̂i)

As we saw above, the variance of the ith residual is V ar(ε̂i) = σ2(1 − hii), where hii is the
ith diagonal element of H , and it is a measure of the location of ith point in the x-space.
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Therefore, the variance of ε̂i depends on the position of xi. Generally, residuals near the
center of the x-space will have larger variances than points at more remote locations.

di =
ε̂i√

ŝ2(1− hii)

they have mean zero and approximately unit variance; consequently they are useful in looking
for outliers. An observation with standardized residual outside of [−3, 3] is potentially
unusual.

Studentized residuals

Since violation of model assumptions are more likely to occur at remote points, ordinary or
standardized residuals may not be useful for detecting these violations. One solution is to
define the studentized residuals:

ri =
ε̂i√

ŝ2
(i)(1− hii)

where ŝ2
(i) is the residual mean square obtained by fitting the model without the i − th

observation.

3.2 Leverage Points

The hat matrix H is very useful in identifying influential observations (i.e., observations
whose presence of absence in the data have an influence in the model fitted).
The elements of H may be interpreted as the amount of leverage exerted by yi on ŷi, spe-
cially the diagonal elements hii.
H is an idempotent matrix, therefore all its eigenvalues are 0 or 1, and so, tr(H) =∑n

i=1 hii =sum of the eigenvalues of H = Rank(H) = p. Therefore the average size of
a diagonal element of H is p/n, if a diagonal element hii is greater that 2p/n is a high-
leverage point.

Influence on regression coefficients

A measure of the influence of a point in the model fitted is given by the Cook’s Distance
which measures how much the model fitted changes when that observation is present or
absent in the data,

Di =
(ŷi − ŷ(i)i)

2

pV ar(ŷi)

where ŷ(i)i is the ith fitted value obtained when the parameters of the models are estimated
deleting that point from the data. Cook (1977) showed that the Di statistic may be written
as

Di =
r2
i

p

hii

(1− hii)

Di consists of the squared studentized residual, which reflects how well the model fits the ith
observation yi and a component that measures how far is the point from the rest of the data,
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hii

(1−hii)
. In section 4.2 we will see that the expression above is similar equation to (1.3) which

is distributed as Fp,n−p, although Di is not distributed as an F , points for which Di > 1 are
considered influential.

For a complete detailed information on residuals and diagnostic methods see Cook and
Weisberg (1982).

Example 1

In the previous example, the different types of residuals, the leverage points and cook’s dis-
tance are calculated as...left to the reader!
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Figure 2: Left: hii values, the horizontal line correspond to 2p/n. Right: Cook’s distance.

A high-leverage point would have diagonal element hii > 6/33. Figure 2 show that there are
5 high-leverage points

4 Confidence Intervals

4.1 Confidence Intervals on the individual regression coefficients

We showed in section 2.1 that
(β̂j − βj)√

vjj ŝ2
∼ tn−p

Therefore a 100(1− α)% confident interval for βj is

β̂j − tα/2,n−p

√
vjj ŝ2 ≤ βj ≤ β̂j + tα/2,n−p

√
vjj ŝ2
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In Example 1, we obtain the C.I.s for the parameters as:

confint(fit1, level=0.95)

(Intercept) -504.17657 194.04147

x1 -107.23631 131.98495

x2 -22.95738 157.21613

x3 -55.99607 80.60511

4.2 Joint confidence region on the regression coefficients

In some cases it is necessary to construct a confidence interval that applies to the entire set
of parameters. Such intervals are called simultaneous confidence intervals. We use the
fact that β̂ ∼ Np(β, σ2(X ′X)−1), then:

(β̂ − β)′(X ′X)(β̂ − β)

σ2
∼ χ2

p

Using the fact that β̂ and ε̂ are independent and ŝ2 = S(β̂)/n−p satisfies (n−p)ŝ2/σ2 ∼ χn−p

(as we saw in section 2.2), then,

(β̂ − β)′(X ′X)(β̂ − β)

pŝ2
∼ Fp,n−p. (1.3)

Therefore, a 100(1 − α)% joint confidence region for all parameters in β will contains the
values of β such that

(β̂ − β)′(X ′X)(β̂ − β)

pŝ2
≤ Fα,p,n−p

This inequality describes an elliptically shaped region.

−100 −50 0 50 100

0
50

100
150

x1

x2 ●

The figure in the next page shows the confidence region and confidence intervals for β̂ =
(β1, β2)

′ in Example 1. Note that all points in the confidence region lie inside the CI’s but
not vice versa.
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5 Inference on the response variable and Prediction

One of the objectives of fitting a regression model is to use the model for prediction. We
may have to different aims:

1. Estimate the mean of the distribution Y |X = xh: E[Y |X = xh] = µy|xh

2. Predict the value of the response variable of an individual from the population for
whom we know, X = xh, i.e., we want to predict the value of Y |X = xh.

5.1 Estimation of the mean response

Suppose we are interested on the mean response at a particular point xh

xh =


1

xh1

xh2
...

xhk


the mean response at this point is

µy|xh
= β0 + β1xh1 + . . . + βkxhk = x′

hβ

An unbiased estimator of the mean response is

ŷ(xh) = x′
hβ̂

it is unbiased since E[ŷ(xh)] = x′
hE[β̂] = x′

hβ = µy|xh
, and the variance is

V ar[ŷ(xh)] = σ2x′
h(X

′X)−1xh

Therefore, a 100(1− α)% confidence interval on the mean response at the points xh is

ŷ(xh)± tα/2,n−p

√
ŝ2x′

h(X
′X)−1xh

5.2 Prediction of new response observations

A common use of regression models is to predict the value of the response for given values
of the explanatory variables. But, in this case, we have to take into account the randomness
of the response variable. Suppose we are interested in predicting the response variable for
a given vector xh of values of the explanatory variables. The value of the response variable
yh = x′

hβ̂ + ε predicted by the model, is given by

ŷh = x′
hβ̂ = µ̂h

10



In order to construct a confidence interval for a predictor (also called prediction interval) we
need the distribution of ŷh,

E[ŷh] = x′
hE[β̂] = x′

hβ

V ar[yh] = V ar[x′
hβ̂] + V ar[ε] = σ2x′

h(X
′X)−1xh + σ2 = σ2(1 + x′

h(X
′X)−1xh)

the prediction interval is given by:

ŷ(xh)± tα/2,n−p

√
ŝ2(1 + x′

h(X
′X)−1xh)

The prediction interval is similar to the confidence interval for the mean response but wider.
This is not surprising since in the C.I. for the mean response we take into account the
variation from the estimators of the regression parameters, and in a prediction C.I. we take
into account both the variation coming from the estimators of β, and also the variation from
the error term ε (since we are prediction a value of a random variable)

Example 1

If we wanted to give a confidence interval for the mean compensation in firms with x1 = 8.43,
x2 = 4.85 y x3 = 10.77:

predict.lm(fit1,interval="confidence")[1,]

fit lwr upr

407.6928 298.0220 517.3635

and the confidence interval for a new observation with the same values of the predictor
variables:

predict.lm(fit1,interval="prediction")[1,]

fit lwr upr

407.6928 188.2433 627.1423

Note that the projection is the same, but the C.I. is wider in the second case.

6 Hypothesis testing

6.1 Test for significance of regression

This test is used to determine if there is a linear relationship between the response variable
y and the regressor variables x1, . . . ,xk (see that here p = k + 1). The hypotheses are,

H0 : β1 = β2 = . . . = βp−1 = 0

H1 : βj 6= 0 at least for one j

The test is based on the following decomposition of the variability in different sources of
variation in the data:

We cannot compare SSR y SSE directly, since we do not know their distribution, however
we know that:

11



( ) ( ) ( )2 2 2

TO E R

ˆ ˆ

         SS          SS              SS
i i i íy y y y y y− = − + −

= +
∑ ∑ ∑

• SSR/σ2 ∼ χ2
n−p

• if H0 : β1 = β2 = . . . = βp−1 = 0 is true SST /σ2 ∼ χ2
n−1

• SSE/σ2 = SST /σ2 − SSR/σ2︸ ︷︷ ︸
independent

∼ χ2
n−1 − χn−p ≡ χ2

p−1

Therefore,
SSE/(p− 1)

SSR/(n− p)
=

MSE

ŝ2
∼ Fp−1,n−p

This can be summarized in an ANOVA table:

Source df SS MS F
Model p− 1 SSE =

∑
i(ŷi − y)2 MSR = SSE/(p− 1) MSE/ŝ2

Residual n− p SSR =
∑

i(ŷi − y)2 ŝ2 = SSR/(n− p)
Total n− 1 SST =

∑
i(yi − y)2 MST = SST /(n− 1)

The null hypothesis is rejected if MSR

ŝ2 > Fα,p−1,n−p.

Rejecting H0 means that at least one regression coefficient is non-zero, and hence that at
least one of the explanatory variables is useful in predicting the response.

Coefficient of multiple determination

This coefficient gives the proportion of variation in response variable explained by the ex-
planatory variables:

R2 = SSE/SST = 1− SSR/SST ⇒ F =
R2/(p− 1)

(1−R2)/(n− p)

We see that 0 ≤ R2 ≤ 1. However, a large value of R2 does not necessary imply that the
model regression is good. Adding a variable to the model will not decrease R2 regardless of

12



whether the additional variable is statistically significant or not. A solution is to work with
adjusted R2 defined as:

R2
adj = 1− SSR/(n− p)

SST /(n− 1)
= 1−

(
n− 1

n− p

)
(1−R2)

6.2 Tests on individual regression coefficients

The hypotheses test for testing significance of any individual regression coefficient βj are

H0 : βj = 0

H1 : βj 6= 0

Since β̂j ∼ N(βj, σ
2vjj) (where vjj are the diagonal elements of (X ′X)−1), if βj = 0 is not

rejected, then this indicates that xj can be deleted from the model. The test statistic for
this Hypothesis is

t0 =
β̂j√
s2vjj

Therefore, the null hypothesis H0 : βj = 0 is rejected if |t0| > tα/2,n−p.

Example 1

The command

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -155.07 170.69 -0.908 0.371

x1 12.37 58.48 0.212 0.834

x2 67.13 44.05 1.524 0.138

x3 12.30 33.40 0.368 0.715

Residual standard error: 92.94 on 29 degrees of freedom

Multiple R-Squared: 0.497, Adjusted R-squared: 0.4449

F-statistic: 9.55 on 3 and 29 DF, p-value: 0.0001510

gives the value of the adjusted R2 = 0.4449 (which indicates that the model only explain
44.5% of the variability in the data). The test for significance of regression gives a p−value =
0.0001510 which indicates that we reject the hypothesis that all parameters are equal to
zero. However, the test on the individual parameters lead to the conclusion that there is no
evidence to suppose that they are different from zero, do you see the contradiction?.

6.3 Tests on groups of coefficients

We might be interested on investigating the contribution of a subset of regressor variables
to the model. Consider the model con k regressor variables (p = k + 1), Y = Xβ + ε.
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We would like to determine if the subset of variables xr+1, xr+2, . . . ,xk (r < k) contribute
significantly to the model. Let the vector of regression coefficients be partitioned as follows:

β =

[
β1

β2

]
where β1 is r × 1 and β2 is (p− r)× 1. We wish to test:

H0 : β2 = 0

H1 : β2 6= 0

The regression sum of squares SSE of the full model (including all variables) is decomposed
as:

SSE(β̂) = SSE(β̂1) + SSE(β̂2|β̂1)

where SSE(β̂1) is the sum of squares explained by the reduced model with r degrees of
freedom; and SSE(β̂2|β̂1) is the sum of squares explained by β2 given that β1 is already
in the model, and it has p − r degrees of freedom. It is the extra sum of squares due
to including xr+1, . . . ,xk in the model. Now SSE(β̂2|β̂1) is independent of MSR(β̂), and
H0 : β2 = 0 may be tested by the statistic

F0 =
SSE(β̂2|β̂1)/(p− r)

ŝ2

H0 will be rejected if F0 > Fα,p−r,n−p. Some authors call this test, a partial F test.

Example 1

Suppose that we want to test H0 : β2 = β3 = 0:

fit2<-lm(y~x1,data=reg1)

anova(fit2,fit1)

Analysis of Variance Table

Model 1: y ~ x1

Model 2: y ~ x1 + x2 + x3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 31 270552

2 29 250488 2 20064 1.1614 0.3272

where the value of the test statistic F = 1.1614 = SSE(β̂2,β̂3|β̂0,β̂1)/r
ŝ2 = 20064/2

92.942 , and the conclu-
sion is that there is not enough evidence to include x2 and x3 in the model.

Model selection

To determine an appropriate subset of explanatory variables, there are several criteria avail-
able:

1. Choose models with high adjusted R2
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2. Mallow’s Cp criterion. The idea is to compare subset models with the full model,
and it is a measure of the total mean square error for the regression model. We define
the total standardized mean squared error for the regression model as

Γp =
1

σ2

n∑
i=1

E[ŷi − E(yi)]
2

=
1

σ2

{
n∑

i=1

[E(yi)− E(ŷi)]
2 +

n∑
i=1

V (ŷi)

}
=

1

σ2
[(bias)2 + variance]

Then an estimate of Γp is

Cp =
SSR(β̂1)

ŝ2(β̂)
− (n− 2r)

if the model with p terms has zero bias, E[Cp|zero bias] = p. Therefore, the values of
Cp for each model under consideration should be evaluated relative to p and choose
model with Cp ≤ p

3. Other criteria are AIC (Akaike Information Criteria), BIC (Bayesian Information
Criteria), etc., (see Akaike (1973) among others).

7 Multicollinearity

It is a frequent problem when there are several explanatory variables, it appears when two
or more explanatory variables are highly correlated. The consequence is that it is difficult to
separate the effects of the different variables and to measure the individual contribution of
each one to the model. It is also a numerical analysis problem, since the dependence among
the variables will make the matrix X ′X close to singular and it will be difficult to invert
it in order to calculate the variance of β̂. Therefore, the regression coefficients are not well
estimated, and might be meaningless, and similarly for the standard errors of these estimates.

One of the effects of multicollinearity is to inflate the estimated variance of β̂j. The vari-

ance of β̂ depends on the matrix (X ′X)−1, this is a symmetric matrix with p columns, the
singular value decomposition of X ′X is given by

X ′X = P ′DP =

p∑
i=1

λipip
′
i

where P = [p1 : . . . : pp] is an orthogonal matrix with columns pi. If two o more variables
are highly correlated there will be one or more λi close to zero.
It is easy to show that the singular value decomposition of (X ′X)−1 =

∑p
i=1 λ−1

i pip
′
i, and so

one or more values of λ−1
i will be large, thus, some values of V ar(β̂j) = vjjs

2 (as defined in
section 2.2) will be inflated, and so inference on the regression coefficients might be wrong.
However, multicollinearity does not affect the fitted values, R2 or F tests.
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7.1 How to identify multicollinearity

1. High correlation between explanatory variables

2. Variables are significant in simple regression, but not in multiple regression

3. Variance Inflation Factor (VIF) (see Silvey (1969)):
It can be shown that

V ar(β̂j) = σ2 1

ns2
j(1−R2

j )

where R2
j is the multiple coefficient of determination that would be calculated by

running a regression analysis using the model

xj = α0 + α1x1 + . . . + αj−1xj−1 + αj+1xj+1 + . . . + αkxk

The variance inflation factor is

V IFj =
1

1−R2
j

⇒ V ar(β̂j) = σ2V IFj

ns2
j

If xj does not depend on the other variables R2
j will be close to 0 and V IFj close to 1,

and the stronger the dependence, the close is R2
j to and and the larger id FIVj. Most

authors consider that if V IF > 10 there is a problem of multicollinearity

4. Condition Index:
It is defined as

κ =

√
Largest eigenvalue of X ′X

Smallest eigenvalue of X ′X

If variables are dependent, there will be eigenvalues close to zero and the condition
index will be large.

10 ≤ κ ≤ 30 ⇒ moderate multicollinearity

κ > 30 ⇒ severe multicollinearity

A possible remedial measure is to use a method of estimation of the parameters less sensible
to multicollinearity, an alternative is ridge regression, where the parameter estimates are
obtained from

β∗(λ) = (XX ′ + λI)−1X ′y

where λ ≥ 0 (generally 0 ≤ λ ≤ 1). The ridge estimator β∗(λ) is not unbiased, but the
objective is to find a set of coefficients that are more stable (i.e., they have a small mean
square error). For each least squares problem there is an optimum value of λ, but generally
a value of λ in 0 ≤ λ ≤ 1 is enough. Usually, the variance of β∗(λ) is a decreasing function of
λ, while the squared bias [β−E(β∗(λ))]2 is an increasing function of λ. Therefore, choosing
the value of λ involves trading off these two properties of β∗(λ).
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Example 1

We have seen already, several signs of the existence of multicollinearity in this example:
The pairwise plot showed a strong relationship between the explanatory variables, and we
also noticed the contradiction between the test for significance regression and the test for
individual coefficients. The variance inflation factor for the model parameters are:

fv1<-1/(1-summary(lm(reg1$x1~reg1$x2+reg1$x3))$r.squared)

fv2<-1/(1-summary(lm(reg1$x2~reg1$x1+reg1$x3))$r.squared)

fv3<-1/(1-summary(lm(reg1$x3~reg1$x1+reg1$x2))$r.squared)

fv1

[1] 12.61695

fv2

[1] 6.934045

fv3

[1] 4.552285

and the condition index:

eig.values<-eigen(t(X)%*%X)$values

sqrt(max(eig.values)/min(eig.values))

[1] 147.5221

Both criteria indicate multicollinearity. What to do now?, we could drop one or more
variables form the model, to select which variables to include we fit all possible models
with one and two explanatory variables and choose the simplest model with the highest
value of R2. Another possibility is to use ridge regression, Figure 3 shows a plot of the
estimates of β̂i i = 1, 2, 3 for different values of λ, which value would you use?
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Figure 3: Plot of coefficients versus λ
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