
Chapter 2

Generalized Least squares
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1 Introduction

In both ordinary least squares and maximum likelihood approaches to parameter estimation,
we made the assumption of constant variance, that is the variance of an observation is the
same regardless of the values of the explanatory variables associated with it, and since the
explanatory variables determine the mean value of the observation, what we assume is that
the variance of the observation is unrelated to the mean.
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There are many real situations in which this assumption is inappropriate. In some cases
the measurement system used might be a source of variability, and the size of the measure-
ment error is proportional to the measured quantity. Other times this occurs when errors
are correlated. Also, when the underlying distribution is continuous, but skewed, such as
lognormal, gamma, etc., the variance is not constant, and in many cases variance is a func-
tion of the mean.
An important point is that the constant variance is linked to the assumption of normal dis-
tribution for the response.

When the assumption of constant variance is not satisfied a possible solution is to transform
the data (for example taking log of the response variable and/or the explanatory variables)
to achieve constant variance. Another approach is based on generalized or weighted least
squares which is an modification of ordinary least squares which takes into account the in-
equality of variance in the observations. Weighted least squares play an important role in
the parameter estimation for generalized linear models.

2 Generalized and weighted least squares

2.1 Generalized least squares

Now we have the model

Y = Xβ + ε E[ε] = 0 V ar[ε] = σ2V
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where V is a known n × n matrix. If V is diagonal but with unequal diagonal elements,
the observations y are uncorrelated but have unequal variance, while if V has non-zero off-
diagonal elements, the observations are correlated.

If we estimate β by ordinary least squares, β̂ = (X ′X)−1y, the estimator is not opti-
mal. The solution is to transform the model to a new set of observations that satisfy the
constant variance assumption and use least squares to estimate the parameters.
Since σ2V is a covariance matrix, V is a symmetric non-singular matrix, therefore V =
K ′K = KK, and K is called the squared root of V . We define

z = K−1y B = K−1X g = K−1ε ⇒ z = Bβ + g (2.1)

then, using results in section 7 of Review in Matrix Algebra,

E[g] = K−1E[ε] = 0

V ar[g] = V ar[K−1ε] = K−1V ar[ε]K−1 = σ2K−1V K−1 = σ2K−1KKK−1 = σ2I,

and so we are under the assumptions of ordinary least squares. The least squares function is

S(β) = (z −Bβ)′(z −Bβ) = (K−1y −K−1Xβ)′(K−1y −K−1Xβ)

= (Y −Xβ)′K−1K−1(Y −Xβ)

= (Y −Xβ)′V −1(Y −Xβ)

Taking the partial derivative with respect to β and setting it to 0, we get:

(X ′V −1X)β = XV −1y normal equations

The generalized least squares estimator of β is

β̂ = (X ′V −1X)−1XV −1︸ ︷︷ ︸
(B′B)−1B′

y

and

E[β̂] = (X ′V −1X)−1XV −1E[y] = (X ′V −1X)−1XV −1Xβ = β

V ar[β̂] = σ2(B′B)−1 = σ2(X ′K−1K−1X)−1 = σ2(X ′V −1X)−1

Again, under normal theory, the generalized least squares estimators are the maximum
likelihood estimators since the log-likelihood function is:

L ∝ − ln(σ2)− 1

2
ln |V | − 1

2σ2
(y −Xβ)′V −1(y −Xβ)

The analysis of variance table is:
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Source df SS MS F
Regression p− 1 SSR = y′V −1X(X ′V −1X)−1X ′V −1y MSR = SSR/(p− 1) MSR

MSE

Error n− p SSE = y′V −1y − y′V −1X(X ′V −1X)−1X ′V −1y MSE = SSE/(n− p)
Total n− 1 SST = y′V −1y MST = SST /(n− 1)

2.2 Weighted least squares

Some times the errors are uncorrelated, but have unequal variance. In this case we use
weighted least squares. The covariance matrix of ε has the form

σ2V =


1/w1 0

1/w2

. . .

0 wn


Let W = V −1, W is also diagonal, with elements wi. The weighted least squares
estimator of β is

β̂ = (X ′WX)−1X ′Wy

Note that observations with large variances get smaller weights than observations with
smaller variances.
Examples of possible weights are:

• Error proportional to a predictor V ar(εi) ∝ xi suggests wi = x−1
i .

• When an observation yi is an average of several, ni, observations at that point of the
explanatory variable, then, V ar(yi) = σ2/ni suggests wi = ni.

2.3 Iteratively reweighted least squares

Sometimes we will have prior information on the weights wi, others we might find, looking at
residual plots, that the variability is a function of one or more explanatory variables. In these
cases we have to estimate the weights, perform the analysis, re-estimate the weights again
based on these results and perform the analysis again. This procedure is called iteratively
reweighted keast squares (IRLS). This method is also applied in generalized linear models as
we will see in the next chapter.
To give an example of IRLS, suppose that V ar(εi) = γ0 + γ1x1:

1. Start with wi = 1

2. Use least squares to estimate β

3. use the residuals to estimate γ, perhaps by regressing ε̂2 on x1

4. Recompute the weights and go to 2.

Continue until convergence. More details on the effect of the method on β̂ can be found in
Ruppert and Carroll (1988)
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3 Examples

The following examples are taken from Chapter 5 of Faraway (2002)

3.1 Generalized least squares: The Longley data

The original source of the data is Longley (1967). The response variable is the number
of people employed, yearly from 1947 to 1962 and the explanatory variables are GNP and
Population.
Fit the linear model:

> data(longley)

> g<-lm(Employed~GNP+Population,data=longley)

> summary(g,cor=T)

Call:

lm(formula = Employed ~ GNP + Population, data = longley)

Residuals:

Min 1Q Median 3Q Max

-0.80899 -0.33282 -0.02329 0.25895 1.08800

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 88.93880 13.78503 6.452 2.16e-05

GNP 0.06317 0.01065 5.933 4.96e-05

Population -0.40974 0.15214 -2.693 0.0184

Residual standard error: 0.5459 on 13 degrees of freedom

Multiple R-Squared: 0.9791, Adjusted R-squared: 0.9758

F-statistic: 303.9 on 2 and 13 DF, p-value: 1.221e-11

Correlation of Coefficients:

(Intercept) GNP

GNP 0.98

Population -1.00 -0.99

What do you notice?

In data collected over time such as this, errors could be correlated. Assuming that errors
take an autoregressive form:

εi+1 = ρεi + δi δi ∼ N(0, τ 2)

We can estimate ρ by means of the sample correlation of residuals:
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> cor(g$res[-1],g$res[-16])

[1] 0.3104092

A model with autoregressive error has covariance matrix V ij = ρ|i−j|. Assuming that ρ is
know and equal to 0.3104092. Then, V is computed as,

> V<-diag(16)

> V<-0.3104092^abs(row(V)-col(V))

and the generalized least squares estimate β̂ = (X ′V −1X)−1XV −1y is,

> X<-model.matrix(g)

> V.inv<-solve(V)

> beta<-solve(t(X)%*%V.inv%*%X)%*%t(X)%*%V.inv%*%longley$Empl

> beta

[,1]

(Intercept) 94.89887752

GNP 0.06738948

Population -0.47427391

The standard error of β̂,

√
V ar(β̂) =

√
σ2(X ′V −1X)−1 is

> res<-longley$Empl-X%*%beta

> sig<-sum(res^2)/g$df

> sqrt(diag(solve(t(X)%*%V.inv%*%X))*sig)

(Intercept) GNP Population

14.15760467 0.01086675 0.15572652

Another way to fit this model would be to use the lm() function but with the model in
equation (2.1)

> K<-chol(V)

> K.inv<-solve(t(K))

> B<-K.inv%*%X

> z<-K.inv%*%longley$Empl

> lm(z~B-1)$coeff

B(Intercept) BGNP BPopulation

94.89887752 0.06738948 -0.47427391

In practice, we do not know the value of ρ, and so we would estimate ρ again from the data

cor(res[-1],res[-16])

[1] 0.3564161

and fit the model again, and iterate until convergence.

A third option is to use the nlme() library, which contains the gls() function. We can
use it to fit this model,
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> library(nlme)

> g<-gls(Employed~GNP+Population,correlation=corAR1(form=~Year),data=longley)

> summary(g)

Generalized least squares fit by REML

Model: Employed ~ GNP + Population

Data: longley

AIC BIC logLik

44.66377 47.48852 -17.33188

Correlation Structure: AR(1)

Formula: ~Year

Parameter estimate(s):

Phi

0.6441692

Coefficients:

Value Std.Error t-value p-value

(Intercept) 101.85813 14.198932 7.173647 0.0000

GNP 0.07207 0.010606 6.795485 0.0000

Population -0.54851 0.154130 -3.558778 0.0035

Correlation:

(Intr) GNP

GNP 0.943

Population -0.997 -0.966

Standardized residuals:

Min Q1 Med Q3 Max

-1.5924564 -0.5447822 -0.1055401 0.3639202 1.3281898

Residual standard error: 0.689207

Degrees of freedom: 16 total; 13 residual

The final estimate for ρ is 0.644. However, if we check the confidence intervals

intervals(g)

Approximate 95% confidence intervals

Coefficients:

lower est. upper

(Intercept) 71.18320440 101.85813280 132.5330612

GNP 0.04915865 0.07207088 0.0949831

Population -0.88149053 -0.54851350 -0.2155365

attr(,"label")

[1] "Coefficients:"
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Correlation structure:

lower est. upper

Phi -0.4430373 0.6441692 0.9644866

attr(,"label")

[1] "Correlation structure:"

Residual standard error:

lower est. upper

0.2477984 0.6892069 1.9169062

we see that it is not significantly different from 0, and therefore we can ignore it.

3.2 Weighted least squares: The proton data

This example is from an experiment aimed to study the interaction of certain kinds of
elementary particles on collision with proton targets. The experiment was designed to test
certain theories about the nature of strong interaction. The cross-section (crossx) variable is
belived to be linearly related to the inverse of the energy (in the data set this variable appears
already inverted). At each level of momentum, a very large number of of observations were
taken so that it is possible to accurately estimate the estandard deviation of the response
(sd)

> library(faraway)

> data(strongx)

> strongx

momentum energy crossx sd

1 4 0.345 367 17

2 6 0.287 311 9

3 8 0.251 295 9

4 10 0.225 268 7

5 12 0.207 253 7

6 15 0.186 239 6

7 20 0.161 220 6

8 30 0.132 213 6

9 75 0.084 193 5

10 150 0.060 192 5

First, we fit the model without weights,

> gu<-lm(crossx~energy,data=strongx)

> summary(gu)

Call:

lm(formula = crossx ~ energy, data = strongx)
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Figure 1: Plot of residuals versus fitted values

Residuals:

Min 1Q Median 3Q Max

-14.773 -9.319 -2.829 5.571 19.818

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 135.00 10.08 13.40 9.21e-07 ***

energy 619.71 47.68 13.00 1.16e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 12.69 on 8 degrees of freedom

Multiple R-Squared: 0.9548, Adjusted R-squared: 0.9491

F-statistic: 168.9 on 1 and 8 DF, p-value: 1.165e-06

Now, we fit me model with weights

> g<-lm(crossx~energy,data=strongx,weights=sd^-2)

> summary(g)

Call:

lm(formula = crossx ~ energy, data = strongx, weights = sd^-2)
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Residuals:

Min 1Q Median 3Q Max

-2.323e+00 -8.842e-01 1.266e-06 1.390e+00 2.335e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 148.473 8.079 18.38 7.91e-08 ***

energy 530.835 47.550 11.16 3.71e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.657 on 8 degrees of freedom

Multiple R-Squared: 0.9397, Adjusted R-squared: 0.9321

F-statistic: 124.6 on 1 and 8 DF, p-value: 3.710e-06

Compare the value of σ̂, and the two fits in the following picture

> plot(crossx~energy,data=strongx)

> abline(g)

> abline(gu,lty=2)
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