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1 Introduction
Smoothing models, and in particular, generalized additive models (GAM) are a collection of non-
parametric regression techniques that attempt to estimate complex relationships between the response
variable and the covariates. The singularity of these models is that there is no need to establish
beforehand the relationship between the variables, the data are the ones that determine the shape of
the relationship. This has made GAM models a fundamental tool in any area of research. The aim
of this course is to introduce these techniques and show their use in an applied research context.We
will introduce basic theoretical concepts, but the course will be mostly focused on learning through
data analysis

Required packages
We will employ several packages that are not contained in R (note: list to be updated). These

can be installed as:

# Installation of required packages
install.packages(c("Semipar","car","lattice","splines","mgcv","nlme","MASS",

"latticeExtra","fields","MBA","sm","gamair","maps"))

1.1 Linear models (LMs)
Remember in the ordinary least squares linear regression model, we have some response/variable y
we want to study assumed to be normally distributed with mean µ and variance σ2. We also have a
set of predictors/covariates or explanatory variables X ′s. The model is

y = Xβ + ε ε ∼ N (0, σ2)

where X = [1 : x1 : x2 : ... : xp] and β = (β0, β1, ..., βp)′.
One of the issues with this model is that, in its basic form it can be very limiting in its assumptions

about the data generating process for the response variable of interest.

1.2 Generalized Linear Models (GLMs)
GLMs incorporate other types of distributions for the response variable y (of the exponential family
e.g.: Binomial, Poisson, Gamma, etc . . . ), and include a link function g(·) relating the mean µ
through the so-called linear predictor η. The general form is:

g(µ) = η = Xβ,

where the estimated fitted values E[y] = µ = g−1(η). For the Poisson distribution, the (canonical)
link function g(·), is the natural log, for Binomial is the logit and for Gaussian distribution is the
identity.

1.3 Generalized Additive Models (GAMs)
GAMs are a generalization of GLM’s to incorporate non-linear forms of the predictors.

y ∼ ExpoFam(µ, σ2, ...)

µ = E[y]
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Figure 1: LIDAR data

g(µ) = η = β0 + f(x1) + f(x2) + ...+ f(xp)
Now we use smooth functions f(·) of our predictor variables, which can take more flexible forms.

The observed values are assumed to be of some exponentinal family distribution, and µ is related to
the predictors via a link function.

1.4 Scatterplot smoothing
Scatterplot smoothing consists of highlighting the underlying trend in the data. The underlying
trend would be a function such as:

f(x) = E(y|x)
That can also be written as:

yi = f(xi) + εi, E(εi) = 0,
in which case the problem is often referred to as non-parametric regression, where f(·) os some
unespecified smooth function that needs to be estimated from the pair (xi, yi)

There are several methods for smoothing a scatterplot, including splines, kernel regression, running
means, loess or the weighted version lowess.

The blue line is the linear model fit (to remove it set reg.line=FALSE).
The lidar data frame has 221 observations from a light detection and ranging (LIDAR) experi-

ment.

1.4.1 Polynomial regression

Polynomial regression consists of transforming the predictor X, adding p degree polynomials such
that

y = β0 + β1X1 + β2X2 + βpX
p + ε ε ∼ N (0, σ2)
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Figure 2: Scatterplot smoothing of LIDAR data with polynomial regression of different degrees

We need to handle such non-linear relationships effectively through more flexible techniques.

1.4.2 Local regression

Local regression
LOESS and LOWESS (locally weighted scatterplot smoothing) are two strongly related non-

parametric regression methods that combine multiple regression models in a k-nearest-neighbor-based
mode.
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Figure 3: Kernel smoothing with different bandwiths and Gaussian kernel

A kernel smoother is of the form

ŷi =

∑n
j=1 yiK

(
xi−xj

b

)
∑n
j=1 K

(
xi−xj

b

) ,

where b is a bandwidth parameter, and K a kernel function, as in density estimation. There different
choices for the kernel K (e.g.: Gaussian), the critical choice parameter is the bandwidth b.

In R the function ksmooth in the library(stats) can be used for kernel smoothing (other options
are locpoly in library(KernSmooth))

1.4.3 Splines

Splines is a modern alternative (Green and Silverman (1994)). We only need cubic splines. Divide
the real line by and ordered set of points {zi} known as knots. On the interval [zi, zi+1] the spline
is a cubic polynomial, and its continuous and has continous first and second derivatives, imposing
conditions at each knot. Boor (1978) proposed a computationally efficient to compute the so-called
B-splines with desirable properties (bs in R).

A restricted form ofB-splines are natural splines (implemented in R by function ns in library(splines))
is linear on (−∞, z1] and [zn,∞) and this have n parameters. However, ns adds an extra knot at
each of the maximum and minimum of the data points, and so has n+ 2 parameters, dropping the
requirement for the derivative to be continuous at z1 and zn.

The arguments of ns (or bs) are df (degrees of freedom) and knots. One can supply df rather
than knots, then df-1-intercept inner knots at suitable chosen quantiles of x. Additionaly an
intercept can be added to the model (default is FALSE)

The selection of the number of knots (or df) is not an easy task.
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Figure 4: Natural splines smoothing with different degrees of freedom

1.4.4 Smoothing splines

A smoothing spline minimizes a compromise between the fit and the degree of smoothness of the
form of a residual sum of squares:

RSS(f, λ) =
n∑
i=1

(yi − f(xi))2 + λ

∫ xn

x1

(f ′′(x))2dx

over all (measurably twice-differentiable) functions. It is a cubic spline with knots at the xi, but
does not interpolate the data points for λ > 0 (smoothing parameter) and the degree of the fit is
controlled by λ. The smoothing parameter 0 < λ <∞

smooth.spline function chooses automatically the degrees of freedom by cross-validation if the
df argument is not specified. The degrees of freedom are the trace of the so-called smoother or
hat-matrix H, as fitting a smoothing splines is a linear operation, there is an n× n matrix H such
that ŷ = Hy.

For λ = 0 the smoothing spline will interpolate the data points if the xi is distinct.
As a linear smoother, for each value of xi there are a set of basis functions Bj(x) such that:

fλ(x) =
n∑
j=1

θjBj(x)

where θj are the coefficients and Bj(x) are the basis functions. Let B be the n×n matrix defined by

Bij = Bj(xi)

and penalty matrix Ω
Ωij =

∫ xn

x1

B
′′

i (x)B
′′

j dx
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Figure 5: Smoothing splines fit with different degrees of freedom
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λ = 0.1
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λ = 0.5
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λ = 1
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Figure 6: Smoothing splines fit with different values of spar
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The penalized criterion is the minimization of the penalized residual sum of squares is defined as

PRSS(θ, λ) = (y −Bθ)′(y −Bθ) + λθ′Ωθ

The solution to the minimization of PRSS is

θ̂λ = (B′B + λΩ)−1B′y

1.4.4.1 Choice of the smoothing parameter Cross-validation
The cross-validation is a general procedure that can be applied to estimate smoothing parameters

in a wide variety of problems. Let y−i be the n− 1 vector with the $ i$th observation, yi, removed
from the original response vector y. Let f̂−iλ be the estimate based on $ n-1$ observations y−i. The
ordinary cross-validation (CV) estimate of the prediction error is

CV(λ) = 1
n

n∑
i=1

(yi − f̂−iλ (ti))2 .

A cross-validation estimate of λ is the minimizer of CV. The CV reduces to

CV(λ) = 1
n

n∑
i=1

(
yi − f̂λ(xi)

1− hii

)2

.

Thus one only needs to fit the model once with the full data and compute the diagonal elements
of the Hλ hat-matrix.

Generalized Cross-validation
Replacing hii in CV by the average of all diagonal elements, Craven and Wahba (1979) proposed

the following generalized cross-validation (GCV) criterion

GCV(λ) =
1
n

∑n
i=1(yi − f̂λ(ti))2

(1− trH(λ)/n)2 .

#default mode chooses df by generalized cross-validation
sm.gcv <- smooth.spline(range,logratio)
sm.cv <- smooth.spline(range,logratio,cv=TRUE) # cv

2 Penalized splines
In this course we focus on penalized splines (P-splines) by Eilers and Marx (1996). In the prevoius
section we discussed two types of smoothing methods with splines:

1. Regression splines are fitted by least squares once the number and position of the knots are
choosen (very complex in most situations).

2. Smoothing splines use as many parameters as observations (computationally unefficient for
large data sets).

A better solution consists of combining both approaches by Penalized splines: they use less
parameters than smoothing splines, and the selection of the position and the number of knots is not
an issue. There are 3 main reasons why use P-splines:

8



1. They are low-rank smoothers, i.e. the size of the basis B is n × c where n is the number of
data and c is the number of regression coefficients, usually c <<< n. The number of regression
coefficients depends on the number of knots, usually with P-splines the number of knots is less
than 40. This is specially important with large data sets.

2. Including penalizations relaxes the need of choosing the number and position of the knots
compared to regression splines,

3. There is a correspondence of P-splines and BLUP (best linear unbiased predictor) in mixed
models. This fact allows us to apply the methodology of mixed models and the use of standard
software such as PROC MIXED in SAS and lme in librar(nlme).

2.1 Basis and penalties
Example

Suppose n pairs (xi, yi) and we want to fit the model

yi = f(xi) + εi εi ∼ N (0, σ2)

Let us consider the next simulated example

set.seed(2015)
n <- 200
x <- seq(0,1,l=n)
# original function
f <- sin(3*pi*x)
y <- f + rnorm(n,.33)

plot(x,y,col="grey",pch=19)
lines(x,f,col=1)

Our aim is to estimate the function f(x) = sin(3πx) from the observed data (xi, yi). P-splines were
proposed by Eilers and Marx (1996) although many other authors have popularized the techniques
in different applications (See Ruppert, Wand, and Carroll (2003) and Wood (2006)).

The methodology can be summarized as follows:

a. A regression basis

b. A discrete penalty term added to the likelihood function that acts directly on the regression
coefficients.

In the case of Gaussian data, we have the model

y = Bθ + ε, with ε ∼ N (0, σ2)

where B(x) is the regression basis constructed from the x variable. In order to estimate the regression
coefficients, we minimize the penalized sum of squares function:

PSS(θ,y, λ) = (y −Bθ)′(y −Bθ) + λθ′Pθ

9
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Figure 7: Simulated data example

where P is a matrix that penalizes the coefficients and λ is the smoothing parameter. For a fixed
value of λ the minimization of PSS gives

(B′B + λD′D)θ̂ = B′y

It is easy to show that
ŷ = B(B′B + λD′D)B′ = Hy

H is not a proyection matrix (it is not idempotent, HH 6= H). The trace of the hat-matrix tr(H)
is the effective degrees of freedom of the model.

2.1.1 Basis functions and knots

There are several options for regression bases with P-splines, there are 2 main approaches:

• Truncated polynomials

• B-splines

Other options are Thin plate splines

2.1.1.1 Truncated polynomials Consider the pairs (xi, yi). Consider x ∈ [0, 1]. Let tj =
(j − 1)/k, j = 2, ..., k + 1 be a set of k equally-space knots. The simplest version of Truncated
Polynomial Functions (TPFs) of degree p is defined as:

1, x, x2, {(x− t1)+}p , ..., {(x− tk)+}p

where x+ = max(0, x). The function {(x− t1)+}p has p− 1 continuous derivatives, such that the
higher degree p the smoother the basis function.

10
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Figure 8: Truncated Polynomial Functions with different degrees p

# Function to create TPFs
tpoly <- function(x,t,p){

B = NULL
for (i in 1:length(t)){

B <- cbind(B,(x-t[i])^p*(x>t[i]))
}
B

}

Nex Figure illustrates the TPFs with different degrees with equally-spaced knots

2.1.1.2 B-splines Basic references are Boor (1978) and Dierckx (1993)
B-splines are formed by pieces of polynomials connected by knots.
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The general properties of a B-spline of degree q

• Consists of q + 1 polynomial pieces of each of degree q.

• The polynomial pieces join at q inner knots.

• at the joining points, derivatives up to order q − 1 are continuous.

• The B-spline is positive on a domain spanned by q + 2 knots; everywhere else is zero.

• Except at the boundaries, it overlaps with 2q polynomial pieces of its neighbors

• at given x, a+ 1 B-splines are non-zero.

The next function creates a B-spline basis function:

library(splines)
bspline <- function(x,xl,xr,ndx,bdeg){

dx <- (xr-xl)/ndx
knots <- seq(xl-bdeg*dx,xr+bdeg*dx,by=dx)
B <- spline.des(knots,x,bdeg+1,0*x,outer.ok=TRUE)$design
output <- list(knots=knots,B=B)
return(output)

}

where * xl is the left bound of x * xr is the right bound of x * ndx is the number of segments
(inner knots) in which we divide the range of x * bdeg degree of the piecewise polynomial (usually
cubic splines q=3)

The next Figure illustrates B-spline bases with different degrees of the polynomials.

2.2 Penalties and coefficients
Suppose a B-spline regression with a basis function B constructed by k knots. By means of least
squares the fitted curve would be given by the solution of the mininization of:

min SS(θ,y) = (y −Bθ)′(y −Bθ)

where θ̂ = (B′B)−1B′y. The fitted curve f̂(x) = Bθ̂ depends on the size of the basis B. Next
figure illustrates the effect of the size of the basis in the curve fit. The larger the basis, the fit tends
to interpolate the data points.

O’Sullivan (1986) suggested including a penaly on the second derivative of the curve. Hence the
objective function becomes:

min SS(θ,y, λ) = (y −Bθ)′(y −Bθ) + λ

∫
x

(B
′′
θ)2dx

This penalty is similar to the one used in smoothing splines, but any derivative order can be used.
The advance in P-splines is that the penalty term is discrete and directly applied to the regression

coefficients (instead of the curve), reducing the dimensionality of the problem.
The type of penalization depends on the type of regression basis. For instance, in the case of

TPFs, the penalty is a ridge type penalty independent to the degree of the polynomial, i.e.
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Figure 9: B-spline bases with different degrees q
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Figure 10: B-spline regression with different number of segments

min SS(θ,y, λ) = (y −Bθ)′(y −Bθ) + λθ′θ

which is equivalent to impose a penalty on the p+ 1 derivative of the curve.
In contrast, Eilers and Marx (1996) proposed a penalty based on discrete differences of order d

between adjacent coefficients of the B-spline basis. This is a more flexible penalty as it is independent
from the degree of the polynomial used to construct the regression basis. Moreover, it is a good
discrete approximation to the integral of the squqare of the dth derivative. The minimization criteria
becomes:

min SS(θ,y, λ) = (y −Bθ)′(y −Bθ) + λθ′P dθ

where θ̂ = (B′B + P d)−1B′y, with P d = (∆d)′∆d, for d = 0 we have a ridge penalty. In general,
we use d = 2, although other orders can be used, according to the variability of the curve and the
amount of noise in the data.

A second order penalty d = 2 is equivalent to

(θ1 − 2θ2 + θ3)2 + ...+ (θk−2 − 2θk−1 + θk)2 = θ′D′Dθ

where

D =


1 −2 1 0 ...
0 1 −2 1 ...
0 0 1 −2 ...
...

...
...

... . . .

 of size (c− d)× c

where c = k + deg + 1 the number of columns of B.
The next Figure illustrates the P -spline fit with different values of the smoothing parameter λ

and second order penalty d = 2.
The next Figure illustrates the P -spline fit with different values of λ. The basis function multiplied

by the coefficients and the regression coefficients are also represented in the plots. The equally-spaced
knots are represented by squares (�) and the coefficients by ◦. It results clear to visualize the fact
that as the penalty increases it forces the coefficient to be smooth.

Among the properties of P -splines with B-spline bases we can highlight:

14



0.0 0.2 0.4 0.6 0.8 1.0

−
3

0
2

4

x

y

ndx =  10 and d = 2

λ = 0.001
λ = 10
λ = 100

Figure 11: B-spline regression with different values of the smoothing parameter
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Figure 12: P-spline regression fit with basis and coefficients
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• P -splines show no boundary effects, as many types of kernel smoothers do. By this we mean
the spreading of a fitted curve or density outside of the (physical) domain of the data, generally
accompanied by bending toward zero.

• P -splines can fit polynomial data exactly. Let data (xi, yi) be given. If the yi are a polynomial
in x of degree p, then B-splines of degree p or higher will exactly fit the data.

• P -splines can conserve moments of the data. This property is especially useful in the context of
density smoothing: the mean and variance of the estimated density will be equal to mean and
variance of the data, for any amount of smoothing. This is an advantage compared to kernel
smoothers: these inflate the variance increasingly with stronger smoothing.

• The limit of a P -splines fit with strong smoothing is a polynomial.

• For large values of λ and a penalty of order q, the fitted series will approach a polynomial of
degree q − 1, if the degree of the B-splines is equal to, or higher than, q.

• For the selection of the position and the number of knots, equally spaced knots and a relatively
large number k can be chosen, usually < 40.

2.3 Parameters estimation and degrees of freedom
We already know that for a given regression basis function B and penalty P , the solution for the
regression coefficients is given by

θ̂ = (B′B + P d)−1B′y

for a given value of λ.
Effective degrees of freedom
In a P -spline model with λ = 0 the degrees of freedom of the model corresponds to the number of

columns (regression coefficients) of the basis function B, in contrast, with a large λ→∞ the model
is not very flexible and there are few degrees of freedom.

The degrees of freedom are computed analogously to linear models as the trace of the so-called
hat matrix

H = B(B′B + λD′D)−1B′,

where
tr(H) = tr(B′B + λD′D)−1B′B.

Residual variance Another parameter of interest is the estimation of the residual variance σ̂2.
For Gaussian errors, we use

σ̂2 = RSS
n− tr(H) ,

where RSS is the residual sum of squares, i.e.
∑n
i=1(yi − ŷi)2.

The function psfit below, estimates a P -spline for a given λ using the function ls.fit and
giving the generalized cross validation criteria value gcv.
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# Function to fit a Gaussian P-spline for given lambda
psfit <- function(x,y,pord=2,ndx=10,lambda=1){

xl = min(x)
xr = max(x)
n <- length(y)
B <- bspline(x,xl,xr,ndx,bdeg=3)$B
nb <- ncol(B)
P <- diff(diag(nb),differences=pord)

# Construct penalty stuff
P <- sqrt(lambda) * diff(diag(nb), diff = pord)
nix = rep(0, nb - pord)

# Fit
f = lsfit(rbind(B, P), c(y, nix), intercept = FALSE)
h = hat(f$qr)[1:n]
theta = f$coef
f.hat = B %*% theta

# Cross-validation and dispersion
trH <- sum(h)
rss <- sum((y-f.hat)^2)
gcv <- n*rss/(n-trH)^2
sigma = sqrt(rss / (n - trH))

# Error bands ("Bayesian estimate")
Covb = solve(t(B) %*% B + t(P) %*% P)
Covz = sigma ^ 2 * B %*% Covb %*% t(B)
seb = sqrt(diag(Covz))

output <- list(gcv=gcv,sigma=sigma,
f=f,theta=theta,f.hat=f.hat,seb=seb,trH=trH)

return(output)
}

2.4 Choosing λ

We can use generalized cross-validation criteria:

GCV =
n∑
i=1

yi − ŷi
n− tr(H) ,

or AIC

AIC = 2 log
(

n∑
i=1

(yi − ŷi)2

)
− 2 log(n) + 2 log(trH)
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Figure 13: P-spline fit with confidence bands computed with psfit

# plot of GCV criteria is more useful
lla = seq(-2, 2, by = 0.10)
cvs = 0 * lla
for (k in 1:length(lla)) {

lambda = 10 ^ lla[k]
pn = psfit(x,y, lambda = lambda)
cvs[k] = pn$gcv

}
#
lam.cv <- 10^(lla[which.min(cvs)])
lam.cv # lambda chosen by generalized cv

## [1] 5.011872

fit.cv <- psfit(x,y,lambda=lam.cv)

fit.cv$sigma # estimated sigma error

## [1] 0.9630074

2.5 Other penalized regression basis
Thin plate regression splines (TPRS)

Thin plate splines can be used to estimate the smooth function f(·) by finding the function f
minimizing
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∑
(yi − f(xi))2 + λ

∫ (
∂2f

∂x2

)2

dx

It is possible to rewrite the equation as:

‖y −Eδ − Tγ‖+ λδ′Eδ

subject to T ′δ = 0. See Green and Silverman (1994) for details.
The main problem is the number of knots (i.e. the number of coefficients to estimate) equal to

the number of observations. Wood (2003) proposed the use of low-rank Thin plate regression splines
with a much number of knots.

2.6 Penalized splines as mixed models
The great popularity of P -splines during the last decade is due to the possibility of rewriting the
non-parametric model as a mixed model (with random effects). Hence, we are able to use the
methodology developed in the context of mixed models to smoothing and use the available mixed
model software for estimation and inference.

The connection between smoothing and mixed model was initially addressed by several authors
(Speed (1991), Verbyla et al. (1999) and Brumback and Rice (1998)). The idea is to reformulate the
smoothing model as a mixed-effects model:

y = Bθ + ε ε ∼ N (0, σ2I) is reformulated as
y = Xβ +Zu+ ε u ∼ N (0,G) and ε ∼ N (0, σ2I)
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where G = σ2
uQ
−1 is the variance-covariance matrix of the random effects u that depends on σ2

u

and a matrix Q.
Wand (2003) uses truncated power functions for the construction of X and Z where:

X = [1, x, x2, ..., xp] and Z = [(xi − kκ)p+] 1 ≤ i ≤ n and 1 ≤ k ≤ κ
Using B-splines we have different alternatives, e.g.:

• Eilers (1999) proposed

X = [1, x, x2, ..., xp] and Z = BD′(D′D)−1

• Currie and Durbán (2002) proposed the use of the singular value decomposition of the matrix
D′D, i.e.:

X = [1, x, x2, ..., xp] and Z = BU sΣ−1/2
s

where U s are the left singular vectors (of the span) of the SVD of D′D = UΣV ′.

In both reparameterizations we obtain the mixed model

y = Xβ +Zu+ ε u ∼ N (0,G) and ε ∼ N (0, σ2I)

where Q = Ic−q and then G = σ2
uIc−q is multiple of a diagonal matrix. c is the number of columns of

the original basis B and q is the order of the penalty (usually q = 2). Then the smoothing parameter
becomes the ratio λ = σ2/σ2

u.

2.6.1 Estimation of the variance components, and fixed and random effects β and u

In the context of mixed models the standard method for estimating the variance components is
restricted or residual maximum likelihood (REML)

`R(σ2
u, σ

2) = −1
2 log |V | − 1

2 log |X ′V −1X| − 1
2y
′(V −1 − V −1X(X ′V −1X)−1X ′V −1)y,

where V = σ2I +ZGZ ′ and

β = (XV −1X)X ′V −1y

u = σ2
uZ
′V −1(y −Xβ̂)

with V −1 = 1/σ2(I −Z(Z ′Z + (σ2/σ2
u)Ic−q)−1Z ′).

In the mixed models context, we can consider more complex structures, e.g. correlated data, with
ε ∼ N (0, σ2Ω), where Ω is a correlation matrix (e.g. AR(1)). We will discuss this situation later on.

3 Software
In this section we will focus on the use of penalized splines with R software. Although many R
packages are available, library(mgcv) has become a very popular package which implements a
wide variety of flexible models for smoothing via the function gam (for generalized additive models).
For the mixed model reparameterization of a smooth model, the function gamm (for additive mixed
models). However, first we will start introducing the function spm in SemiPar which uses the mixed
model representation with truncated polynomials by Ruppert, Wand, and Carroll (2003).
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Figure 15: P-splines fit using the mixed model reparameterization by Ruppert, Wand, and Carroll
(2003)

3.1 spm function in library(SemiPar)

For illustration we consider the fossil data described by Chaudhuri and Marron (1999)

library(SemiPar)
data(fossil)
attach(fossil)
y <- 10000*strontium.ratio
x <- age

We can fit the model with spm function, specifyng the smooth term with f(), i.e.:

fit.spm <- spm(y ~ f(x, basis="trunc.poly", degree=3))
summary(fit.spm)

##
##
## Summary for non-linear components:
##
## df spar knots
## f(x) 8.87 3.419 25
##
## Note this includes 1 df for the intercept.

Fitted curve can be simply plotted with

plot(fit.spm, xlab="Age", ylab="Ratio of strotium isotopes (x10,000)")
points(x,y,pch=15,col="red") # add points

The object fitted by spm has three components:
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names(fit.spm)

## [1] "fit" "info" "aux"

• $fit containing the same information as a lme object

names(fit.spm$fit)

## [1] "modelStruct" "dims" "contrasts" "coefficients"
## [5] "varFix" "sigma" "apVar" "logLik"
## [9] "numIter" "groups" "call" "terms"
## [13] "method" "fitted" "residuals" "fixDF"
## [17] "na.action" "data" "sigma" "coef"

• $info with information about the model, the bases, the knots, degree of the polynomial, etc. . .

names(fit.spm$info)

## [1] "formula" "y" "intercept" "lin" "pen" "krige"
## [7] "off.set" "trans.mat"

• $aux with the covariance matrix of the fixed and random effects ($cov.mat), the estimated
variance of the random effects σ̂2 ($random.var), the residual variance σ̂2 ($error.var) and
the approximated degrees of freedom for each component $df.

names(fit.spm$aux)

## [1] "cov.mat" "df" "block.inds" "resid.var" "random.var"
## [6] "df.fit" "df.res" "mins" "maxs"

For more details see Ngo and Wand (2004).

3.2 mgcv package
The main reference for this section is the book by Wood (2006).

3.2.1 The gam function

library(mgcv)
fit.gam <- gam(y ~ s(x))

Now we plot the fitted curve with confidence bands

# See ?plot.gam for plotting options
plot(fit.gam,shade=TRUE,seWithMean=TRUE,pch=19,1,cex=.55)

The main function for smoothing with mgcv is gam. For example:
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Figure 16: Smooth fit with mgcv’s gam function

gam(formula,method="",select="",family=gaussian())

The main arguments for this function must be specified as a formula:

• The first choice is the basis used to represent the smooth terms s(x) (See ?s or ?smooth.terms).
The default is to use the thin plate splines. The type of basis function can be modified using
bs argument inside s(x,bs="ps"), where ps uses P-splines. Other alternatives are describe in
the next Table (from Wood (2006), page 226)

bs Description
"tp" Thin Plate Regression Splines
"ts" Thin Plate Regression Splines with Shrinkage
"cr" Cubic regression spline
"crs" Cubic regression spline with Shrinkage
"cc" Cyclic cubic regression spline
"ps" P-splines (see ?p.spline)

• m The order of the penalty.

• k the dimension of the basis used to represent the smooth term. k should not be less than the
dimension of the null space of the penalty for the term (the order of the penalty m).

• by a numeric or factor variable of the same dimension as each covariate.

• sp any supplied smoothing parameter for the smooth term.

• fx indicates whether the term is a fixed e.d.f. regression spline (TRUE) or a penalized regression
spline (FALSE).

• id used to allow different smooths to be forced to use the same basis and smoothing parameter
For more option in function gam see ?gam, i.e. method for the selection of the smoothing parameter

(in general likelihood-based methods tend to be more robust)
• method= choosing between "REML", "ML" "GCV.Cp", "GACV.Cp"

gam returns and object of class "gam", which can be further used with method functions such as
print, summary, fitted, plot, residuals, etc . . .

summary(fit.gam)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## y ~ s(x)
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##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7073.7412 0.0255 277398 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(x) 8.339 8.876 87.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.881 Deviance explained = 89%
## GCV = 0.075588 Scale est. = 0.068928 n = 106

gam.check function produces some basic residual plots, and provides some information related to
the fitting procces

par(mfrow=c(2,2))
gam.check(fit.gam)

##
## Method: GCV Optimizer: magic
## Smoothing parameter selection converged after 7 iterations.
## The RMS GCV score gradient at convergence was 4.638002e-06 .
## The Hessian was positive definite.
## Model rank = 10 / 10
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
## k' edf k-index p-value
## s(x) 9.00 8.34 0.94 0.23

Other residual plots should be examined, e.g.:

plot(fitted(fit.gam),residuals(fit.gam))

As you may have noticed, there are some choices to make, specially the dimension k of the basis
used to represent the smooth term. The choice of basis dimensions amounts to setting the maximum
possible degress of freedom allowed to the smooth term. Usually, the choice of k makes sligth (almost
negligible) difference as long as enough flexibility is provided (see ?choose.k). Sometimes the choice
of k depends on the computational efficiency (size of the basis for large data sets).

3.2.2 The gamm function

mgcv library includes the function gamm which fits a generalized additive mixed model (GAMM)
based on linear mixed models as implemented in the nmle library. The function is a wrapper of lme
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Figure 17: Diagnostics for fitted gam model with gam.check, see ?gam.check for details
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and glmmPQL in MASS library. Its purpose is to perform the reparametrization of the smooth model
into a mixed models as shown in Section 2.6.

gamm(formula,method="",random=NULL,correlation=NULL,select="",family=gaussian())

fit.gamm <- gamm(y ~s(x,bs="ps",k=20), method="REML")

The fitted object with gamm returns a list with two components: $lme is the object returned by
lme; $gam is the complete object of class gam which can be treated like a gam object for prediction,
plotting etc . . .

summary(fit.gamm$gam)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## y ~ s(x, bs = "ps", k = 20)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7073.7412 0.0245 288713 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(x) 10.33 10.33 82.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.89
## Scale est. = 0.063631 n = 106

summary(fit.gamm$lme)

## Linear mixed-effects model fit by REML
## Data: strip.offset(mf)
## AIC BIC logLik
## 56.57453 67.1521 -24.28727
##
## Random effects:
## Formula: ~Xr - 1 | g
## Structure: pdIdnot
## Xr1 Xr2 Xr3 Xr4 Xr5 Xr6
## StdDev: 0.1277468 0.1277468 0.1277468 0.1277468 0.1277468 0.1277468
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## Xr7 Xr8 Xr9 Xr10 Xr11 Xr12
## StdDev: 0.1277468 0.1277468 0.1277468 0.1277468 0.1277468 0.1277468
## Xr13 Xr14 Xr15 Xr16 Xr17 Xr18
## StdDev: 0.1277468 0.1277468 0.1277468 0.1277468 0.1277468 0.1277468
## Residual
## StdDev: 0.2522526
##
## Fixed effects: y.0 ~ X - 1
## Value Std.Error DF t-value p-value
## X(Intercept) 7073.741 0.0245009 104 288713.12 0.0000
## Xs(x)Fx1 0.108 0.3215396 104 0.34 0.7372
## Correlation:
## X(Int)
## Xs(x)Fx1 0
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.38374441 -0.59772858 0.02233536 0.60088298 2.41386908
##
## Number of Observations: 106
## Number of Groups: 1

Note that the main difference between fit.gamm fitted with gamm and fit20.gam with gam is
how the smoothing parameter is estimated (REML vs GCV), and hence the results are basically the
same.

3.3 lme package
We saw that the P-splines has a mixed model representation in Section 2.6. In this section we will
see how we can use the function lme in library(nlme) for smoothing. Note, that this is what gamm
function is doing internally, but we will show how you can construct all the elements by yourself.

The R functions mixed.model.B and mixed.model.T creates the mixed model bases X and Z
based on the methods described in Section 2.6.

First we create the bases

# Create MM bases
nseg = 20
MM <- mixed.model.B(x,min(x)-0.01,max(x)+0.01,ndx=nseg,bdeg=3,pord=2,type="Eilers")
names(MM)

## [1] "X" "Z"

X <- MM$X
Z <- MM$Z

In order to use lme we need the to provide the information in the correct way:
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library(nlme)
n <- length(y)

Id <- factor(rep(1,n)) # create an Id factor for each observation (individual)
# hence there is no nesting

# random effects has a cov matrix multiple of the Identity
Z.block <- list(list(Id=pdIdent(~Z-1)))
Z.block <- unlist(Z.block,recursive=FALSE)

data.fr <- groupedData(y ~ X[,-1] | Id,
data=data.frame(y,X,Z))

fit.lme <- lme(y ~ X[,-1],data=data.fr,
random=Z.block) # method="REML" by default

class(fit.lme)

## [1] "lme"

What can we get from fit.lme?

• σ̂2

sig2 <- fit.lme$sigma^2

• σ̂2
α

sig2.alpha <- sig2*exp(2*unlist(fit.lme$modelStruct))

• REML score

reml <- fit.lme$logLik

• β̂

beta.hat <- fit.lme$coeff$fixed

• α̂

alpha.hat <- unlist(fit.lme$coeff$random)

• f̂
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f.hat <- c(X%*%beta.hat + Z%*%alpha.hat[1:ncol(Z)])
d <- ncol(fit.lme$fitted)
f.hat <- fit.lme$fitted[,d]

• Confidence Intervals of the fitted curve f̂

# 1st we create a function to obtain 95% CI's from a fitted lme object
Int.Conf<-function(X,Z,f.hat,sigma2,sigma2.alpha)
{

C=cbind(X,Z)
D=diag(c(rep(0,ncol(X)),rep(sigma2/sigma2.alpha,ncol(Z))))
S=sigma2*rowSums(C%*%solve(t(C)%*%C+D)*C)
IC1=f.hat-1.96*sqrt(S)
IC2=f.hat+1.96*sqrt(S)
IC=cbind(IC1,IC2)
colnames(IC) <- c("lower","upper")
IC

}

ci <- Int.Conf(X,Z,f.hat,sig2,sig2.alpha)

We can now plot the fitted curve and the CI’s

plot(x,y,cex=.65,pch=15,col="grey")
lines(x[order(x)],f.hat[order(x)],col=2)
matlines(x[order(x)],ci[order(x)],col=4,lty=2)

Or on a finer grid

# Predict
x.grid <- seq(min(x),max(x),l=200)
MM.grid <- mixed.model.B(x.grid,min(x.grid)-0.01,max(x.grid)+0.01,

ndx=nseg,bdeg=3,pord=2,type="Eilers")
X.grid <- MM.grid$X
Z.grid <- MM.grid$Z

# Compute the fitted curve on a finer grid of x points
f.hat.grid <- c(X.grid%*%beta.hat+Z.grid%*%alpha.hat)

ci.grid <- Int.Conf(X.grid,Z.grid,f.hat.grid,sig2,sig2.alpha)
plot(x,y,cex=.65,col="grey")
lines(x.grid,f.hat.grid,col=2)
matlines(x.grid,ci.grid,lty=2,col=4)

We can use gam with GLM’s by specifying the argument family as in the glm function. For
instance:
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library(mgcv)
# Poisson example
n = 100
x <- seq(0,1,l=n)
f <- sin(2.8*x*pi)
g <- exp(f)
z <- rpois(rep(1,n),g) # simulate a Poisson response vble with mean exp(f)

# gam fit
fit.pois <- gam(z ~ s(x,bs="ps",m=2,k=40),family=poisson,

method="REML")

# gamm fit (using PQL)
fit.pois2 <- gamm(z ~ s(x,bs="ps",m=2,k=40),family=poisson,

method="REML")

##
## Maximum number of PQL iterations: 20

As mentioned before,
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library(MASS)

# Create MM bases
nseg = 20
MM <- mixed.model.B(x,min(x)-0.01,max(x)+0.01,

ndx=nseg,bdeg=3,pord=2,type="Eilers")
names(MM)
X <- MM$X
Z <- MM$Z
n <- length(z)

# create Id factor and Z.block as shown in lme
Id <- factor(rep(1,n)) # create an Id factor for each observation (individual)
# hence there is no nesting

Z.block <- list(list(Id=pdIdent(~Z-1)))
Z.block <- unlist(Z.block,recursive=FALSE)

data.fr <- groupedData(z ~ X[,-1] | Id,
data=data.frame(z,X,Z))

# fit with glmmPQL function in library(MASS)

fit.pois.glmmPQL <- glmmPQL(z ~ X[,-1],
data=data.fr, random=Z.block, family=poisson)

4 Applications
In this section we will present some examples using the smoothing techniques presented previously
applied to some real examples.

4.1 Additive models
4.1.1 Air quality data

In this Section, we analyze the data(airquality) (see ?airquality) consisting of air quality
measurements in New York, from Maty to September 1973. The data frame contains with 154
observations on 6 variables.

• [,1] Ozone numeric Ozone (ppb)

• [,2] Solar.R numeric Solar R (lang)

• [,3] Wind numeric Wind (mph)

• [,4] Temp numeric Temperature (degrees F)

• [,5] Month numeric Month (1–12)
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Figure 21: Scatterplot matrix

• [,6] Day numeric Day of month (1–31)

For more details ?airquality

data(airquality)
pairs(airquality)

A simple scatterplot shows that some of the variables have a non-linear relationship.
Let us consider a linear model for the response variable Ozone

airq.lm <- lm(Ozone ~ Temp + Wind + Solar.R, data=airquality)
summary(airq.lm)

##
## Call:
## lm(formula = Ozone ~ Temp + Wind + Solar.R, data = airquality)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.485 -14.219 -3.551 10.097 95.619
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Figure 22: Plots of lm fit

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -64.34208 23.05472 -2.791 0.00623 **
## Temp 1.65209 0.25353 6.516 2.42e-09 ***
## Wind -3.33359 0.65441 -5.094 1.52e-06 ***
## Solar.R 0.05982 0.02319 2.580 0.01124 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.18 on 107 degrees of freedom
## (42 observations deleted due to missingness)
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.5948
## F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16

Let us plot the results

par(mfrow=c(1,3))
termplot(airq.lm,se=TRUE)

We can also plot the residuals of the model in order to check the model hypothesis

par(mfrow=c(1,2))
plot(airq.lm,which=1:2)

The lack of normality in the residuals is due to the asymmetry of the response variable Ozone, we
can apply a log transform to achieve asymmetry, i.e.:
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Figure 23: Plots of lm residuals

par(mfrow=c(1,2))
hist(airquality$Ozone, main="Ozone")
hist(log(airquality$Ozone), main ="log(Ozone)")

We can now fit a linear model of the log(Ozone), does the model look more adecuate?

lairq.lm <- lm(log(Ozone)~ Temp + Wind + Solar.R, data=airquality)
summary(lairq.lm)
plot(lairq.lm)

Fitting a linear model we can conclude that there might be some heterokedasticity not accounted
by the model. However, the most possible cause is that the relationship between the response variable
and the covariates are far from linear.

Let us fit a GAM model, firstly with a single variable, i.e,:

library(mgcv)
airq.gam1 <- gam(log(Ozone) ~ s(Wind,bs="ps",m=2,k=10),

method="REML", select=TRUE,data=airquality)
summary(airq.gam1)

##
## Family: gaussian
## Link function: identity
##
## Formula:
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## log(Ozone) ~ s(Wind, bs = "ps", m = 2, k = 10)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4185 0.0655 52.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Wind) 2.565 9 6.453 2.76e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.336 Deviance explained = 35%
## -REML = 128.69 Scale est. = 0.49769 n = 116

The results show that the smooth effect s(Wind) is significative (with an approximate p-value
close to zero and edf 2.56). The next Figure shows the smooth wind effect. The increment of the
wind speed decreases the log Ozone levels (dramatically until 10mph). Note that including the
intercept, the smooth effects are centered at zero.

plot(airq.gam1,residuals=TRUE,scheme=1)
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Figure 25: Estimated smooth effect of Wind on log(Ozone). Data points are the residuals

gam.check(airq.gam1)

##
## Method: REML Optimizer: outer newton
## full convergence after 8 iterations.
## Gradient range [-1.455961e-06,1.183099e-06]
## (score 128.6926 & scale 0.4976891).
## Hessian positive definite, eigenvalue range [0.4379927,57.51548].
## Model rank = 10 / 10
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
## k' edf k-index p-value
## s(Wind) 9.00 2.56 0.69 0.005 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that, in model airq.gam1 we used k=10 knots, the variable Wind has 31 unique values, and
hence 10 knots should be enough. We fit a model for the residuals of the fitted gam model
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Figure 26: Check plots by gam.check
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resids <- residuals(airq.gam1)
resids.gam <- gam(resids~s(Wind,k=20,m=2),method="REML",

select=TRUE,data=airq.gam1$model)
summary(resids.gam)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## resids ~ s(Wind, k = 20, m = 2)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.137e-15 6.477e-02 0 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Wind) 7.419e-05 19 0 1
##
## R-sq.(adj) = -5.66e-07 Deviance explained = 7.89e-06%
## -REML = 124.14 Scale est. = 0.48659 n = 116

The results show that there is no unexplained variability between the variable and the residuals.
Hence, we can conclude that we do not need more knots. The next Figure supports this statement.

plot(resids.gam)

airq.pred <- data.frame(Wind=seq(min(airquality$Wind),max(airquality$Wind)),
length.out=200)

p <- predict(airq.gam1, newdata = airq.pred, type="response", se.fit = TRUE)

plot(airq.pred$Wind,p$fit, xlab="Wind", ylab="log(Ozone)",
type="l", ylim=c(0,6))

lines(airq.pred$Wind,p$fit + 1.96 * p$se.fit, lty=2)
lines(airq.pred$Wind,p$fit - 1.96 * p$se.fit, lty=2)
points(airquality$Wind,log(airquality$Ozone),cex=.55,col="grey", pch=15)

Now we add the variable Temp:

airq.gam2 <- gam(log(Ozone)~s(Wind,bs="ps",m=2,k=10)+s(Temp,bs="ps",m=2,k=10),
method="REML",select=TRUE,data=airquality)

summary(airq.gam2)

##
## Family: gaussian
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Figure 29: Estimated smooth effect of Wind and Temp on log(Ozone). Data points are the residuals

## Link function: identity
##
## Formula:
## log(Ozone) ~ s(Wind, bs = "ps", m = 2, k = 10) + s(Temp, bs = "ps",
## m = 2, k = 10)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.41852 0.04963 68.89 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Wind) 2.068 9 1.353 0.000981 ***
## s(Temp) 3.990 9 10.496 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.619 Deviance explained = 63.9%
## -REML = 101.64 Scale est. = 0.28568 n = 116

Hence, the Temp effect is significative. The next Figure show both smooth effects.

par(mfrow=c(1,2))
plot(airq.gam2,residuals=TRUE,scheme=1)

We can compare both models using the function anova for a F -test:
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anova(airq.gam1,airq.gam2)

## Analysis of Deviance Table
##
## Model 1: log(Ozone) ~ s(Wind, bs = "ps", m = 2, k = 10)
## Model 2: log(Ozone) ~ s(Wind, bs = "ps", m = 2, k = 10) + s(Temp, bs = "ps",
## m = 2, k = 10)
## Resid. Df Resid. Dev Df Deviance
## 1 111.16 55.958
## 2 105.98 31.123 5.1832 24.835

We can conclude that Temp variable is relevant. Note that, strictly, in this case both models are
not nested, as the effective dimension of the variable Wind is different when the variable Temp is
present. Hence, we use the AIC to confirm the results.

AIC(airq.gam1)

## [1] 255.0315

AIC(airq.gam2)

## [1] 195.6561

Now, we include the covariate Solar.R. Notice that this variables contains missing values (NA’s).

sum(is.na(airquality$Solar.R))

## [1] 7

In order to compare the previous model airq.gam2 and the new model that includes Solar.R we
will use the same data, so we will omit the missing values and refit the models.

new.airquality <- na.omit(airquality)

airq.gam22=gam(log(Ozone)~s(Wind,bs="ps",m=2,k=10)+s(Temp,bs="ps",m=2,k=10),
method="REML",select=TRUE,data=new.airquality)

airq.gam3=gam(log(Ozone)~s(Wind,bs="ps",m=2,k=10)+s(Temp,bs="ps",m=2,k=10)+s(Solar.R,bs="ps",m=2,k=20),
method="REML",select=TRUE,data=new.airquality)

summary(airq.gam22)

##
## Family: gaussian
## Link function: identity
##
## Formula:
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## log(Ozone) ~ s(Wind, bs = "ps", m = 2, k = 10) + s(Temp, bs = "ps",
## m = 2, k = 10)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.41593 0.05128 66.61 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Wind) 2.1879 9 1.919 1e-04 ***
## s(Temp) 0.9874 9 8.601 7.73e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.611 Deviance explained = 62.2%
## -REML = 95.215 Scale est. = 0.29194 n = 111

summary(airq.gam3)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## log(Ozone) ~ s(Wind, bs = "ps", m = 2, k = 10) + s(Temp, bs = "ps",
## m = 2, k = 10) + s(Solar.R, bs = "ps", m = 2, k = 20)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.41593 0.04586 74.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Wind) 2.318 9 2.255 2.44e-05 ***
## s(Temp) 1.852 9 6.128 1.12e-12 ***
## s(Solar.R) 2.145 19 1.397 1.23e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.689 Deviance explained = 70.7%
## -REML = 86.106 Scale est. = 0.23342 n = 111
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Figure 30: Smooth effects of Wind, Temp and Solar.R

AIC(airq.gam22)

## [1] 185.7769

AIC(airq.gam3)

## [1] 166.0423

Is the Solar.R variable relevant?
The next Figure shows the estimated smooth effects for Wind, Temp and Solar.R covariables

(partial residuals are also plotted).

par(mfrow=c(2,2))
plot(airq.gam3,residuals=TRUE)

Variable selection in GAMs
The function gamSim simulates several data for GAMs. See ?gamSim for details.
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set.seed(666)
data=gamSim(eg=1,n=400,dist="normal")

## Gu & Wahba 4 term additive model

fit=gam(y~s(x0)+s(x1)+s(x2)+s(x3),data=data,method="REML",select=TRUE)
summary(fit)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## y ~ s(x0) + s(x1) + s(x2) + s(x3)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.81866 0.09661 80.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(x0) 2.588e+00 9 2.633 5.67e-06 ***
## s(x1) 2.436e+00 9 39.163 < 2e-16 ***
## s(x2) 7.735e+00 9 87.972 < 2e-16 ***
## s(x3) 6.087e-05 9 0.000 0.999
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.743 Deviance explained = 75.1%
## -REML = 856.23 Scale est. = 3.7337 n = 400

par(mfrow=c(2,2))
plot(fit,residuals=TRUE)

The summary(fit) table shows the estimated degrees of freedom (edf) and the approximated
F-test p-values. Clearly, the s(x3) effect is not significant as we can also see in the estimated effect
plot.

4.2 Semi-parametric models
Semi-parametric models allows mixtures of linear (parametric) and non-parametric components, i.e.:

y = β0 + β1x1 + ...+ βj−1xj−1 + f(xj) + ε
The fitting procedure is the same as shown in previous sections. Simply the parametric effects

are included in the fixed effects part, X. An interested case is then the parametric part includes
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Figure 31: Estimated smooth effects.
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Figure 32: Onions yield in two locations

a factor variable with two or more levels. As we saw in the linear case, we can consider different
situations: parallel smooth terms (additive effect) or non-parallel smooth terms (interaction effect).
Moreover, we can consider the same amount of smoothing or different amount.

4.2.1 Onions data

To illustrate a simple case of a semi-parametric model, we consider the data(onions) in the
library(SemiPar). The data consist of 84 observations form an experiment involving the production
of white Spanish onions in two South Australian locations. The variables are:

• dens areal density of plants (plants per square metre)

• yield onion yield (grammes per plant).

• location indicator of location: 0=Purnong Landing, 1=Virginia.

The next Figure shows that for higher density of plants the Purnong Landing yield of onios is
greater.

library(SemiPar)
data(onions)
attach(onions)
points.cols <- c("red","blue")
plot(dens,log(yield),col=points.cols[location+1],pch=16)
legend("topright",c("Purnong Landing","Virginia"),col=points.cols,pch=rep(16,2))

The linear model will be
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log(yieldi) = β0 + β1locationij + β2densi + εi

where

locationij =
{

0 if the ith observation is from Purnong Landing
1 if the ith observation is from Virginia

The figure suggest a non-linear terms for dens, hence a better model would be:

log(yieldi) = β0 + β1locationij + f(densi) + εi

# create a factor for location
L <- factor(location)

levels(L) <- c("Purnong Landing","Virginia")

# fit a gam with location factor
fit1 <- gam(log(yield) ~ L + s(dens,k=20,m=2,bs="ps"),

method="REML", select=TRUE)

summary(fit1)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## log(yield) ~ L + s(dens, k = 20, m = 2, bs = "ps")
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.85011 0.01688 287.39 <2e-16 ***
## LVirginia -0.33284 0.02409 -13.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(dens) 4.568 19 72.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.946 Deviance explained = 94.9%
## -REML = -54.242 Scale est. = 0.011737 n = 84

The next Figure shows the fitted curves for each location with model fit1, we assumed both
curves are parallel.
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Figure 33: Fitted curves for each location

Assuming parallel curves for both locations implies that the decrease of the yield as the density
increases is the same in both locations. Instead of fitting an additive effect model we can fit an
interaction effect model such as:

log(yieldi) = β0 + β1β1locationij + f(densi)L(j) + εi

where

L(j) =
{

0 if the ith observation is from Purnong Landing
1 if the ith observation is from Virginia

fit2 <- gam(log(yield) ~ L + s(dens,k=20,m=2,bs="ps",by=L),
method="REML", select=TRUE)

summary(fit2)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## log(yield) ~ L + s(dens, k = 20, m = 2, bs = "ps", by = L)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.84407 0.01603 302.12 <2e-16 ***
## LVirginia -0.33003 0.02271 -14.54 <2e-16 ***
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(dens):LPurnong Landing 3.097 18 37.62 <2e-16 ***
## s(dens):LVirginia 4.728 17 52.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.952 Deviance explained = 95.7%
## -REML = -53.616 Scale est. = 0.01045 n = 84

Which model is better?

AIC(fit1)

## [1] -125.2307

AIC(fit2)

## [1] -131.1844

fit1$sp

## s(dens)1 s(dens)2
## 164.66124239 0.00147493

fit2$sp

## s(dens):LPurnong Landing1 s(dens):LPurnong Landing2
## 4.264039e+02 1.604648e-03
## s(dens):LVirginia1 s(dens):LVirginia2
## 6.437458e+01 1.053443e-03

# plot the smooth effects
par(mfrow=c(2,2))
plot(fit2, se=TRUE)

# In the same plot
fit2.P <- predict(fit2,newdata=data.frame(L=L.P,dens=dens.g),se.fit=TRUE)
fit2.V <- predict(fit2,newdata=data.frame(L=L.V,dens=dens.g),se.fit=TRUE)

plot(dens,log(yield),col=points.cols[location+1],pch=16,cex=.55)
lines(dens.g,fit2.P$fit,col=2)
lines(dens.g,fit2.P$fit+1.96*fit1.P$se.fit,col=2,lty=2)
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Figure 34: Fitted curves by location

lines(dens.g,fit2.P$fit-1.96*fit1.P$se.fit,col=2,lty=2)
lines(dens.g,fit2.V$fit,col=4)
lines(dens.g,fit2.V$fit+1.96*fit2.V$se.fit,col=4,lty=2)
lines(dens.g,fit2.V$fit-1.96*fit2.V$se.fit,col=4,lty=2)

4.3 Penalized splines for longitudinal data
In this section we will consider longitudinal data in which the individuals trajectories are modelled
as a non-linear function of time.

4.3.1 Girls leukemia data

We will use data from a longitudinal study related to different therapies on girls. The data where
slightly modified to preserve individuals privacy.

The variables are
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• case individual

• treatment type of treatment received (1=no radiation, 2=conventional radiation or 3=hyperfractioned
radiation)

• height girl height in cm

• age age in years

The total number of observations is 1988. The number of measurement lies between 1 and 21.

4.3.1.1 Random intercept model The simplest model is of the form:

yij = β0 + β1xij +
L∑
l=2

γltril + Ui + εij Ui ∼ N (0, σ2
U ) εij ∼ N(0, σε)

1 ≤ i ≤ 197
1 ≤ j ≤ ni

where
tril =

{
1 if the ith girl received treatment l
0 otherwise

This model assumes that all girls have the same linear growth rate and the variability among
girls are accounted by the random effect Ui. In matrix form:

y = Xβ +Zu+ ε (4.1)

where

X =

X1 T 1
...

...
Xm Tm

 , Xi =

1 xi1
...

...
1 xini

 , β =


β0
β1
γ1
γ2
γ3

 , Z =


11 0 . . . 0
0 12 . . . 0
...

... . . . ...
0 0 . . . 1m

 , 1i =


1
1
...
1


ni×1

T i is a matrix that indicates if the ith girls receives treatment 1, 2 or 3.
The R code is

# read data
leukemia <- read.table("GAMs-data/leukemia.txt", header=TRUE)
head(leukemia)

## case treatment height age
## 1 1 3 105.5 4.708333
## 2 1 3 106.5 5.125000
## 3 1 3 108.0 5.708333
## 4 1 3 111.5 6.125000
## 5 1 3 113.5 6.708333
## 6 1 3 115.0 7.208333

52



Treatment

age

fit
te

d(
m

od
el

1)

80

100

120

140

160

180

5 10 15

1

5 10 15

2

5 10 15

3

Figure 35: Random intercept fitted model per treatments

# random intercept model
model1 <- lme(height~factor(treatment)+age,random=list(case=pdIdent(~1)),

data=leukemia)
fit.model1=model1$fitted

The next Figure shows the fitted straight lines for the random intercept model. This model is not
able to describe the trajectories of the girls’ height.

## Warning: package 'fields' was built under R version 3.4.4

## Warning: package 'spam' was built under R version 3.4.4

## Warning: package 'dotCall64' was built under R version 3.4.4

## Warning: package 'maps' was built under R version 3.4.4

4.3.1.2 Additive mixed model A natural extension of the previous model is

yij =
L∑
l=2

γltril + f(xij) + Ui + εij Ui ∼ N (0, σ2
U ) εij ∼ N (0, σε) (4.2)

where f is a smooth function accounting for the growth trend of the girls. The function f is
estimated with P -splines (using the mixed model representation). Now,
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Figure 36: Smooth effect for the random intercept model

Z =


Z1 11 0 . . . 0
Z2 0 12 . . . 0
...

...
... . . . ...

Zm
...

... . . . 1m


where Zi is the random effect matrix obtained from the mixed model representation of a P -spline

as shown in Section 2.6.

u = (u1, u2, ...., uk, Um)′ and G = Cov(u) =
(
σ2
uI 0
0 σ2

UI

)
Instead of straight lines, we fit smooth curves that only differs in their intercepts.
In R we use the function gamm

library(mgcv)
# Smooth random intercept model
fit2.gamm <- gamm(height~factor(treatment)+s(age,k=40,bs="ps",m=2),

random=list(case=pdIdent(~1)),data=leukemia)

The smooth age effect is shown in the next figure.

plot(fit2.gamm$gam,2,scheme=1)

We can plot the fitted curves using the function xyplot from the library lattice, in order to
plot the fitted curves and overlap the original data points we will use the library latticeExtra and
the function as.layer.
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Figure 37: Smooth effect for the random intercept model

## Warning: package 'latticeExtra' was built under R version 3.4.4

The next plot shows the fitted trends by treatment.
Previous plots show that we account for the non-linear trend but we are not able to capture the

individual trajectories.

4.3.1.3 Linear individual differences model (Random intercept and slope model) This
model is an extension of the previous one. Now we allow not only for random intercept but also for
random slopes.

yij =
L∑
l=2

γltril + f(xij) + ai1 + ai2xij + εij εij ∼ N(0, σε) (ai1, ai2)′ ∼ N (0,Σ) (4.3)

In matrix notation, now the random effect matrix Z is

Z =


Z1 X1 0 . . . 0
Z2 0 X2 . . . 0
...

...
... . . . ...

Zm 0 0 . . . Xm

 ,

with random effects:
u = (u1, . . . , uK , a11, a12, . . . , am1 , am2)′

and covariance matrix:
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Figure 38: Fitted trends for the smooth random intercept model by treatment

G = Cov(u) =
(
σ2
uI 0
0 blockdiagonal

1≤i≤m
Σ

)

# Random intercepts and slopes and smooth effect for age
fit3.gamm <- gamm(height~factor(treatment)+s(age,k=40,bs="ps",m=2),

random=list(case=pdSymm(~age)),data=leukemia)
summary(fit3.gamm$gam)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## height ~ factor(treatment) + s(age, k = 40, bs = "ps", m = 2)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 125.5430 0.4507 278.562 <2e-16 ***
## factor(treatment)2 -2.2864 0.9637 -2.373 0.0178 *
## factor(treatment)3 -1.3464 0.9734 -1.383 0.1668
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
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Figure 39: Fitted individual trends for the smooth random intercept and slope model by treatment

## edf Ref.df F p-value
## s(age) 12.05 12.05 1198 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.919
## Scale est. = 3.6616 n = 1988

This model adds more flexibility, allowing for non-parallel curves.

4.3.1.4 Curve by factor interaction The final aim of the study was the long term effects of
the three different therapies. Hence, individual curves for each treatment is of interest. We can
extend the model by allowing for a interaction of a factor variable with a continuous predictor. The
model is of the form:

yij = fzi
(xij) + ai1 + ai2xij + εij (4.4)

more formally

yij = β0 + β1xij + Ziuk

L∑
l=2

tril(γ0l + γ1lxij) +
L∑
l=2

trilZiwlk + ai1 + ai2xij + εij

where
wlk ∼ N (0, σ2

wl), (ai1, ai2)′ ∼ N (0,Σ) , εij ∼ N (0, σ2
ε),

where tril = 1 if tri = l and 0 otherwise.

57



In a model with factor variables, we must impose a constraint to ensure an identifiable model, in
this case, we impose that γ01 = γ11 = 0, which means that β0 + β1xij + Ziuk is the fitted curve for
l = 1, and γ0l + γ1lxij + Ziw

l
k is the difference between the fitted curves for therapy 2 (conventional

radiation) and therapy 3 (hyperfractioned radiation) and therapy 1 (no radiation).

# Curve by treatment model
fit4.gamm <- gamm(height~factor(treatment)+s(age,k=40,bs="ps",m=2,

by=factor(treatment)),
random=list(case=pdSymm(~age)),data=leukemia)

summary(fit4.gamm$gam)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## height ~ factor(treatment) + s(age, k = 40, bs = "ps", m = 2,
## by = factor(treatment))
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 125.8952 0.4606 273.358 < 2e-16 ***
## factor(treatment)2 -3.6383 1.0508 -3.463 0.000547 ***
## factor(treatment)3 -2.2342 1.0605 -2.107 0.035271 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(age):factor(treatment)1 11.589 11.589 954.8 <2e-16 ***
## s(age):factor(treatment)2 8.986 8.986 250.8 <2e-16 ***
## s(age):factor(treatment)3 9.251 9.251 268.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.918
## Scale est. = 3.41 n = 1988

Equivalent model with lme

attach(leukemia)
X=model.matrix(height~factor(treatment)*age)
treatment=factor(treatment)

MM=mixed.model.B(age,min(age)-0.5,max(age)+0.5,40,3,2,type="Eilers")

Z=MM[[2]]
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Figure 40: Fitted global trends for the smooth random intercept and slope model by treatment
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Figure 41: Fitted individual trends for the smooth random intercept and slope model by treatment

Id=factor(rep(1,length(height)))

Z.block4=list(treatment=pdIdent(~Z-1),case=pdSymm(~age))

data.fr <- groupedData(height ~ X[,-1] | Id, data = data.frame(height,X,Z,case,age))
model4 <- lme(height~X[,-1],data=data.fr,random=Z.block4)

4.3.1.5 Specific curves for individuals The more flexble model is the one that allows for
specific differences among individuals using non-parametric smooth terms.

yij =
L∑
l=2

γltril + f(xij) + gi(xij) + εij εij ∼ N (0, σε) (4.5)

with
g(xij) = ai1 + ai2xij + Zivk (ai1, ai2)′ ∼ N (0,Σ) vk ∼ N (0, σ2

v)

Each individual curve gi() has two components: i) parametric and ii) no-parametric, both are
random (in contrast to the model proposed by Brumback and Rice (1998) where computational
issues arises due to the need of estimating 2m parameters in the linear part). This model is written
in matrix form as:

y = Xβ +Zu+ ε
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where

Z =


Z1 X1 0 . . . 0 Z1 0 . . . 0
Z2 0 X2 . . . 0 0 Z2 . . . 0
...

...
... . . . ...

...
... . . . ...

Zm 0 0 . . . Xm 0 0 . . . Zm


and

u =
(
u1, . . . , uK , a11, a12, . . . , am1, am2, v1, . . . , vK

)′
,

with random effects covariance matrix

G = Cov(u) =

σ
2
uI 0 0
0 blockdiagonal

1≤i≤m
Σ

0 0 σ2
vI


This model is very complex to fit using gamm, because we would need to define 197 variables

(subjects) in order to obtain an individual curve for each girl. However, this is very simple using lme.

# We use function lme()
X=model.matrix(height~factor(treatment)*age)
MM=mixed.model.B(age,min(age)-0.5,max(age)+0.5,40,3,2,type="Eilers")

Z=MM[[2]]
Id=factor(rep(1,length(height)))

MM.case=mixed.model.B(age,min(age)-0.5,max(age)+0.5,10,3,2,type="Eilers")
treatment=factor(treatment)
Z.case=MM.case[[2]] # create a specific sub-matrix per each individual
Z.block5=list(treatment=pdIdent(~Z-1),case=pdSymm(~age),case=pdIdent(~Z.case-1))

data.fr5 <- groupedData(height ~ X[,-1] | Id,
data = data.frame(height,X,Z,Z.case,case,age))

model5 <- lme(height~X[,-1],data=data.fr5,random=Z.block5)

The next Figure shows the curve specific per subject fits.

4.3.1.6 Models comparisons When we studied mixed models, we saw that the standard
variance components estimation method is REML (restricted/residual maximum likelihood). In
addition to parameter estimation, we are also interested in testing the need of a parametric model or
not. This type of tests are not straigthforward. For instance, in the additive mixed model in Eq.
(4.2), we may be interested in kwnowing if the function that describes the population mean of the
girls is a straight line or it is non-linear. This would be equivalent to the contrast:

H0 : σ2
u = 0 vs. H1 : σ2

u > 0.

A first problem is that the contrast parameter is at the boundary of the parameter space, i.e.
[0,∞). Hence the Likelihood Ratio Test (LRT), i.e.:
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Figure 42: Fitted individual curve-specifice trend for subject by treatment

RLRT = sup
H1

REL(β, σ2
ε , σ

2
U , σ

2
u)− sup

H0

REL(β, σ2
ε , σ

2
U , σ

2
u)

cannot be compared to a χ2
1. Self and Liang (1987) and Stram and Lee (1994) showed that if y

can be partitioned as independent sub-vectors and the number of sub-vectors tends to infinity, the
LRT is asymptotically distributed as 1

2χ
2
q + 1

2χ
2
q+1, where q is the number of random effect under

the null hypothesis. However, this assumption is not true is some semi-parametric setting and the
approximation may not be good. Crainiceanu et al. (2004) derived the case in which a polynomial
regression tested against a penalized splines with a single smoothing parameter, later Crainiceanu et
al. (2005) studied the case with more than one variance components. These authors suggest the use
of simulations to determine the distribution of the statistic under the null hypothesis. The idea is as
follows: the parameters under the null hypothesis are estimated, then the distribution of the LR test
statistic is simulated under the null hypothesis. Crainiceanu et al. (2005) proposed a fast algorithm
for the simulation in some settings, however, the complexity of the algorithms increases linearly with
the number of subjects and the complexity of the model, and hence this method is intractable for
many other cases. Greven, Küchenhoff, and Peters (2008) proposed more methods implemented in
the R library RLRsim (Exact (Restricted) Likelihood Ratio tests for mixed and additive models).

For the leukemia data, we will fit two nested models with 5 and 6 variance components, models
(4.3) and (4.5), but including a curve-by-factor interaction:

yij = fzi
(xij) + ai1 + ai2xij + εij ,

yij = fzi
(xij) + gi(xij) + εij ,

where yij the height of the ith girl at age j, para i = 1, . . . , 197 y j between 1 and 21, f1 is the
average curve for the girls who received treatment 1 (no radiation), f2 for the girls who received
conventional radiation (treatment=2) and f3 for the girls who received treatment 3 (hyperfractioned
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Figure 43: Average mean curves per treatment for models 4.4 and 5.5

radiation therapy), ai1 and ai2 are the random intercepts and slopes and y gi(xij) is the specific
deviation of the ith girl respect to the average curve of her treatment group.

The interest in this study are the treatment effects on height along time and the individual
responses to the treatments.

Next plots show the estimated average population curve effects per treatment. It can be appreciated
that in both cases the trend pattern is similar, and for those girls who did not received any radiation
therapy (treatment 1) the effect is higher than the other two therapy groups, in particular from 11
years old.

library(latticeExtra)
library(fields)
xyplot(model4$fitted[,2] ~ age,groups=treatment,col=1:3,lty=1:3,pch=19,

data=leukemia,main="Model 4: Average mean curve per Treatment",cex=.35,type="a",
key=list(corner=c(0,1),cex=1,lines=list(col=1:3, lty=1:3),

text=list(c("Treatment 1","Treatment 2","Treatment 3"))))

xyplot(model5$fitted[,2] ~ age,groups=treatment,col=1:3,lty=1:3,pch=19,data=leukemia,
main="Model 5: Average mean curve per Treatment",
cex=.35,type="a",key=list(corner=c(0,1),cex=1,lines=list(col=1:3, lty=1:3),

text=list(c("Treatment 1","Treatment 2","Treatment 3"))))

In order to compare the 3 curves, we refit the model with a single curve for the mean, then the
null hyphotesis would be:

H0 : γjl = 0 j = 0, 1 l = 1, 2, 3 and σ2
w = 0
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Model 5: Average mean curve per Treatment
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Figure 44: Average mean curves per treatment for models 4.4 and 5.5

for γjl and σ2
w defined in (4.5).

# without treatment random effects (i.e. a single curve for all treatment levels)
Z.block5.2=list(Id=pdIdent(~Z-1),case=pdSymm(~age),case=pdIdent(~Z.case-1))
data.fr <- groupedData(height ~ X[,-1] | Id,

data = data.frame(height,X,Z,Z.case,case,age))
model5.2 <- lme(height~X[,-1],data=data.fr,random=Z.block5.2)

xyplot(model5.2$fitted[,2]~ age,groups=treatment,col=1:3,lty=1:3,pch=19,data=leukemia,
main="Average mean curve per Treatment",cex=.35,type="a",
key=list(corner=c(0,1),cex=1,lines=list(col=1:3, lty=1:3),

text=list(c("Treatment 1","Treatment 2","Treatment 3"))))

xyplot(model5.2$fitted[,1]~ age,groups=treatment,col=1:3,lty=1:3,pch=19,data=leukemia,
main="Fixed effect",cex=.35,type="a",
key=list(corner=c(0,1),cex=1,lines=list(col=1:3, lty=1:3),

text=list(c("Treatment 1","Treatment 2","Treatment 3"))))

xyplot(model5.2$fitted[,1]-model5.2$fitted[,2]~ age,groups=treatment,col=1:3,lty=1:3,
pch=19,data=leukemia,main="Fixed effect - population random effect",cex=.35,type="a",
key=list(corner=c(0,1),cex=1,lines=list(col=1:3, lty=1:3),

text=list(c("Treatment 1","Treatment 2","Treatment 3"))))

The appropriate way to proceed would be to use parametric bootstrap to obtain the distribution
of the likelihood ratio test, however, the computational time needed to fit the null model to a large
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Figure 45: Average mean curves per treatment for models 4.5 (with no treatment random effect)
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Figure 46: Average mean curves per treatment for models 4.5 (with no treatment random effect)
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Figure 47: Average mean curves per treatment for models 4.5 (with no treatment random effect)

number of simulated data sets (between 10,000 and 100,000) would make the bootstrap method
infeasible. A more naive approach consists of comparing the −2 log(RLRT ) with the 90th percentile
of 1

2χ
2
0 + 1

2χ
2
1 (the distribution of the −2 log(RLRT ) under the assumption of independent y’s).

We compute the −2 log(RLRT ) of both models

minus2.RLRT.5.2vs5 <- -2*(logLik(model5.2,REML=TRUE)-logLik(model5,REML=TRUE))
minus2.RLRT.5.2vs5

## 'log Lik.' 34.62625 (df=12)

and compare it with 1
2χ

2
0 + 1

2χ
2
1

0.5*qchisq(.90,0)+0.5*qchisq(.90,1) # 1/2 Chisq(0) + 1/2 Chisq(1)

## [1] 1.352772

The results show that we would reject H0 and then that there is a significative different between
the girls’ height depending on the therapy.

minus2.RLRT.4vs5 <- -2*(logLik(model4,REML=TRUE)-logLik(model5,REML=TRUE))
minus2.RLRT.4vs5

## 'log Lik.' 453.0032 (df=11)
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Figure 48: Random effects models 4.4 and 4.5

0.5*qchisq(.90,2)+0.5*qchisq(.90,3) # 1/2 Chisq(2) + 1/2 Chisq(3)

## [1] 5.428279

To test whether or not the individual response to treatment is linear we compare models (model5)
and (model5.2). Next figures show how compared to Treatment 1 (black line taken as baseline),
girls who received Treatment 2 and Treatment 3 are smaller particularly at older ages.

## The following object is masked _by_ .GlobalEnv:
##
## treatment

## The following objects are masked from leukemia (pos = 3):
##
## age, case, height, treatment

## The following object is masked from fossil:
##
## age

The next figure show the random effects for each girl in model (4.5), it is clear that for many of
the girls the effect is far from linear.

Another option is the use of anova function, however bare in mind that the approximation of the
p-value is approximate (we can also have a look at the model with lower AIC/BIC)
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Figure 49: Random effects model 5 by treatment
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Figure 50: Profile of a block of wood subject to grinding

anova(model4,model5)

## Model df AIC BIC logLik Test L.Ratio p-value
## model4 1 11 9319.186 9380.696 -4648.593
## model5 2 12 8868.182 8935.285 -4422.091 1 vs 2 453.0032 <.0001

4.4 Correlated data
The data were analyzed in Pandit and Wu (1983). They present a dataset (wood.txt) describing
320 measurements of a block of wood that was subject to grinding. Next Figure shows the profile
(depth) height at different distances. The profile variation follows a curve determined by the radius
of the grinding stone.

Using P -splines we can estimate a smooth trend and possible correlation simultaneously. The
mixed model representation of P -splines helps us to estimate both effects pretty easily. Let us
consider, firstly a smooth model that ignores the correlation between the observations.

The left figure shows the estimated smooth trend. This shows that ignoring the correlation gives
a non-smooth trend. The right panel show the autocorrelation function with correlation in the errors.
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library(mgcv)
cor.gamm0 <- gamm(depth ~ s(distance,k=40,bs="ps",m=2), method="REML")
par(mfrow=c(1,2))
plot(distance,depth,cex=.55,pch=15,col="grey")
lines(distance,fitted(cor.gamm0$gam),main="Smooth trend with AR(1)",col="blue")
acf(residuals(cor.gamm0$lme,type="n"), main="Residuals autocorrelation function")
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A correlated data model can be added with an AR(1) or AR(2) structure, i.e.

# create a factor per observation
# to define the correlation structure
Id <- factor(rep(1,length(depth)))

# AR(1)
cor.gamm1 <- gamm(depth ~ s(distance, k=40, bs="ps", m=2),

correlation=corARMA(form=~distance|Id,p=1,q=0),
method="REML")

# AR(2)
cor.gamm2 <- gamm(depth ~ s(distance, k=40, bs="ps", m=2),

correlation=corARMA(form=~distance|Id,p=2,q=0),
method="REML")

The next Figure shows how including a correlation structure results in a smoother trend. In
particular, the AR(2) model autocorrelation shows uncorrelated residuals.

Check the smoothing parameters
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Figure 51: Smooth trends and ACF for AR(1) and AR(2) error models
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print(c(cor.gamm0$gam$sp,cor.gamm1$gam$sp,cor.gamm2$gam$sp))

## s(distance) s(distance) s(distance)
## 2.117994 3228.963761 2014.146340

We can compare the model using anova function

anova(cor.gamm0$lme,cor.gamm1$lme,cor.gamm2$lme)

## Model df AIC BIC logLik Test L.Ratio
## cor.gamm0$lme 1 4 1850.568 1865.616 -921.2841
## cor.gamm1$lme 2 5 1653.212 1672.022 -821.6058 1 vs 2 199.35667
## cor.gamm2$lme 3 6 1638.010 1660.582 -813.0049 2 vs 3 17.20174
## p-value
## cor.gamm0$lme
## cor.gamm1$lme <.0001
## cor.gamm2$lme <.0001

–>

4.5 Generalized additive mixed models (GAMMs)
California House prices The data contained 20.640 observations on house values (response variable)
and 8 covariables, reflecting the characteristics of the property

calif <- read.table("GAMs-data/cadata.dat", header=TRUE)
names(calif)

## [1] "MedianHouseValue" "MedianIncome" "MedianHouseAge"
## [4] "TotalRooms" "TotalBedrooms" "Population"
## [7] "Households" "Latitude" "Longitude"

1. longitude: A measure of how far west a house is

2. latitude: A measure of how far north a house is

3. housingMedianAge: Median age of a house within a block

4. totalRooms: Total number of rooms within a block

5. totalBedrooms: Total number of bedrooms within a block

6. population: Total number of people residing within a block

7. households: Total number of households, a group of people residing within a home unit, for a
block

8. medianIncome: Median income for households within a block of houses (measured in tens of
thousands of US Dollars)

9. medianHouseValue: Median house value for households within a block (measured in US Dollars)
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linfit <- lm(log(MedianHouseValue)~.,data=calif)
print(summary(linfit))

##
## Call:
## lm(formula = log(MedianHouseValue) ~ ., data = calif)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5180 -0.2038 0.0016 0.1949 3.4641
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.180e+01 3.059e-01 -38.570 < 2e-16 ***
## MedianIncome 1.782e-01 1.639e-03 108.753 < 2e-16 ***
## MedianHouseAge 3.261e-03 2.111e-04 15.446 < 2e-16 ***
## TotalRooms -3.186e-05 3.855e-06 -8.265 < 2e-16 ***
## TotalBedrooms 4.798e-04 3.375e-05 14.215 < 2e-16 ***
## Population -1.725e-04 5.277e-06 -32.687 < 2e-16 ***
## Households 2.493e-04 3.675e-05 6.783 1.21e-11 ***
## Latitude -2.801e-01 3.293e-03 -85.078 < 2e-16 ***
## Longitude -2.762e-01 3.487e-03 -79.212 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.34 on 20631 degrees of freedom
## Multiple R-squared: 0.6432, Adjusted R-squared: 0.643
## F-statistic: 4648 on 8 and 20631 DF, p-value: < 2.2e-16

Next Figure plots the predicted prices, ±2 standard errors, against the actual prices. The
predictions are not all that accurate, the RMS residual is 0.340 on the log scale (i.e., 41%), and
only 3.3% of the actual prices fall within the prediction bands.6 On the other hand, they are quite
precise, with an RMS standard error of 0.0071 (i.e., 0.71%). This linear model is pretty thoroughly
converged.

predictions = predict(linfit,se.fit=TRUE)
plot(calif$MedianHouseValue,exp(predictions$fit),cex=0.1,

xlab="Actual price",ylab="Predicted")
segments(calif$MedianHouseValue,exp(predictions$fit-2*predictions$se.fit),

calif$MedianHouseValue,exp(predictions$fit+2*predictions$se.fit),
col="red")

abline(a=0,b=1,lty=2,col=4,lwd=2)

library(mgcv)
addfit <- gam(log(MedianHouseValue) ~ s(MedianIncome,bs="ps")

+ s(MedianHouseAge,bs="ps") + s(TotalRooms,bs="ps")
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Figure 52: Actual median house values (horizontal axis) versus those predicted by the linear model
(black dots), plus or minus two standard errors (grey bars). The dashed line shows where actual and
predicted prices would be equal.

+ s(TotalBedrooms,bs="ps") + s(Population,bs="ps") + s(Households,bs="ps")
+ s(Latitude,bs="ps") + s(Longitude,bs="ps"),data=calif)

plot(addfit,scale=0,se=2,shade=TRUE,resid=TRUE,pages=1)

predictions = predict(addfit,se.fit=TRUE)
plot(calif$MedianHouseValue,exp(predictions$fit),cex=0.1,

xlab="Actual price",ylab="Predicted")
segments(calif$MedianHouseValue,exp(predictions$fit-2*predictions$se.fit),

calif$MedianHouseValue,exp(predictions$fit+2*predictions$se.fit),
col="grey")

abline(a=0,b=1,lty=2,lwd=2)

Now we include longitude and latitude as smooth covariates that can interact:

addfit2 <- gam(log(MedianHouseValue) ~ s(MedianIncome,bs="ps") + s(MedianHouseAge,bs="ps")
+ s(TotalRooms,bs="ps") +s(TotalBedrooms,bs="ps") + s(Population,bs="ps") + s(Households,bs="ps")
+ te(Longitude,Latitude,bs="ps"), data=calif)

plot(addfit2,scale=0,se=2,shade=TRUE,resid=TRUE,pages=1)
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Figure 53: Actual versus predicted prices for the additive model
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Figure 54: Actual versus predicted prices for the additive model
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Figure 55: Partial response functions and partial residuals for addfit2.
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Figure 56: Perspective and surface plot of the spatial component of addfit2

par(mfrow=c(1,2))
plot(addfit2,select=7,phi=60,pers=TRUE)

## Warning in plot.gam(addfit2, select = 7, phi = 60, pers = TRUE): argument
## pers is deprecated, please use scheme instead

plot(addfit2,select=7,scheme=2)

We can use library(MBA) to interpolate a smooth surface for s(Longitude,Latitude)

pred2 <- predict(addfit2,type="terms")
library(MBA)

## Warning: package 'MBA' was built under R version 3.4.4

library(fields)
image.plot(mba.surf(cbind(calif$Longitude,calif$Latitude,pred2[,7]),100,100,

extend=FALSE)$xyz.est, main="smooth spatial effect")
contour(mba.surf(cbind(calif$Longitude,calif$Latitude,pred2[,7]),100,100,
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Figure 57: Surface plot with mba.surf

extend=FALSE)$xyz.est,add=TRUE)
points(calif$Longitude,calif$Latitude,cex=.1,col=1)

Mackerel data from a Spanish survey
These data were recorded by a Spanish survey, as part of a multi-country survey of the abundance

of mackerel eggs off the coast of north-western Europe, in 1992.

library(gamair)
library(sm)
library(mgcv)
library(fields)
library(maps)

data(mackerel)
data(mackp)
attach(mackerel)
Latitude=mack.lat
Longitude=-mack.long
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Figure 58: Mackerel eggs abundance

# plot the egg densities against location
plot(Longitude,Latitude,cex=Density/150,col=2,asp=.85)
map("world",add=TRUE,fill=TRUE,col="lightgrey")

Fit a gam for the spatial locations

m0<-gam(log(Density)~te(Longitude,Latitude,bs="ps",k=13))
# vis.gam(m0,plot.type="contour",color="terrain")
# map("world",add=TRUE,fill=TRUE,col="grey")
summary(m0)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## log(Density) ~ te(Longitude, Latitude, bs = "ps", k = 13)
##
## Parametric coefficients:
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Figure 59: Smooth spatial trend

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.22409 0.05133 62.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## te(Longitude,Latitude) 49.8 58.98 12.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.724 Deviance explained = 77.3%
## GCV = 0.8986 Scale est. = 0.73499 n = 279

Now we include depth, Temperature and Salinity

ldepth <- log(mack.depth) # logarithm scale
m1<-gam(log(Density)~te(Longitude,Latitude,bs="ps",k=13)+s(Temperature,bs="ps")+s(Salinity,bs="ps")+s(ldepth,bs="ps"))
par(mfrow=c(2,2))
plot(m1,scheme=2)
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Figure 60: Additive model gam fit
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summary(m1)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## log(Density) ~ te(Longitude, Latitude, bs = "ps", k = 13) + s(Temperature,
## bs = "ps") + s(Salinity, bs = "ps") + s(ldepth, bs = "ps")
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.22409 0.04876 66.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## te(Longitude,Latitude) 44.907 53.941 4.607 < 2e-16 ***
## s(Temperature) 2.445 2.992 4.023 0.009311 **
## s(Salinity) 1.000 1.000 0.224 0.636511
## s(ldepth) 2.325 2.871 6.814 0.000156 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Rank: 195/196
## R-sq.(adj) = 0.75 Deviance explained = 79.6%
## GCV = 0.81422 Scale est. = 0.66341 n = 279

Check residuals

par(mfrow=c(2,2))
gam.check(m1)

##
## Method: GCV Optimizer: magic
## Smoothing parameter selection converged after 42 iterations.
## The RMS GCV score gradient at convergence was 1.247587e-07 .
## The Hessian was positive definite.
## Model rank = 195 / 196
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
## k' edf k-index p-value
## te(Longitude,Latitude) 168.00 44.91 1.12 0.99
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Figure 61: gam.check results

83



−14 −12 −10 −8 −6 −4

48
50

52
54

56

te(Longitude,Latitude,44.67)

Longitude

La
tit

ud
e

 −7  −6 
 −5 

 −4 

 −4 

 −4 

 −3 

 −3 

 −3 
 −

3 

 −2 

 −2 

 −2 

 −
2 

 −1 

 −1 
 −1 

 0 

 0 

 0 

 0 

 1  1 

 1 

0 5 10 15 20

−
3

−
2

−
1

0
1

2

Temperature

s(
Te

m
pe

ra
tu

re
,2

.3
8)

5 6 7 8

−
3

−
2

−
1

0
1

2

ldepth

s(
ld

ep
th

,2
.3

6)

Figure 62: Smooth term of m2 model

## s(Temperature) 9.00 2.44 0.98 0.34
## s(Salinity) 9.00 1.00 1.01 0.48
## s(ldepth) 9.00 2.33 1.10 0.92

Remove Salinity

m2<-gam(log(Density)~te(Longitude,Latitude,bs="ps",k=13)+s(Temperature,bs="ps")+s(ldepth, bs="ps"))
par(mfrow=c(2,2))
plot(m2,scheme=2,1)

Mackerel data from a Spanish Survery (second analysis)
This data exhibit rather different features from the remainder of the survey. One of these features

is that no eggs were detected at all at a substantial number of the sampling points. This is due to
the smaller nets and the need to compensate by taking a larger number of smaller volume samples.
The sampling locations are shown in the next Figure.

We consider a logistic model for the presence of eggs using as the log of the depth as covariate

library(mgcv)
logit.gam <- gam(Presence ~ s(ldepth, bs="ps"),family=binomial)
plot(logit.gam)
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Figure 63: Sampling positions with presence and absence of eggs
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Figure 64: logistic regression estimate of the relationship between presence and log of depth.
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logit1 <- gam(Presence~te(Longitude,Latitude,bs="ps")+
s(ldepth,bs="ps")+s(Temperature,bs="ps"),family=binomial)

summary(logit1)

##
## Family: binomial
## Link function: logit
##
## Formula:
## Presence ~ te(Longitude, Latitude, bs = "ps") + s(ldepth, bs = "ps") +
## s(Temperature, bs = "ps")
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.3326 0.4829 -4.83 1.36e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## te(Longitude,Latitude) 18.688 19.711 53.028 0.000109 ***
## s(ldepth) 6.433 7.154 11.707 0.111374
## s(Temperature) 1.000 1.000 5.359 0.020631 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.315 Deviance explained = 32.3%
## UBRE = -0.095829 Scale est. = 1 n = 417

logit2 <- gam(Presence~te(Longitude,Latitude,bs="ps")+
s(ldepth,bs="ps"),family=binomial)

summary(logit2)

##
## Family: binomial
## Link function: logit
##
## Formula:
## Presence ~ te(Longitude, Latitude, bs = "ps") + s(ldepth, bs = "ps")
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.8482 0.4118 -4.488 7.18e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
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## edf Ref.df Chi.sq p-value
## te(Longitude,Latitude) 19.214 20.269 56.46 4.49e-05 ***
## s(ldepth) 6.708 7.364 11.98 0.104
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.302 Deviance explained = 31.4%
## UBRE = -0.085669 Scale est. = 1 n = 417

logit3 <- gam(Presence~te(Longitude,Latitude,bs="ps")+
s(Temperature,bs="ps"),family=binomial)

summary(logit3)

##
## Family: binomial
## Link function: logit
##
## Formula:
## Presence ~ te(Longitude, Latitude, bs = "ps") + s(Temperature,
## bs = "ps")
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.0247 0.4208 -4.811 1.5e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## te(Longitude,Latitude) 18.164 19.34 56.44 1.24e-05 ***
## s(Temperature) 6.547 7.22 13.82 0.0589 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.301 Deviance explained = 30.9%
## UBRE = -0.086039 Scale est. = 1 n = 417

par(mfrow=c(1,2))
plot(logit3,scheme=2,1)
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Figure 65: Smooth term of logit3 model
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5 Exercise
The aim is to model data on the results of a spinal operation “laminectomy” on children, to correct
for a condition called kyphosis. The dataset kyphosis.txt contains data on 81 children and the
following variables:

• Kyphosis: a response factor with levels absent present.

• Age of child in months, a numeric vector

• Number of vertebra involved in the operation,a numeric vector

• Start: the vertebra position for which the child start having problems

Start by fitting a model where all variables enter as linear, then, include them as smooth terms,
check if there is one or more that should enter as linear, check if a 2d-smooth should be included.
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