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Abstract

Common factors for seasonal multivariate time series are usually obtained

by first filtering the series to eliminate the seasonal component and then ex-

tracting the nonseasonal common factors. This approach has two drawbacks.

First, we cannot detect common factors with seasonal structure; second, it is

well known that a deseasonalized time series may exhibit spurious cycles that

the original data do not contain, which can make more difficult the detection of
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the nonseasonal factors. In this paper we propose a procedure using the original

data to estimate the dynamic common factors when some, or all, of the time

series are seasonal. We assume that the factor may be stationary or nonstation-

ary and seasonal or not. The procedure is based on the asymptotic behavior of

the sequence of the so-called sample generalized autocovariance matrices and of

the sequence of canonical correlation matrices, and it includes a statistical test

for detecting the total number of common factors. The model is estimated by

the Kalman Filter. The procedure is illustrated with an environmental example

where two interesting seasonal common factors are found.

Keywords: Common seasonality, Dynamic common factors, Multivariate time

series.

1 Introduction

Common factors for time series have received much attention in the last years. Re-

stricted Dynamic Factor Models (RDEM) assume a contemporaneous relationship

between the series and a small number of factors. Usually these models assume sta-

tionarity (Peña and Box (1987); Stock and Watson (1988, 2002); Ahn (1997); Bai and

Ng (2002); and Lam and Yao (2012), among others) and use the rank of the lag covari-

ance matrices of the process to identify the number of factors. The estimation of the

factors is closely related to the principal components (PC) of the time series (see Tip-

ping and Bishop (1999) and Doz, Giannone, and Reichlin (2012)). Some generaliza-

tions to the nonstationary case are Bai (2004), Bai and Ng (2004), Peña and Poncela

(2006), and Barigozzi, Lippi, and Luciani (2014) for integrated processes, Pan and

Yao (2008) for general nonstationary processes, Eichler, Motta, and Von Sachs (2011)

and Motta, Hafner, and Von Sachs (2011) for locally stationary and non-stationarity

in the variance, and Luciani and Veredas (2015) for fractional integrated processes.
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Generalized Dynamic Factor Models (GDFM) assume a lag relationship between se-

ries and factors. Forni, Hallin, Lippi, and Reichlin (2000) proposed a GDFM model

allowing for an infinite number of factor lags and low correlation between any two

idiosyncratic components. They show that one can consistently estimate the common

component of the time series increasing the number of series to infinity. The rela-

tionship between RDFM and GDFM has been studied in Forni, Giannone, Lippi, and

Reichlin (2009) who proposed a model that can be seen either as restricted or gener-

alized, and developed estimation methods for the factor structure. Common factors

models are used in all branches of science including Medicine (Mamede and Schmid

(2004)), Chemistry and Envinonmetrics (Yidanaa, Ophoria, and Banoeng-Yakubob

(2008)), Engineering (Carpio, Juan, and López (2014)), and Economics and Business

(Stock and Watson (2002)). None of these approaches considers seasonal factors.

It is well known that a deseasonalized time series may have spurious behaviors

and therefore this adjustment should be avoided, if possible, when this is not the

goal of the analysis. Thus, an important issue is to include directly the seasonal

characteristic in the common-factors modeling procedure, avoiding deseasonalization

a priori of the time series. Melo, Nieto, Posada, Betancourt, and Barón (2001) ana-

lyzed a model with only a (nonstationary) common factor and nine seasonal variables

with the seasonal characteristic of each variable specified as a deterministic dummy

variable. Busetti (2006) developed a procedure for handling seasonal common factors

under the multivariate structural model of Harvey (1989), but without including sta-

tionary or (nonseasonal) nonstationary factors. Alonso, Rodŕıguez, Garćıa-Martos,

and Sánchez (2011) and Garćıa-Martos, Rodŕıguez, and Sánchez (2011) proposed

a RDFM where the factors follow a seasonal multiplicative VARIMA model. The

model is very general, but it does not assume orthogonality among the factors and

does not separate the different types of factors. Therefore, it is not easy to identify

from the data which and how many factors determine the common trends and how
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many determine the common seasonality.

The paper is organized as follows: in Section 2 we present our common factors

model in which we assume three sets of factors: (i) nonstationary nonseasonal factors

affecting the trend; (ii) nonstationary seasonal factors affecting the seasonal pattern;

and (iii) stationary common factors. In Section 3 we define the sample generalized

autocovariance matrices for seasonal data and find their asymptotic behavior in terms

of weak convergence. We include two theorems that describe the limit behaviour

of the eigenvalues of the sample generalized autocovariance matrices and canonical

correlation matrices, and present a test for the total number of commom factors. Some

simulations to illustrate in finite samples the performance of the proposed statistical

test and the properties of the sequences of eigenvalues are reported in Section 4. In

Section 5 we indicate how the factorial model can be estimated in State Space form.

Section 6 presents an application to environmental data. Finally, Section 7 concludes.

2 Factor model specification

Let {yt = (y1t, ..., ymt)
T} be an observable multivariate time series generated by an

r-dimensional latent process {ft}, where r ≤ m, with

yt = Pft + et , t ∈ Z , (1)

where Z is the set of integer numbers, P is an m × r factor loading matrix, and

the process {et} is a multivariate Gaussian white noise process with mean 0 and

full-rank diagonal variance matrix Σe. The symbol “T”means matrix transposition.

We assume that ft = (fT
1t, f

T
2t, f

T
3t)

T , where the process {f1t} is nonstationary and

nonseasonal, with dimension r1 and follows the model

ϕ1(B)∇df1t = θ1(B)a1t, (2)
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where ∇ = (1 − B) and d ≥ 1. The process {f2t} is seasonal (nonstationary) with

period S and dimension r2, such that

ϕ2(B
S)∇D

S f2t = θ2(B
S)a2t, (3)

where ∇S = (1− BS) and D ≥ 1. Finally, {f3t} is stationary with dimension r3 and

follows the model

ϕ3(B)f3t = θ3(B)a3t. (4)

For each i = 1, 2, 3, {ait} is a Gaussian white noise process with mean 0 and full-rank

variance matrix Σi and the determinants of the matrix polynomials ϕi(·) have their

roots outside the unit circle. Here, r1 + r2 + r3 = r and we write P = [P1, P2, P3],

where the submatrix Pi is of dimension m × ri, i = 1, 2, 3. For future reference, we

set fit = (fi1,t, ..., firi,t)
T for all i = 1, 2, 3 and for all t ∈ Z.

We need the following assumptions in order to establish our main results.

Assumption A1. For all i, j = 1, 2, 3, with i ̸= j, and all t ∈ Z, the random vectors

ait and ajt are orthogonal.

Assumption A2. The processes {at = (aT1t, a
T
2t, a

T
3t)

T} and {et} are orthogonal, so

that ait and es are orthogonal for all i = 1, 2, 3 and all t, s ∈ Z.

It is easy to see that A2 implies that ft and es are orthogonal for each t, s ∈ Z.

Assumption A3. For model identifiability Σa = Var(at) = Ir, where Ir is the

identity matrix of order r.

This assumption on Σa and the linear representation of a VARIMA process (Nieto

(2007)) imply that fit and fjt are orthogonal for all i, j = 1, 2, 3 with i ̸= j and all

t ∈ Z. Furthermore, the components of vector fit are pairwise orthogonal for all t ∈ Z

and all i = 1, 2, 3.

Assumption A4. The matrix polynomial operators ϕi(B) and θi(B) are diagonal

with entries ϕij(B) and θij(B), respectively, for j = 1, ..., ri and i = 1, 3. Analogously,
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the matrix polynomial operators ϕ2(B
S) and θ2(B

S) are diagonal with entries ϕ2j(B
S)

and θ2j(B
S), respectively, for j = 1, ..., r2.

Assumption A5. With ψij(B) = ϕ−1
ij (B)θij(B) =

∑∞
k=0 ψij,kB

k, i = 1, 2, 3,and

j = 1, ..., r1,
∑∞

k=0 k|ψij,k| <∞ and ψij(1) ̸= 0.

Under assumption A5, the matrices Ψi(1) = diag{ψi1(1), ..., ψiri(1)} are of rank

ri, i = 1, 2, 3.

3 Some properties of the seasonal factor model

3.1 Theoretical characteristics

We assume for simplicity that d = D. Let N be the sample size. We define the

sample generalized autocovariance (SGCV) matrices C(k,N) as

C(k,N) =
S2d

N2d

N∑
t=k+1

(yt−k − ȳ)(yt − ȳ)T , (5)

where k = 0, 1, 2, ..., N − 1 and ȳ = 1
N

∑N
t=1 yt. The weight of the cross-products

sum in C(k,N) is equal to 1/(N
S
)2d, where N

S
is the number of seasons in the sample,

whenever N is an integer multiple of S. Our definition of C(k,N) is different from

that of Peña and Poncela (2006) since it takes into account the presence of seasonality.

The canonical correlation matrices M(k,N), k = 1, 2, ..., N − 1, are defined as

M(k,N) = [
N∑

t=k+1

yty
T
t ]

−1

N∑
t=k+1

yty
T
t−k[

N∑
t=k+1

yt−ky
T
t−k]

−1

N∑
t=k+1

yt−ky
T
t , (6)

and it is well known that their eigenvalues are the squared canonical correlations

between yt−k and yt.

Theorem 1. If A1-A5 hold and K is a positive integer such that K/N → 0 as

N → ∞, then, for each k = 0, 1, ..., K, we have that
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(i) as N −→ ∞, the sequence {C(k,N)}N converges weakly to the random matrix

ΓY,S(k) =
[
P1Ψ1(1)Σ

1
2
1 , P2Ψ2(1)Σ

1
2
2

] AY BY,S

BT
Y,S CS(k)




(
Σ

1
2
1

)T

Ψ1(1)
TPT

1(
Σ

1
2
2

)T

Ψ2(1)
TPT

2

 , (7)

where AY = S2d
1∫
0

V0,d−1(t)V0,d−1(t)
Tdt, BY,S =

∑S
s=1

1∫
0

V0,d−1(t)Vs,d−1(t)
Tdt, and

CS(k) =
∑S

s=1

1∫
0

Vs,d−1(t)Vls,d−1(t)
Tdt, with Vi,d(t) = Fi,d(t) −

1∫
0

Fi,d(t)dt for all i =

0, 1, ..., S and ls is a natural number that depends on k and s. Here, the pro-

cess {Fi,d(t)} is defined recursively by Fi,d(t) =
t∫
0

Fi,d−1(τ)dτ for all d ∈ N, with

Fi,0(t) = Wi(t) an r1-dimensional Brownian motion if i = 0 and r2-dimensional if

i > 1, and such that {Wi(t)} is independent of {Wj(t)} for all i, j = 0, 1, ..., S with

i ̸= j.

(ii) The random eigenvalues of ΓY,S(k) are such that for k = jS, and for all j ∈ N,

we have, almost surely, r1+r2 nonzero eigenvalues which are positive andm−(r1+r2)

eigenvalues which are equal to zero, and for k ̸= jS, for all j ∈ N, we have r1 nonzero

positive eigenvalues and m− r1 eigenvalues equal to zero.

Proof. See the Appendix. There ls depends on k and s and, consequently, CS(k)

depends on k.

Remarks. (1) Putting S = 1, Peña and Poncela’s (2006) Theorem 1 is a particular

case of our Theorem 1. (2) Comparing our limit random matrix with that of Peña

and Poncela (2006), we see that ours deviates from theirs at lags of the form k = jS,

j ∈ N, the seasonal lags. (3) Let (Ω,F, P ) be the probability space on which all the

random elements are defined. Let ω ∈ Ω and Λ1(k, ω),...,Λm(k, ω) be the eigenvalues

of the numerical matrix ΓY,S(k, ω), for some lag k. Then, if k = jS, j ∈ N, the

eigenvectors corresponding to the r1 + r2 positive eigenvalues of ΓY,S(k, ω) form a

basis of the column space of the submatrix [P1, P2] and, if k ̸= jS for all j ∈ N, the

eigenvectors corresponding to the r1 positive eigenvalues are a basis of the column
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space of the submatrix P1. This happens almost surely.

Part (ii) of Theorem 1 has empirical implications: the random matrix ΓY,S(k),

{Λ1(k),...,Λm(k)} has two disjoint subsets of random eigenvalues: one contains the,

almost surely, positive ones, and the other the, almost surely, zero values. Suppose

we list the zero eigenvalues as either Λr1+1(k) = ... = Λm(k) = 0 if k is not a seasonal

lag, or Λr1+r2+1(k) = ... = Λm(k) = 0 if k is a seasonal lag. Let λ1(k,N),...,λm(k,N)

be the random eigenvalues of the random matrix C(k,N). Then, for each k and for

all i = 1, ...,m, the sequence {λi(k,N)} converges weakly to a random eigenvalue of

the matrix ΓY,S(k) as N −→ ∞. Let Λi(k) be the limit of such sequence. Then,

{λi(k,N)} converges weakly to 0 as N −→ ∞ when k ̸= jS, j ∈ N, and i > r1, or

when k = jS, j ∈ N, and i > r1 + r2. Hence, {λi(k,N)} converges in probability to

0 as N −→ ∞ at the nonseasonal lags when i > r1, and at the seasonal lags when

i > r1 + r2. In this way, for N large enough and for any ϵ > 0, P (|λi(k,N)| ≤ ϵ) is

close to 1 for i > r1 when k ̸= jS, and also for i > r1 + r2 if k = jS.

Now, if Ĉ(k,N) is the sample SGCVmatrix, the corresponding eigenvalues λ̂i(k,N)

must be numerically very small for i = r1, ...,m when k ̸= jS and for i = r1 + r2 +

1, ...,m when k = jS. This suggests plotting the m eigenvalues sequences {λ̂i(k,N)}

indexed by k in order to check for this numerical characteristic. In Section 4.2 we

illustrate with simulated examples the practical utility of these plots to specify the

number r1 of nonstationary and nonseasonal common factors and the number r2 of

seasonally integrated factors. Obviously, finding the rate of convergence to zero of the

eigenvalue sequences is an important problem and will be investigated in the future.

Theorem 2. If A1-A5 hold, PTP = I, and K is a positive integer such that

K/N → 0 as N → ∞, then, for each k = 1, ..., K, the sequence {M(k,N)} converges

weakly to a random matrix that has m− r eigenvalues equal to zero.

Proof. See the Appendix. In this result, the limit matrix does not depend on k.

Remark. Peña and Poncela’s (2006) Theorem 3 remains valid for this more general
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model with seasonal common factors.

Using similar arguments to those used for characterizing the numerical eigenvalue

sequences of the SGCV matrices, we find that the last m − r numerical eigenvalues

sequences, indexed by k, of the sample matrices M̂(k,N) are expected to have very

small values when N is large enough. Thus, plots of the m numerical sequences of

eigenvalues of matrices M̂(k,N) might help to specify, in practice, the total number

r of common factors.

A test statistic for the null hypothesis that the model has r factors, then can be

given by

Sm−r,k(N) = −(N − k)
m−r∑
j=1

ln(1− λj) , (8)

where λ1 ≤ · · · ≤ λm are the ordered (random) eigenvalues of matrix M(k,N), in

the sense that P ({ω ∈ Ω : λ1(ω) ≤ · · · ≤ λm(ω)}) = 1. Under the assumptions

in Theorem 2 and that m − r > 0, we get that, for all k = 1, ..., K, {Sm−r,k(N)}

converges weakly to a χ2
(m−r)2-distributed random variable as N −→ ∞. The proof

of this claim follows the lines of that in Peña and Poncela’s (2006) paper. The test

is applied starting with r = 0 , if the test rejects the null hypothesis of no common

factors, we check r = 1, and we continue increasing r until the hypothesis of r factors

is not rejected.

4 A simulation study

4.1 The performance of the test in finite samples

To check the performance in finite samples of the test at (8), we used six factorial

models with seasonal variables and S = 12. In all the models the variance of the

univariate white noise processes was equal to one and we drew 1000 simulations
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(sample paths or time series). The six models are given in Table 1, where 010×2

denotes the zero matrix of dimension 10× 2.

Model m r P Factor models

M1 2 1 P T
1 =

[
1/3

√
8/3

]
∇12ft = (1− .2B12)at

M2 3 2 P T
2 =

 1 1 .8

1 −1 .2

 (1− .8B)∇f1t = (1− .2B)a1t

(1− .4B12)∇12f2t = (1− .2B12)a2t

M3 4 2 P T
3 =

 .5 .2 .25 −.81

0 .33 .94 −.02

 ∇f1t = a1t, ∇12f2t = a2t

M4 10 2 P T
4 =

[
P T
3 P T

3 .5I2

]
∇f1t = a1t, ∇12f2t = a2t

M5 20 2 P T
5 =

[
P T
4 P T

4

]
∇f1t = a1t, ∇12f2t = a2t

M6 50 2 P T
7 =

[
P T
5 P T

5 0T
10×2

]
∇f1t = a1t, ∇12f2t = a2t

Table 1: The models in the simulation study

In the cells of Tables 2 and 3 we present the number of times in which the null

hypothesis of r factors was rejected. The test was carried out at the 5% significance

level. As all models have a seasonal factor, checking the seasonal lags 12 or 24 is more

powerful for detecting the true number of factors than checking just lag one. In Table

1 the sample size, N , is 120, 480, and 1000. The power of the test depends on the

lag and the ratio N/m, which measures the effective number of observations for each

series and the accuracy of the canonical correlation matrices. For instance, in model

M1 the hypothesis of zero factors is rejected with a relative frequency that goes from

10



0.413 to 1 depending on the lag and the sample size. The test is more powerful at

the seasonal lags and when we increase the sample size. A similar situation happens

for models M2 to M4, where the hypothesis of one factor is rejected with less power

when we decrease the ratio N/m. However, the performance of the test is very good

when we include 12 or 24 lags and N/m ≥ 30 (note the decrease in power in M4 with

m = 10 and N = 120 because then N/m is only 12).

Table 3 presents the results for a moderate number of time series (m = 20, 50),

and sample sizes 30m and 60m. We have found a clear decrease in the power of the

test when N/m < 20. In these cases the test may suggest more factors than the true

value, although with a small probability unless this ratio is very small (say smaller

than 10).

4.2 Numerical behavior of eigenvalues in finite samples

We analyzed the finite-sample behavior of the eigenvalues of the generalized auto-

covariance matrices, Ĉ(k,N), and canonical-correlation matrices, M̂(k,N), by using

models M1 and M2 of the previous subsection. Since S = 12 we covered three seasons

for the eigenvalues analysis and compute the matrices for lags k = 0, 1, ..., 35, then

obtained their m eigenvalues, put them in descendent order according to their abso-

lute values, and conformed m eigenvalues sequences indexed by k. We set N = 984 as

the sample size (82 complete seasons) for each model. This experiment was repeated

in 1000 time series generated by each model. Then, we computed the average value

of each eigenvalue at each lag and its standard deviation.

Figure 1 shows the two mean-values sequences of these eigenvalues and the bands

of ±2 standard deviations around the average values for matrices Ĉ(k,N) computed

by data generated from M1. We find that the first eigenvalue has significant values at

the seasonal lags, whereas the second eigenvalue is practically zero at all lags. This
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Model m r Sample size

120 480 1000

Lag k Lag k Lag k

1 12 24 1 12 24 1 12 24

M1 2 0 413 1000 1000 659 1000 1000 706 1000 1000

1 18 51 43 27 64 41 40 55 61

M2 3 0 1000 1000 1000 1000 1000 1000 1000 1000 1000

1 448 999 986 642 1000 999 702 1000 1000

2 23 52 57 31 47 46 36 49 52

M3 4 0 1000 1000 1000 1000 1000 1000 1000 1000 1000

1 362 986 960 605 1000 1000 694 1000 1000

2 23 58 43 28 50 55 38 48 49

3 1 1 3 2 2 4 0 4 2

M4 10 0 1000 1000 1000 1000 1000 1000 1000 1000 1000

1 314 992 961 442 1000 997 527 1000 1000

2 31 150 175 17 65 61 25 62 52

3 3 6 16 0 3 1 2 2 1

Table 2: Frequencies of rejecting the null hypothesis in Models 1 to 4
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Model m r Sample size

30m 60m

Lag k Lag k

1 12 24 1 12 24

M5 20 0 1000 1000 1000 1000 1000 1000

1 394 1000 997 452 1000 1000

2 43 155 122 35 80 67

3 4 8 8 0 4 2

4 0 0 1 0 0 0

M6 50 0 1000 1000 1000 1000 1000 1000

1 630 1000 1000 539 1000 1000

2 137 333 321 51 140 149

3 11 43 35 4 2 18

4 1 1 2 0 1 0

5 0 0 0 0 0 0

6 0 1 0 0 0 0

Table 3: Frequencies of rejecting the null hypothesis in Models 5 to 6
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fact coincides with the implication of Theorem 1 for this example, for which r1 = 0

and r2 = 1. The same conclusion is obtained from the two eigenvalues sequences of

matrices M̂(k,N). They showed the numerical implication of Theorem 2, for which

r = 1 (we omit this figure because of space restrictions).

We now consider M2. In Figure 2 we plot the eigenvalues sequences, with bands

of ±2 standard deviations, for matrices M̂(k,N) and note that the third eigenvalue

is practically zero. This fact coincides with the thesis of Theorem 2, for which r = 2.

The first eigenvalue sequence here has many significant values that decrease with the

lag, as expected in an integrated process. The second eigenvalue has large values at

the seasonal lags, showing a cyclical seasonal behavior. The eigenvalues sequences of

matrices Ĉ(k,N) show the same numerical implications (the plot is omitted) implied

by Theorem 1.

The numerical implications of Theorems 1 and 2 have been tested in many sim-

ulated models, with different numbers of variables and common factors and the em-

pirical results are analogous to those of M1 and M2 (they can be provided by the

authors upon request).

5 Fitting the factor model via a state space form

To estimate the model fixed parameters and the common factors we use maximum

likelihood and linear prediction theory (Catlin (1989); Brockwell and Davis (1991)),

respectively. The prediction optimality criterion is the Minimum Mean Square Error

(MMSE). It is well known that if the common-factors predictors are unbiased their

MMSEs are equal to their prediction-error variances. Also, if the prediction errors

distributions are known we can find prediction intervals for the unobservable factors.

This estimation problem can be accomplished using a state space form (SSF). Then,

taking into account the Gaussianity assumption, the maximum likelihood estimators
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Figure 1: Sequences of the first (top) and the second (bottom) mean eigenvalues for

matrices Ĉ(k, T ) in M1, with bands of ± 2 standard deviations
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Figure 2: Sequences of the three mean eigenvalues (from top to bottom) for matrices

M̂(k, T ) in M2, with bands of ± 2 standard deviations
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of the fixed parameters are consistent and asymptotically Normal, and the common

factors predictors are unbiased with Gaussian prediction errors (see Harvey (1989)).

In order to obtain the SSF for the factorial model, we need to identify the number

r1 of nonseasonal and nonstationary factors, the number r2 of seasonally integrated

factors, the number r3 of stationary factors, and the models for the factors. To do

this, we propose the following methodology:

Step 1. Finding the number and type of factors. We decide the total number

r of common factors by using the statistical test in Section 3. This decision can

be confirmed by the eigenvalues sequences of matrices M̂(k,N), as was described in

Sections 3 and 4.2. Then, we obtain r1 and r2 by using the eigenvalues sequences of

the sample SGCV matrices and looking for the number of large eigenvalues at the

nonseasonal lags (r1) as well as at the seasonal lags (r2), as was noted in Sections 3

and 4.2. Finally, we obtain r3 = r − r1 − r2.

Step 2. Finding a model for the factors. These models can be obtained by one of

the following procedures. The first computes a preliminary estimation of the subma-

trix P1 by using the eigenvectors associated to the first r1 eigenvalues of Ĉ(k,N), for

some k ≥ 0, and obtains the transformed time series zt = P̂T
1 yt to identify ARIMA

models for each of the components of zt. In the same way, obtain the r2 transformed

time series wt = P̂T
2 yt and identify pure seasonal ARIMA models for the components

of wt, as specified in Section 2. The second procedure is to use Harvey’s (1989) un-

observed components models for extracting the trend-cycle and seasonal components

from each variable via, for example, the statistical package STAMP of Koopman,

Harvey, Doornik, and Shepard (2011). Then, ARIMA models for the trend-cycle

components and seasonally integrated models for the seasonal components can be

found. We take the r1 most frequent models for the trend-cycle component and

the r2 most frequent for the seasonal component, as the candidate models for the

nonstationary and nonseasonal common factors and the seasonal common factors,
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respectively.

Step 3. Estimating the model. From the above, a state space model for the

multivariate time series can be built, as outlined below, which can be estimated

by maximum likelihood (for the so-called hyperparameters) and by the fixed-point

smoother algorithm (for the common factors predictions).

The state space model.

In order to implement Step 3 we set φ1j(B) = ϕ1j(B)(1 − B)d, for each j =

1, ..., r1, φ2j(B
S) = ϕ2j(B

S)(1 − BS)D, for all j = 1, ..., r2, and φ3j(B) = ϕ3j(B) for

j = 1, ..., r3. Let pij be the degree of polynomial φij(·) and qij the degree of polynomial

θij(·) so we can write φij(B) = 1 +
∑pij

l=1 φij,lB
l and θij(B) = 1 +

∑qij
l=1 θij,lB

l. Let

rij = max{pij, qij + 1}, j = 1, ..., ri, i = 1, 2, 3.

Following Gómez and Maravall (1994), we have the state vector αt = (αT
1,t, α

T
2,t, α

T
3,t)

T,

where αT
i,t = (αT

i1,t, ..., α
T
iri,t

)T, i = 1, 2, 3, with αij,t = (fij,t, fij,t+1|t, ..., fij,t+rij−1|t)
T,

j = 1, ..., ri, i = 1, 2, 3. Here fij,t+h|t, h ≥ 1, is the orthogonal projection of fij,t+h

onto the closed span of {fij,1, ..., fij,t}. Since the dimension of vector αij,t is rij, the

dimension of vector αi,t is
∑ri

j=1 rij = r∗i , i = 1, 2, 3, and, consequently, the dimension

of αt is
∑3

i=1 r
∗
i = r∗.

For each j = 1, ..., ri and i = 1, 2, 3, let

Aij =

 0 Irij−1

−φij,rij −φij,rij−1 · · · −φij,1

 ,

where Irij−1 is the identity matrix of order rij − 1 and φij,l = 0 if l > pij. We put

Ai = diag{Ai1, ..., Airi}, for each i = 1, 2, 3 and then set A = diag{A1, A2, A3} as the

system matrix.

The observation matrix we propose is the matrix C = PH, where H = [H(l, k)]

is of dimension r × r∗ and its entries are given in the following way. For the ith row

we have three cases: (i) if 1 ≤ i ≤ r1, we set H(i, r11 + ... + r1,i−1 + 1) = 1 with the
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convention r1,0 = 0. (ii) if r1+1 ≤ i ≤ r1+r2, we putH(i, r∗1+r21+...+r2,i−r1−1+1) = 1

with r2,0 = 0. (iii) if r1 + r2 +1 ≤ i ≤ r, we set H(i, r∗1 + r∗2 + r31 + ...+ r3,i−r1−r2−1 +

1) = 1, defining r3,0 = 0. The remaining entries are set equal to zero. Now, the

variance of the system-equation error process is W = GGT, where G is a matrix of

dimension r∗ × r given by G =diag{G11, ..., G1r1 , G21, ..., G2r2 , G31, ..., G3r3} ,where

Gij = (1, ψij,1, ..., ψij,rij−1)
T, for j = 1, ..., ri, and i = 1, 2, 3, with the numbers ψij,k;

k = 1, ..., rij − 1, obtained from the recursive relations (Brockwell and Davis (1991)),

ψij,0 = 1, ψij,k =

min(pij ,k)∑
l=1

(−φij,l)ψij,k−l, k ≥ 1 .

The state space model is given by yt = Cαt + et as the observation equation,

and αt = Aαt−1 + wt as the system equation, where V ar(et) = Σe, wt = Gat,

and V ar(wt) = W . As initial conditions we put α0 = 0 and V ar(α0) = 10pIr∗ ,

for some positive integer number p (relatively large in order to compensate for large

uncertainty).

A simulated example. In order to illustrate the estimation of the factorial

model we simulated model M3 of Section 4. We simulated 100 multiple time series of

the model, each with sample size 480, and estimated the model parameters using the

proposed state space form and the Kalman filter. Then we obtained the sample mean

of the 100 estimates of each parameter and its standard deviation. These results are

in the matrices P̄ and Σ̄e below, with standard deviations in parentheses. Figures are

rounded to 2 decimal digits.

P̄T =

 0.49(0.04) 0.20(0.02) 0.25(0.03) −0.80(0.06)

0 0.30(0.09) 0.88(0.07) −0.01(0.01)

 ,

and Σ̄e = diag{0.99(0.07), 1.01(0.07), 1.05(0.12), 1.01(0.09)}. Comparing to the true

values in Table 1, we conclude that the estimated parameters are close and the inter-

vals of ±2 standard deviations contain the true values.
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6 An empirical application

We present a data application of our proposed methodology. The variables to be

considered are monthly measures of rainfall (in mm) from the meteorological stations

located at the airports of six cities in Colombia: Bucaramanga (y1), Cúcuta (y2),

Ibagué (y3), Medelĺın (y4), Manizales (y5), and Bogotá (y6). The sample period is

January, 1975-June, 2013. In Figure 3 we plot the time series provided by IDEAM,

the Colombian official agency for climatic and environmental studies. Colombia is

located close to the equator in the Torrid Zone and, in a typical year, two rain epochs

occur in the periods April-June and October-December, approximately.
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Figure 3: Colombian rainfalls

Step 1. We present in Table 4 the p-values for the test for the number of factors.

The test is expected to be more powerful for identifying seasonal factors at lags 12 or

24. This is seen in Table 4 where the hypothesis of two factors is clear at seasonal lags.

The plot of the eigenvalues of matrices M̂(k,N), shown in Figure 4, strongly suggests

two seasonal factors. In order to confirm the number of nonstationary common factors
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and their type, nonseasonal (r1) and seasonal (r2), we computed the eigenvalues

sequences of matrices Ĉ(k,N). In Figure 5(a) we plot the first sequence that shows a

cyclical pattern and large values (in absolute value) at seasonal lags. In Figure 5(b)

we plot the next five eigenvalues and it can be seen that the second eigenvalue has

also relatively large values at the seasonal lags. Thus, we conclude that r1 = 0 and

r2 = 2.

r Lag k

1 12 24

0 0.0000 0.0000 0.0000

1 0.0000 0.0041 0.0035

2 0.0473 0.9759 0.6805

3 0.4305 0.9461 0.6686

4 0.3571 0.9617 0.6457

5 0.8472 0.8741 0.3112

Table 4: Results for the statistical tests in the data example

Step 2. To identify the stochastic models for the common factors we used the

first procedure that was proposed in Section 5, and we specified a SARIMA(0, 1, 1)12

model for the first factor f1,t and a SARIMA(1, 1, 0)12 model for the second, f2,t.

Step 3. Using the DLM instruction of the RATS package (Doan (2011)), we

obtained the estimation results (1−B12)f1,t = (1−0.91B12)a1,t and (1+0.58B12)(1−

B12)f2,t = a2,t as the factors models,

Σ̂e = diag{2712.39, 3070.49, 3794.05, 1709.43, 1463.79, 869.58}, and the loading

matrix:

P̂ T =

 30.74 25.58 44.62 43.94 40.83 23.38

0.00 −0.62 −0.43 0.71 −0.56 −0.18

 .

In the estimation of matrix P = (pij) we set p12 = 0 as an additional condition
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Figure 4: Eigenvalues sequences for the canonical correlation matrices in the rainfall

data example
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Figure 5: Eigenvalues sequences for the SGCV matrices in the data example: (a) the

first eigenvalue; (b) the last five eigenvalues

for model identifiability. All the estimated parameters are significant at the 5% level.

The structure of the factors can be seen in the columns of the P matrix. The

first is a weighted average of all the time series and it follows an IMA12 model with
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Figure 6: Seasonal effects for the rainfall variables. Medelĺın (continuous line),

Cúcuta, Ibagué, and Manizales (points), Bucaramanga and Bogotá (discontinuous)

a moving average parameter close to one; it represents a stable seasonal pattern in

all the series. The second is more complex, separating Medelĺın rainfall (y4) from

the other cities precipitations, and mostly from the series (y2, y3, y5). The model

for this factor indicates that the seasonal pattern is changing over time. After this

result we computed a simple estimation of the seasonal coefficients for each time series

by the difference between the monthly mean in different years and the global mean

of the time series; they are plotted in Figure 6. It can be seen that the seasonal

coefficients of Medelĺın rainfall are different from the other cities and mainly from

those of Cúcuta, Ibagué, and Manizales (y2, y3, y5). The precipitation in the period

June-September in Medellin, although below the mean of the year, is larger than in the

other cities and mainly with respect to (y2, y3, y5). Also, in this period Medellin has

a larger precipitation than in the period November-March, whereas Cúcuta, Ibagué

and Manizales (y2, y3, y5) have few precipitations in June-September, and of a similar

magnitude to the period November-March.

From a meteorological point of view this is a reasonable finding for the rainfalls
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studied here because, geographically, Medelĺın is very close to the Pacific Ocean coast

and is influenced by the so-called Low Anchored of Panamá (or of the Pacific Ocean),

a phenomenon that causes both high levels and annual large periods of precipitation

in the Colombian Pacific-Ocean coast close to Panamá (Zea (2002), Fujita (1962)). In

fact Medellin is the city with the largest average precipitation and also with the larger

span of rainfall, in agreement with this theory. This explains the need of at least two

factors to describe the seasonality on the data. There is a general seasonal behaviour

and a specific seasonal pattern due to this geographical effect. The models for the

two common factors imply that their seasonal differences have a cycle of period 12

months (besides other cycles); but the autocorrelation function of the first factor is

similar to the one usually found in this type of seasonal effect whereas the second

factor explains a complex seasonal behavior with dying annual correlation structure

that alternates its values.

7 Conclusions

We have presented an extension of the dynamic common factor model with common

seasonal stochastic factors. We have shown that the eigenvalues of the random limit

matrix (in weak convergence) of the sample generalized autocovariance matrix se-

quence, are useful for identifying the presence of both nonstationary and nonseasonal

common factors and seasonally integrated common factors. Also, we have shown that

the sequence of the canonical correlation matrices converges weakly to a random ma-

trix that has m − r eigenvalues equal to zero almost surely, where m is the number

of variables and r is the total number of common factors. These results allow a pro-

cedure for fitting common factors to seasonal time series that has shown to be useful

with data.
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