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ABSTRACT

Brillinger defined dynamic principal components (DPC) for time series based on a reconstruc-
tion criterion. He gave a very elegant theoretical solution and proposed an estimator which is
consistent under stationarity. Here we propose a new enterally empirical approach to DPC. The
main diferences with the existing methods -mainly Brillinger procedure- are (i) the DPC we pro-
pose need not be a linear combination of the observations and (ii) it can be based on a variety of
loss functions including robust ones. Unlike Brillinger, we do not establish any consistency results;
however, contrary to Brillinger’s, which has a very strong stationarity flavor, our concept aims at a
better adaptation to possible nonstationary features of the series. We also present a robust version
of our procedure that allows to estimate the DPC when the series have outlier contamination. We
give iterative algorithms to compute the proposed procedures that can be used with a large number
of variables. Our non robust and robust procedures are illustrated with real data sets. Supplemental

Material containing mathematical derivations is available on line

Key words: reconstruction of data; vector time series; dimensionality reduction.

1 Introduction

Dimension reduction is very important in vector time series because the number of parameters in
a model grows very fast with the dimensiamof the vector of time series. Therefore, finding
simplifying structures or factors in these models is important to reduce the number of parameters
required to apply them to real data. Besides, these factors, as we will see in this paper, may allow to
reconstruct with a small error the data sets and therefore to reduce the amount of information to be
stored. Dimension reduction is usually achieved by finding linear combinations of the time series

variables which have interesting properties. Suppose the time serieszeet@ , ..., Zn), where

ACCEPTED MANUSCRIPT
2



Downloaded by [Universidad Carlos lii Madrid] at 01:33 05 November 2015

ACCEPTED MANUSCRIPT

1<t <T,andwe assume, for simplicitthatz = T~ 3'[_; z, which will estimate the mean if the
process is stationary, is zero afdheT x m matrix whose rows are,, ...,zr. LetC = Z'Z/T, be
the sample covariance matrix; > 1; > A, eigenvalues o€ andv; = (Vij,...,Vmi), 1 <i<m,

the corresponding eigenvectors satisfyi/t;w‘zjj = gjj. Then
/p\i = (/ﬁi,t’"" ’ﬁ,t)/ = ZV\ﬁ 1 < [ =m (1)

is thei-th principal component of. Letk < m, Py thek x T matrix with rows equap’, ..., p, and
call V. them x k matrix whosei-th row isv/. Let P, = (piy) be anykx T matrix andVy = (v;;)
any mx k matrix and suppose that we reconstruct all the adatasing thek columns ofVy by

Y, Viipie. Then the mean squared error of the reconstructed series is

T

MSEPx, Vi) = (1/mT) Zm: Z(Zj,t - Z Vi P

k
j=1 t=1 i=1

Okamoto and Kanasawa (1968) showed that

PV =arg min  MSEP Vo). 2)

PreRkm vy eRkxm

Note that in (2), the minimization is performed on all possible m matricesPy, and therefore it
is not required that the elemept; of Py are linear combinations @. However, the elements of
the optimal matrixPy given by (1) have this property. One drawback of this reconstruction is that
it is static, that is, to reconstruct an observation of petiodly the values of the components in
that period are used.

Ku, Storer and Georgakis (1995) proposed to apply classical principal components to the aug-
mented observationg = (z_,,7 ,,,--»-2), h+1 <t < T, thatincludes the values of the series
up to lagh. These principal components provide linear combinations of the present and past values
of the time series with largest variance. However, it is not clear from their definition that these
principal components have good reconstruction properties.

An alternative way to find interesting linear combinations was proposed by Box and Tiao

(1977) who suggested maximizing the predictability of the linear combinatoasy’z. Other
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linear methods for dimension reduction in time series models have been given by the scalar com-
ponent models, SCM, (Tiao and Tsay, 1989) and the reduced-rank models (Ahn and Reinsel, 1990,
Reinsel and Velu, 1998).

Brillinger (1981) addressed the reconstruction problem as follows. Suppose zeramaean
mensional stationary procegg}, —co < t < oco. The dynamic principal components are defined
by searching fomx 1 vectorsc, —co < h < co andgj, —eo < j < o0, so that if we consider as first

principal component the linear combination

fi = Z ChZi-hs )
h=—0c0

then

El@~ ) Bifu) @~ ) Bifu)|. (@)

J=— J=—00

is minimum. Brillinger elegantly solved this problem by showing tbats the inverse Fourier
transform of the principal components of the cross spectral matrices for each frequengyjsand

the inverse Fourier transform of the conjugates of the same principal components. See Brillinger
(1981) and Shumway and Ster (2000) for the details of the method. Note that when this proce-
dure is adapted to finite samples the number of lags in (3) and in the reconstruction of the series
should be truncated. We can mention two shortcomings of Brillinger’s procedure: (i) Brillinger's
procedure can be used with nonstationary series, but in this case the mean square error of the
reconstructed series may not be close to its possible minimum value (ii) it is not clear how to
robustify these principal components using a reconstruction criterion.

A related line of research are factor models for time series. Static factor models assume a
contemporaneous relationship between the series and a small number of factors. Some of these
models assume stationarity (Reand Box, 1987, Stock and Watson, 1988, 2002. Bai and Ng,
2002, and Lam and Yao, 2012, among others). All these models use the eigenvalues of the lag
covariance matrices of the process and are related to the principal components (PC) of the time

series. Some generalizations to the nonstationary case dasaRd Poncela (2006) for integrated
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processes, Pan and Yao (2008) for general nonstationary processes and Motta, Hafner and von
Sachs (2011) and Motta and Ombao (2012) for locally stationary processes.

Dynamic factor models are closely related to dynamic principal components (DPC), because
they assume that one important part of the original series can be explained in a dynamic way by
a relatively small number of common factors. Forni, Hallin, Lippi, and Reichlin (2000) proposed
a very general dynamic factor model allowing for an infinite number of factor lags and low corre-
lation between any two idiosyncratic components. They show that the common component of the
series can be consistently estimated by increasing the number of series to infinity. This estimator
is obtained by projecting the data in the figalynamic principal components which include leads
and lags. These principal components are obtained as in Brillinger by the Fourier transforms of the
eigenvectors of the spectral matrix. This model is applied for prediction in Forni, Hallin, Lippi, and
Reichlin (2005), where the authors proposed a one sided method of estimation of a dynamic factor
model for forecasting. The forecasts generated with this procedure improve the ones derived by
Stock and Watson (2002) using static principal components. Forni, Giannone, Lippi, and Reichlin
(2009) proposed a model that can be seen either as a static modelfadttors or as a dynamic
model withq factor withq < r and develop estimation methods for the factor structure with finite-
dimensional factor space. Forni and Lippi (2011) proposed a one sided solution for the general
dynamic factor model of Forni at al (2000). Forni, Hallin, Lippi andidegoni (2015) proposed
a model with possibly infinite-dimensional factor spaces and obtained a one-sided representation
for the dynamic factor model. While some of these models (Stock and Watson, Bai and Ng, 2002,
Forni et al., 2009) make assumptions on the relation between the series under study and the way
factors are loaded, other ones (Forni et al., 2000, Forni et al., 2015) do not make any assumption of
that type. Hallin and Lippi (2013) give a general presentation of the methodological foundations
of dynamic factor models.

The procedure we propose idtérent from these approaches as follows: (1) it is entirely data-

analytic and does not assume any given model; (2) it does not assume a fixed number of factors to
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be identified. Instead, the number of components is chosen to achieve a desired degree of accuracy
in the reconstruction of the original series. Thedgedences are the usual ones between the two
classical approaches for dimension reduction: principal components and factor models.

In this paper we address the sample reconstruction of a vector of time series from the DPCs
by using a finite number of lags. Even if we do not prove consistency, some interesting features
of our procedure with respect to previous ones are: (i) the DPC we propose do not need to be a
linear or stationary combination of the data and consequently, it may lead to a better adaptation to
a possible nonstationary behavior of the series and (ii) it can be easily robustified by changing the
loss function to minimize, for example, from the mean square error criterion to a robust scale.

The remaining of this article is organized as follows. In Section 2 we describe the proposed
dynamic principal components of a vector time series based on a reconstruction criterion. In Sec-
tion 3 we study the particular case where the proposed dynamic principal components depend only
on one lag. In Section 4 we show the results of a Monte Carlo study that compares the proposed
dynamic principal components procedure with the ordinary principal components used in a dy-
namic way and with the Brillinger's DPC procedure. The comparison is done for both: stationary
and non stationary series. We also compare our procedure with the one developed by Forni et
al. (2009) for the factor models introduced in this work. We show the good performance of our
proposal in all these models, including the case of very large number of series. We also apply
our procedure to two nonstationary vector time series real examples. In Section 5 we define robust
dynamic principal components using a robust reconstruction criterion and illustrate in one example
the good performance of this estimator to drastically reduce the influence of outliers. In Section 6
some final conclusions are presented. Supplemental Material containing mathematical derivations

is available on line.
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2 Finding time series with optimal reconstruction properties

Suppose that we obsergg,1 < j <m, 1<t <T,and consider two integer numbédes> 0 and

k, > 0. We can define the first dynamic principal component witthags andk; leads as a vector

f =(f)_k+1<t<T+k,» SO that the reconstruction of serigg, 1 < j < m, as a linear combination of

f = (fiokys fiokgats - fts Tris ooy Tiiwy) IS Optimal with the mean square error (MSE) criterion. More
precisely, given a possible factram x (k; + kp) matrix of codficientsy = (VT,i)ls j<m—ky <i<k-and

@ = (aa, ..., am), the reconstruction of the original serigg is defined as

k2
Z = Z Viifui + @)

i=—kq
Letk = k; + k; and put

ff=fi.1<t<T+k B =¥inw11<h<k+1
and also define
i =f.1- k<t<T,BJh_,BJk+2h,lshsk+1. (5)

Then, the reconstructed series can also be obtained as

ke
7= Z Biji frsivig + @) = ZlBj hea foon + @ = Zﬁjh+l i + ;.

I——k1
Then, without generality we can use indistindidyags or k leads of the principal component

to reconstruct the series. Although the reconstruction of the seriekwats is intuitively more
appealing , we will derive the optimal solution for the cas& ¢éads. The reason for this is that
to derive the optimal solution using lags requires to deal with more cumbersome equations due
to the occurrence of negative subscripts. Anyway, once obtained the forward optimal solution we
can immediately obtain the backward one using (5).

Let f = (fy, ..., fri)’s B = (Bji)icjcmici<ke1 aNd @ = (a1, ...am), then the MSE loss function

when we reconstruct tha series usingds leads is given by

1 m T k
MSE(. B, @) = (th Zj(f, ﬁ,»aﬁ))z (it = ) Bjivafui - a’j)z- (6)
Tm
=1 t=1

=1 t=1 i=0
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Note that this loss function is well defined and makes sense even in the case of nonstationary vector

time series. The optimal choicesfot (fy, ..., fri)” andg = (Bji)1<jcmi<i<ks1 » @ = (@1, ...am) are

defined by

(5. @) = arg min MSE(, 8, @). (7)

fERT+k geRMx(k+1) yeRM
Clearly if f is optimal, yf+6 is optimal too. Thus, we can choo$eso that 3,/ f; = 0 and
/(T + k) ZtT:lk f2 = 1. We callf the first DPC of ordek of the observed series, ..., z. Note
that the first DPC of order O corresponds to the first regular principal component of the data.

Let Cj(aj) = (Cjrq(@j))1<t<T+k 1<q<k+1 DE the T + K) x (k + 1) matrix defined by

@irgr—aj) if 1v({t-T+1)<g<(k+1)At
Cirala)) = , (8)
0 if otherwise

wherea v b = max(@, b) anda A b = min(a, b). Let D;(8;) = (d;4(8;)) be the T + K) x (T +K)

given by
I//;-I(—t—k)vlﬁj,q—v+lﬁj,t—v+1 if (t - k) vl< q= (t + k) A (T + k)
dj,t,q(ﬁj) =
0 if otherwise

and

m
D(B) = > D;(8). (9)

=1

Differentiating (6) with respect td in Section 1 of the Supplemental Material we derive the

following equation

m
f=D()™ ), Ci()B; (10)
j=1
Obviously, the cofficientsg; andej, 1 < j < m, can be obtained using the least squares estimator,
thatis
g 'EEN LR 20
= (F()Y'F(f) ~F(f) 27, (11)
aj
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wherez) = (z4, ..., z;1) andF(f) is theT x (k + 2) matrix witht-th row (f;, f.1, ..., fuk, 1). Then
the first DPC is determined by equations (10) and (11). The second DPC is defined as the first DPC

of the residuals ;(f, 8). Higher order DPC are defined in a similar manner.

2.1 Computational algorithm for the DPC

To define an iterative algorithm to compu?%(@ is enough to givé© and a rule describing how
to computeB®, o™, "+ oncef® is known. The following two steps based on (10) and (11)

describe a natural rule to perform this recursion.

step 1 Based on (11), defing” ande!”, for 1 < j <m, by

Q)
[ B; ] — (F(f(h))'F(f(h)))_l F(FMy 0.

ot
step 2 Based on (10), defirié™Y by

f* = D(B(h))_lC(a/(h))ﬁ(h)

and

FOD= (T Y2(F - )/ - T )1

The initial valuef© can be chosen equal to the standard (non dynamic) first principal compo-

nent, completed witk zeros. We stop the iterations when

MSEF®™, g0, oM)—MSEFMD), g+ oh+1)y
MSE@F®, 30, oM) = ¢

for some values.
Remark 1. Note that the dimension of the matrices to be inverted to conffig®, o™ are

independent of the number of time series and therefore we can deal with large number of variables.

ACCEPTED MANUSCRIPT
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Remark 2. Note also that there are no restrictions on the valudsasfd in particular we do
not assume, as in Brillinger, that their components must be linear combinations of the series. In
this way the values df can be adapted to the nonstationarity character of the time series.

Assume we are consideriqgdynamic principal components of ordeand let3;; s 1 < j <
m, 1 < i < k+ 1, be the cofficients;; corresponding to the-th component, 1< s < p. Then,
the number of values required to reconstruct the original series ard theék)p values of thep
factors plusk + 1)mpvalues for the caficientsg;; s plus theminterceptsy;. Thus the proportion
of the original information required to reconstruct the seriesTs{K)p + (k + 1) mp+ m)/mT
and whenT is large compared t& andm, this ratio is close tq/m. In practice, the number of
lags to reconstruct the serids,and the number of principal componengs,need to be chosen.
Of course the accuracy of the reconstruction improves when any of these two numbers is enlarged,
but also the size of the information required will also increase. For [angereasing the number
of components introduces more values to store than increasing the number of lags. However, we
should also take into account the reduction in MSE due to enlarging each of these components. In
general, increasing the number of lags after some point will have a neglidibte en the MSE.
Then, if the level of the MSE is larger than desired, a new component should be added. Thus
one possible strategy is to start with one principal component and increase the number of lags
until the reduction of further lags is smaller than some valuBhen a new principal component
is introduced and the same procedure is applied. The process stops when the MSE reaches some
satisfactory value. Note that this rule is similar to what is generally used for determining the

numberp in ordinary principal components.
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3 Dynamic Principal Components wherk = 1

To illustrate the computation of the first DPC, let us consider the simplest ckse df Then, we
search foB=(8; )1<j<mi<icz andf= (fy, ..., fr.1)’ such that
T m

(f8) = arg n;in; jZ:;(z,-,t - Biafi—Biafa)? (12)

Suppose now th& is stationary, then in Section 2 of the Supplemental Material is shown that,
except in both endd;, can be approximated by
= 1 Zm‘ﬁ i ot-dz. 4 iﬁ i ot-dlz. (13)

t a = J,lq:_w 1,9 = J,Zq:_oo j.a-1]>

wherelc| < 1. Therefore the DPC is approximated by linear combinations of the stationary series
Zj¢ + ic‘ (Zjwsi + Zj1i), andzj;_g + id (Zjt-14i + Zj-1-1), 1 < j < m. These series give the largest
Weigriﬁlto the period$ andt — 1 rei:slpectively and the weights decrease geometrically when we

move away of these values. We conjecture that in the case of the first DPC okpedsimilar

approximation outside both ends ﬁfoy an stationary process can be obtained.

4 Monte Carlo simulation and examples

4.1 Simulation results for the stationary case

We perform a Monte Carlo study using as vector segjes(zy4, 2y, ..., Zmt)’, 1 < t < T generated

as follows:
z = 10 sin(2i(i/m)) f + 10 cos(Di(i/m)) fi_y + L0/ M) fo + Ui, 1 <i <M 1<t <T, (14)

wheref,-2 <t < Tandu; <t<T,1<i< mareiid. random variables with distribution

N(0,1). We compute three filerent principal components: (i) The ordinary principal component

ACCEPTED MANUSCRIPT
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used in a dynamic way witk lags to reconstruct the original series (QP@) the dynamic prin-
cipal component (DPE proposed hetdiii) Brillinger dynamic principal components (BDREL
adapted for finite samples as follows:

k
fi= Y ¢z, k+1<t<T-k (15)
i=—k

wherecy are the cofficients defined below (4) in Section 1. In this simulation we used OPEG,
and BDPG,. To reconstruct the original series with the three procedures we used least squares.
The BDPG components were computed using the R code developeddionéhn, Kidzhski and
Hallin (2014) that was kindly provided by the authors. However, we were not able to run this
program for dimensiom = 1000 because of lack of enough memory (our computer has 8 GB of
installed memory). We performed for each case 1000 Monte Carlo replications and in Table 1 we
show the MSE of the reconstructed series.

We observe that the performances of BR@d BDPG, are quite similar and that the MSEs
are close to one, that is, equal to the variance of the error tg1sWe also observe that the MSE
of the reconstructed series with the OR€Cocedure is much larger.

In Figure 1 we plot the estimated factor loadings for a data set satisfying (14)Twit200
andm = 100Q

We observe that the estimated loadings follow a pattern quite close to the one satisfied by the

true values: sin, cosine and a linear trend.

4.2 Simulation results in the nonstationary case: VAR(1, 1) model.

In this case we consider a VARI(1) m—dimensional vector serieg generated as follows. Con-
sider an stationary VAR(1) modg| = Ax;_1 + U, 1 <t < T, where theu;s are i.i.d.m-dimensional
vectors with distribution (O, 1) and letz; = z,_; + X;. We consider 1000 replications and in each

replication we generate a new matixof the formA = VAV’, whereV is an orthogonal matrix

ACCEPTED MANUSCRIPT
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generated at random with uniform distribution akas a diagonal matrix, where the diagonal ele-
ments are independent with uniform distribution in the intervaD[8]. We tookm = 20, 100 and
200 andT = 400 We obtained the first principal component using the QPOPC,, and BDPGg
procedures. In Table 2 we show the percentage of explained variance for each procedure. We con-
sider that, since in this case we are not dealing with a factor model, this measure of performance
is easier to interpret than the MSE of the reconstructed series.

We observe that the best performance is achieved by the,OP@e also tried to use the

different procedures with larger number of lags obtaining essentially the same results.

4.3 Simulation results using the factor model in Forni et al. (2009)

In this subsection we compare by means of a Monte Carlo simulation the dynamic principal com-
ponents procedures with the one developed by Forni et. al (2009) (FGLR) for a special class of
factor models that may be seen either as a static modelrvi@btors or as a dynamic model with

g factor withqg < r. In our Monte Carlo study we consider a vector seges (711, %y, ..., Zmt)'

1<t<T,where
Zt = sin(2ri/m)fy + cos(2/m)fy + Ui, 1 <i<mM1<t<T,

where all theu;; are independent with distributidd(0, 1). The vector of static factorfs = (fy, f)
satisfies the autoregressive moflet Af,_; + vib,1 <t < T, where allv; are independent N(Q),
Ais a 2x 2 diagonal matrix with diagonal equal t6@.8,0.7) andb = (1,1). We tookm = 5,
100 and 1000T = 200 and 400 and the number of replications was 10@fle that in this case
r = 2 andqg = 1. In Table 3 we show the MSEs of the reconstructed series. The code for the
FGLR procedure was kindly provided by the authors of Forni et al. (2009). As was explained in
Subsection 4.1, we were not able to run the BRfLocedure withm = 100Q

We observe that for smath the MSEs of the reconstructed series with the principal compo-

nents procedures are smaller than those reconstructed with the FGLR. Instead, fom, laagle
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reconstruction errors are close to the variance of the idiosyncratic compgpnenhe reason for

this is that the goal of factor analysis models is accounting for cross-correlations (the instantaneous
ones, in the static case, the instantaneous and lagged ones in the dynamic case) while the goal of
principal components is dimension reduction, that is, to obtain an approximate reconstruction of
the original data based on an small number of unobserved variables, However, it can be proved that
whenm increases the MSEs of the reconstructed series using dynamic factor analysis or dynamic
principal components converge to the variance of the idiosyncratic component. Therefore the com-
parison between both principal component methods and the FGLR factor analysis method is only
relevant whemmis large. The results presented in Table 3 indicates that both DPC and FGLR give

very good results in this case.

4.4 Example 1

We illustrate the DPC with a small data sets with six series corresponding to the Industrial Pro-
duction Index (IPI) of France, Germany, Italy, United Kingdom, USA and Japan. We use monthly
data from January 1991 to December 2012 and the data are taken from Eurostat. The six series are
plotted in Figure 2.

In Table 4 we show the percentage of the variance explained by the &@RIOP procedures
fork = 1,5,10,12 and for the BDPG procedure. The reason to take okly 12 for the BPC is
to be close to the original Brillinger definition.

We note that the reconstruction of the series using the DPC is notably better that the one ob-
tained by means of the OPC and BDPC procedures with the same lags. Increasing the number of
lags obviously improves the reconstruction obtained by both components, although the improve-
ment is larger with the DPC.

Figure 3 shows the boxplots of the absolute value of the reconstructed series errors for the

OPG, and DPG, procedures. Note that the reconstruction errors are significantly smaller when
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using the DPG, procedure.

4.5 Example 2.

In this example the data set is composed of 30 daily stock prices in the stock market in Madrid
corresponding to the 251 trading days of the year 2004. The source of the data is the Ministry
of Economy, Spain. In Table 5 we show the percentage of the variance explained bffehendi
procedures using the OROPG, BDPGC, procedures.

We observe that the best performance corresponds to the pBEedureAs shown in Table
5 including lags in the OPC does not make mudfedéence in the results, but it has an important
effect on the DPC. In Figure 4 we show the percentage of the variance explained be the DPC
against the one explained by the DP€r the 30 stock prices. We note the for most of the
variables the best performance correspond to thedjfP@edure.

Figure 5 presents the first OP@nd DPG. The first DPG, which is much smoother than the

first OPG, seems to be very useful to represent the general trend of the set of time series.

5 Robust Generalized DPCs

As most procedures defined by minimizing the mean square error, the DPC given by (7) is not
robust. In fact a very small fraction of outliers may have an unbounded influendeapB). The
procedure proposed by Brillinger seems to be vefiyalilt to robustify. At first sight, it may seems

that it may be robustified by using a robust estimator of the spectral matrix. For example, Spangl|
and Dutter (2005) and Li (2012) proposed robust estimators for the spectral matrix. However this is
not enough to obtain robust DPCs. In fact, a robust estimator of the spectral matrix only guarantees
the robustness of the ciheients in the linear combinations defining the principal components.
However, the result of applying these @dgents to the original series may be largeljeated

by outlying observations. Instead, the DPC procedure defined by (7) is easier to robustify. An
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standard way to obtain robust estimates for many statistical models is to replace the minimization
of the mean square scale for the minimization of a robust M-scale. This strategy was used for
many statistical models, including among others linear regression (Rousseeuw and Yohai, 1984),
the estimation of a scatter matrix and multivariate location for multivariate data (Davis, 1987) and
to estimate the ordinary principal components (Maronna, 2005). The estimators defined by means
of a robust M-scale are called S-estimators. In this section we introduce S-estimators for DPC.
Special care is required for time series with strong seasonality. The reason is that when the
values corresponding to a particular season are védigrdnt to the others they will be considered
as outliers by a robust procedure, and therefore they will be downweighted. As a consequence, the
reconstruction of this season may lteated by large errors. Thus, the procedure we present here

assumes that the series have been adjusted by seasonality to avoid this problem.

5.1 Generalized S -DPCs

Letpo be a symmetric, non-decreasing functionxer 0 andog(0) = 0.Given a sampl& = (Xq, ..., Xn),

the M-scale estimatd®(x) is defined as the valugsolution of

1 (X

ﬁzllpo (g) =b. (16)
1=

If po Is bounded, then the breakdown pointsoof S(x), that is, the minimum fraction of outliers
than can takeés(x) to oo is b/ maxpo. Moreover, the breakdown point to 0, that is, the minimum
fraction of inliers that can tak&(x) to 0, is - (b/ maxpg). Note that ifb/ maxpg = 0.5 both
breakdown points are 0.5 (see section 3.2.2. in Maronna, Martin and Yohai, 2006). In what
follows we assume without loss of generality that mgx= 1. Moreoverpg is chosen so that
Es(po(x)) =b,whereg is the standard normal distribution. This condition guarantees that for normal

samplesS(x) is a consistent estimator of the standard deviation. One very popular family of
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functions is the Tukey biweight family defined by

3 .
00 = ~(1-(/0?) i |x|sc_
1 if |X>c

Givenf = (f]_, vees fT+k),ﬁj = (ﬁj,Oaﬁj,L ---’ﬁj,k) andaj, 1< j <m, Ietrj,t(f,,Bj,aj) :Zj,t_z:(:oﬂj,i ft+i_
aj, ri(f, B;, ) = (rja(f, Bj, @), ....ri7(f, B, @j)). Letg themx (k + 1) matrix whosej-th row isg;,

a = (aq,...am) and

1 m
SRSLﬁa):ﬁggs%naﬁpm». (17)
We define the first S-DPEby

(f.3,@) =arg min SRS, B, ). (18)

fERT+k BeRMX(k+1) yeRm
Note thaf3 anda are the cofficients that should be used to reconstructzfie from .
We can observe that the onlyfidirence with the definition given in (7) is that instead of mini-
mizing the MSE of the residuals, we minimize the sum of squares of the robust M-scales applied

to the residuals of theseries. Puy = p’, w(u) = ¢/(u)/u,

s = 5i(f. 8), j) = S(r(f, B;.))). (19)

Thens; satisfies

1« Zy Z. 0,81|+1fv+| -
= =D. 2
TZ;( b (20)
Define the weights
r«f,B:
Wit = Wj,t(f,,Bj,a’j) = W( J’t(s.ﬁj)), 1<j<m1<t<T (21)
|
and
gwi(f,B,ai, )
Wiy = Wiu(f. 8,009 = o — 2 ————— (22)

2
Zine-kv Win(F. B, @), Sj)rj,h
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wheres =(sy, ...sy). Let Cj(f, 5}, 5) = (Cjrq(f. B> 9)i<t<T+k0<q<k DE the T + K) x (k + 1) matrix
defined by

Witiegi1(f, B8, @,9)(Zit-qr1 — i) if 1v({E-T+1)<g<s(k+1)At
Cj,t,q(f,ﬁ, a/,S) _ j,tt—=q 1( ,B )( J,t—g+1 J) ( ) q ( ) ’ (23)
0 if otherwise

D (f.8,@,9) = (dji4(f. 8, @,9)) the (T + K) x (T + k) matrix with elements

E//;-{t—k)\/l Wj,t,vﬁj,q—v+lﬁj,t—v+1 if (t - k) vi< q= (t + k) A (T + k)

djiq(f. B, @.9) =
0 if otherwise
and
m
D(f.B,.9) = ) Dj(f.5,.9). (24)
=1

Differentiating (20) with respect t§ we derive in Section 3 of the Supplemental Material the
following equation

m
f=D(f,8,0,9 ) Ci(f. B, 9)B;. (25)

j=1
Let F(f) be theT x (k + 2) matrix witht-th row (f;, fi,1, ..., fk, 1) andW;(f, 8,s) be the diagonal
matrix with diagonal equal tw;;((f,8;, ), ..., wjr(f, 8}, S). Then diferentiating (20) with respect

to 8ji andajwe derive in Section 3 of the Supplemental Material

{ Fi ] = (F(EYW(f.B;. s)F(f))‘1 FOW,(f. B, 9'20. (26)

aj
Then the first S-PDC is determined by equation (19),(25)and (26). Note that the estimator defined
by (7) is an S-estimate correspondingoffu) = u?> andb = 1. Then for this case (25) and (26)
become (10) and (11) respectively. The second S-DPC is defined as the first S-DPC of the residuals
ri«(f,8). Higher order S-DPC are defined in a similar manner.
One important point is the choice bf At first sight,b = 0.5 may seem a good choice, since in

this case we are protected against up to 50 % of large outliers. However, the following argument
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shows that this choice may not be convenient. The reason is that with this choice, the procedure
has the so called 50% exact fitting property. This means that when 50 % ofith®;,«;)s are

zero the scal&(r(f, 5, })) is 0 no matter the value of the remaining values. Moreover, if 50 % of
thelrj«(f, 8;.a;)| are small the scalB(r(f, 5;, @;j)) is small too. Then wheh = 0.5, the procedure

may choosd, anda so to reconstruct the values corresponding to 50% of the periods even if
the dataset do not contain outliers.. For this reason it is convenient to choose a smaller value as
b, as for exampléb = .10. In that case to obtais(r(f,5;,a;)) = 0, it is required that 90% of
ther(f.B;.a;)s be 0. One may wonder why for regression is common totuse 0.5 and the

50% exact fitting property does not cause the problems mentioned above. The reason is that in this
case, if there are no outliers, the regression hyperplane fitting 50% of the observations also fits the

remaining 50%. This does not occur in the case of the dynamic principal components.

5.2 Computational algorithm for the S-DPC

An iterative algorithm similar to the one described for the DPC in Section 2 can be used to compute
the S-DPC. The only dlierence is that it should be based on (25)and (26) instead on (10) and (11).
The initial valuef© can be chosen equal to a regular (non dynamic) robust principal com-
ponent, for example the one proposed in Maronna (2005). ®%de computed we can use this
value to compute a matrik® = F with i-th row (%, £©, ... £©9.1). Thej-th row of 3© and
aﬁo)can be obtained using a regression S-estimate takinas response anB® as design matrix.
Finally s = S(r;(f©,59).
A procedure similar to the one described at the end of Section 2 can be used to determine a

convenient number of lags and components replacing the MSE by the SRS.
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5.3 Example 3

We will use the data of example 2 to illustrate the performance of the robust DPC. This dataset was
modified as follows: each of the 7530 values composing the dataset was modified with probability
0.05 adding 20 to the real value. In Table 6 we show the MSEs of the series reconstructed with the
DPC. Since the DPC is very sensitive to the presence of outliers, we also compute the S-DPC. Since
the MSE is also very sensitive to outliers, we evaluate the performance of the dynamic principal
components procedures using the SRS criterion. We tagetasbisquare function with = 5.13

andb = 0.1. These values make the M-scale consistent to the standard deviation in the Gaussian
case. Table 6 gives the MSEs and the SRSs for they[2IRG@ S-DP ¢ procedures fok = 1,5 and

10.

We observe that the robust measure of performance SRS corresponding to the S-DPC is much
smaller than the one corresponding to the DPC. In Figure 6 we show the boxplots for the first 16
stock prices with the DPCGand with the S-DP( For a better visualization, we have eliminated the
outliers larger than 10. These boxplots shows that the Sg¥@uch less fiected by the outliers
than the DPEThe boxplots of the fourteen remaining stocks are similar, but are not shown by

shortness sake.

6 Conclusions

We have proposed two dynamic principal components procedures for multivariate time series: the
first one using a minimum squared error criterion to evaluate the reconstruction of the original

time series and the second one using a robust scale criterion. Both criteria make sense even if in
the case of nonstationary series. A Monte Carlo study shows that the proposed dynamic principal
component based on the MSE criterion can improve considerably the reconstruction obtained using
ordinary principal components in a dynamic way. In the case of stationary series the performance

of the proposed procedure is comparable with a finite sample version of Brillinger's approach and
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in the case of nonstationary series our procedure seems to behave better. We have also shown in
an example that the robust procedure based on a robust scale is notfiiegtddaby the presence
of outliers.

A simple heuristic rule to determine a convenient value for the number of compopeatx]
the number of lags, is suggested. However, further research may lead to better methods to choose
these parameters tradingf @accuracy in the series reconstruction and economy in the number of
values stored for that purpose.

Although the proposed DPC seems to be very powerful for data reconstruction they have some
limitations for forecasting, because they use information from leads and lags to reconstruct the
series, an this is not convenient for forecasting. However, they may be useful to find the dimension

of the factors space in factor models and this will be the subject of further research.

7 Supplemental Material

The Supplemental Material available on line contains the proofs of (10), (13), (25) and (26).
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m T OPC, DPC, BDPGCy
20 100 5253 091 0.94
200 5586 0.92 0.95
100 100 54.89 0.95 0.99
200 57.65 0.97 0.99
500 100 5356 0.96 1.00
200 57.14 0.98 1.00
1000 100 54.88 0.96 -
200 59.09 1.00 -

Table 1: MSE of the Reconstructed Series for the Stationary Model with one Factor
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m OPC,;, DPCy;y BDPCy
20 67 83 55

100 67 86 62

200 69 86 62

Table 2: Percentage of Explained Variance in the VARI(1,1) Model
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m T DPGCs BDPCo FGLR
5 200 066 0.71 0.91
400 0.712 0.74 0.89
100 200 0.93 0.97 1.02
400 0.95 0.97 1.01
1000 200 0.96 - 1.02
400 0.98 - 1.01

Table 3: MSE of the Reconstructed Series for a Factor Model withand g1
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k OPG DPG BDPG
1 66 82 -

5 77 90 -

10 78 95 -

12 80 97 89

Table 4: Percentage of Explained Variance of the IPI Series Using the OPC, DPC and BDPC
Procedures

ACCEPTED MANUSCRIPT
28



Downloaded by [Universidad Carlos lii Madrid] at 01:33 05 November 2015

ACCEPTED MANUSCRIPT

k OPG DPG BDPG
0 60 60 -
1 60 82 -
5 61 87 -

10 62 88 60

Table 5: Explained variability of the OPC and DPC for the stock prices series Mighatit number
of lags
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k  MSE of the DP¢ SRS of the DP¢ SRS of the S-DPE

1 18.81 6.05 0.84
5 17.75 6.64 0.50
10 16.90 7.63 0.48

Table 6: MSE and SRS of the DR@nd S DP§for the contaminated stock prices series
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Figure 1: Loadings for one Replication of the Stationary Model wig#200 and m-1000
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Figure 2: Industrial Production Index of Six Countries 1991-2012
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Figure 3: Boxplots of the Absolute Values of the Errors of the Reconstructed IPI Series
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Figure 4: Percentage of the Variance Explained by the Rfainst the Percentage Explained by
the OPG Procedure.

ACCEPTED MANUSCRIPT
34



Downloaded by [Universidad Carlos lii Madrid] at 01:33 05 November 2015

ACCEPTED MANUSCRIPT

Principal components

day

Figure 5: First OPgand DPG for the Stock Prices Series
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