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126, 28903 Getafe, España, (E-mail: daniel.pẽna@uc3m.es). V́ıctor J. Yohai is Professor Emer-

itus, Mathematics Department, Faculty of Exact Sciences, Ciudad Universitaria, 1428 Buenos

Aires, Argentina (E-mail: victoryohai@gmail.com). This research was partially supported by

Grant ECO2012-38442 from MINECOM, Spain, and Grants W276 from Universidad of Buenos

Aires, PIP’s 112-2008-01-00216 and 112-2011-01- 00339 from CONICET and PICT 2011-0397

from ANPCYT, Argentina. We are grateful to an Associate Editor and two anonymous referees,

whose comments lead to important improvements in the paper

1
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 C
ar

lo
s 

Ii
i M

ad
ri

d]
 a

t 0
1:

33
 0

5 
N

ov
em

be
r 

20
15

 



ACCEPTED MANUSCRIPT

ABSTRACT

Brillinger defined dynamic principal components (DPC) for time series based on a reconstruc-

tion criterion. He gave a very elegant theoretical solution and proposed an estimator which is

consistent under stationarity. Here we propose a new enterally empirical approach to DPC. The

main differences with the existing methods -mainly Brillinger procedure- are (i) the DPC we pro-

pose need not be a linear combination of the observations and (ii) it can be based on a variety of

loss functions including robust ones. Unlike Brillinger, we do not establish any consistency results;

however, contrary to Brillinger’s, which has a very strong stationarity flavor, our concept aims at a

better adaptation to possible nonstationary features of the series. We also present a robust version

of our procedure that allows to estimate the DPC when the series have outlier contamination. We

give iterative algorithms to compute the proposed procedures that can be used with a large number

of variables. Our non robust and robust procedures are illustrated with real data sets. Supplemental

Material containing mathematical derivations is available on line

Key words: reconstruction of data; vector time series; dimensionality reduction.

1 Introduction

Dimension reduction is very important in vector time series because the number of parameters in

a model grows very fast with the dimensionm of the vector of time series. Therefore, finding

simplifying structures or factors in these models is important to reduce the number of parameters

required to apply them to real data. Besides, these factors, as we will see in this paper, may allow to

reconstruct with a small error the data sets and therefore to reduce the amount of information to be

stored. Dimension reduction is usually achieved by finding linear combinations of the time series

variables which have interesting properties. Suppose the time series vectorzt = (z1,t, ..., zm,t), where
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1 ≤ t ≤ T, and we assume, for simplicity,thatz = T−1 ∑T
t=1 zt, which will estimate the mean if the

process is stationary, is zero andZ theT ×mmatrix whose rows arez1, ..., zT . Let C = Z′Z/T, be

the sample covariance matrix,λ1 ≥ λ1 ≥ λm eigenvalues ofC andv̂i = (̂v1,i , ..., v̂m,i)′, 1 ≤ i ≤ m,

the corresponding eigenvectors satisfyingv′i v
′
j = δi j . Then

p̂i = (p̂i,t, ..., , p̂i,t)
′ = Zv̂i , 1 ≤ i ≤ m (1)

is thei-th principal component ofC. Let k < m , P̂k thek× T matrix with rows equalp′1, ..., p
′
k and

call V̂k them× k matrix whosei-th row isv′i . Let Pk = (pi,t) be anyk × T matrix andVk = (vj,i)

any m× k matrix and suppose that we reconstruct all the datazj,t using thek columns ofVk by
∑k

i=1 vj,i pi,t. Then the mean squared error of the reconstructed series is

MSE(Pk,Vk) = (1/mT)
m∑

j=1

T∑

t=1

(zj,t −
k∑

i=1

vj,i pi,t)
2.

Okamoto and Kanasawa (1968) showed that

(P̂k, V̂k) = arg min
Pk∈Rk×m,Vk∈Rk×m

MSE(Pk,Vk). (2)

Note that in (2), the minimization is performed on all possiblek×m matricesPk, and therefore it

is not required that the elementpi,t of Pk are linear combinations ofzt. However, the elements of

the optimal matrix̂Pk given by (1) have this property. One drawback of this reconstruction is that

it is static, that is, to reconstruct an observation of periodt only the values of the components in

that period are used.

Ku, Storer and Georgakis (1995) proposed to apply classical principal components to the aug-

mented observationsz∗t = (z′t−h, z
′
t−h+1, ..., z

′
t)
′, h+ 1 ≤ t ≤ T, that includes the values of the series

up to lagh. These principal components provide linear combinations of the present and past values

of the time series with largest variance. However, it is not clear from their definition that these

principal components have good reconstruction properties.

An alternative way to find interesting linear combinations was proposed by Box and Tiao

(1977) who suggested maximizing the predictability of the linear combinationsct = γ′zt. Other
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ACCEPTED MANUSCRIPT

linear methods for dimension reduction in time series models have been given by the scalar com-

ponent models, SCM, (Tiao and Tsay, 1989) and the reduced-rank models (Ahn and Reinsel, 1990,

Reinsel and Velu, 1998).

Brillinger (1981) addressed the reconstruction problem as follows. Suppose zero meanm di-

mensional stationary process{zt} , −∞ < t < ∞. The dynamic principal components are defined

by searching form× 1 vectorsch,−∞ < h < ∞ andβ j ,−∞ < j < ∞, so that if we consider as first

principal component the linear combination

ft =
∞∑

h=−∞

c′hzt−h, (3)

then

E


(zt −

∞∑

j=−∞

β j ft+ j)
′(zt −

∞∑

j=−∞

β j ft+ j)


 . (4)

is minimum. Brillinger elegantly solved this problem by showing thatck is the inverse Fourier

transform of the principal components of the cross spectral matrices for each frequency, andβ j is

the inverse Fourier transform of the conjugates of the same principal components. See Brillinger

(1981) and Shumway and Stoffer (2000) for the details of the method. Note that when this proce-

dure is adapted to finite samples the number of lags in (3) and in the reconstruction of the series

should be truncated. We can mention two shortcomings of Brillinger’s procedure: (i) Brillinger’s

procedure can be used with nonstationary series, but in this case the mean square error of the

reconstructed series may not be close to its possible minimum value (ii) it is not clear how to

robustify these principal components using a reconstruction criterion.

A related line of research are factor models for time series. Static factor models assume a

contemporaneous relationship between the series and a small number of factors. Some of these

models assume stationarity (Peña and Box, 1987, Stock and Watson, 1988, 2002. Bai and Ng,

2002, and Lam and Yao, 2012, among others). All these models use the eigenvalues of the lag

covariance matrices of the process and are related to the principal components (PC) of the time

series. Some generalizations to the nonstationary case are Peña and Poncela (2006) for integrated
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ACCEPTED MANUSCRIPT

processes, Pan and Yao (2008) for general nonstationary processes and Motta, Hafner and von

Sachs (2011) and Motta and Ombao (2012) for locally stationary processes.

Dynamic factor models are closely related to dynamic principal components (DPC), because

they assume that one important part of the original series can be explained in a dynamic way by

a relatively small number of common factors. Forni, Hallin, Lippi, and Reichlin (2000) proposed

a very general dynamic factor model allowing for an infinite number of factor lags and low corre-

lation between any two idiosyncratic components. They show that the common component of the

series can be consistently estimated by increasing the number of series to infinity. This estimator

is obtained by projecting the data in the firstq dynamic principal components which include leads

and lags. These principal components are obtained as in Brillinger by the Fourier transforms of the

eigenvectors of the spectral matrix. This model is applied for prediction in Forni, Hallin, Lippi, and

Reichlin (2005), where the authors proposed a one sided method of estimation of a dynamic factor

model for forecasting. The forecasts generated with this procedure improve the ones derived by

Stock and Watson (2002) using static principal components. Forni, Giannone, Lippi, and Reichlin

(2009) proposed a model that can be seen either as a static model withr factors or as a dynamic

model withq factor withq < r and develop estimation methods for the factor structure with finite-

dimensional factor space. Forni and Lippi (2011) proposed a one sided solution for the general

dynamic factor model of Forni at al (2000). Forni, Hallin, Lippi and Zaffaroni (2015) proposed

a model with possibly infinite-dimensional factor spaces and obtained a one-sided representation

for the dynamic factor model. While some of these models (Stock and Watson, Bai and Ng, 2002,

Forni et al., 2009) make assumptions on the relation between the series under study and the way

factors are loaded, other ones (Forni et al., 2000, Forni et al., 2015) do not make any assumption of

that type. Hallin and Lippi (2013) give a general presentation of the methodological foundations

of dynamic factor models.

The procedure we propose is different from these approaches as follows: (1) it is entirely data-

analytic and does not assume any given model; (2) it does not assume a fixed number of factors to
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ACCEPTED MANUSCRIPT

be identified. Instead, the number of components is chosen to achieve a desired degree of accuracy

in the reconstruction of the original series. These differences are the usual ones between the two

classical approaches for dimension reduction: principal components and factor models.

In this paper we address the sample reconstruction of a vector of time series from the DPCs

by using a finite number of lags. Even if we do not prove consistency, some interesting features

of our procedure with respect to previous ones are: (i) the DPC we propose do not need to be a

linear or stationary combination of the data and consequently, it may lead to a better adaptation to

a possible nonstationary behavior of the series and (ii) it can be easily robustified by changing the

loss function to minimize, for example, from the mean square error criterion to a robust scale.

The remaining of this article is organized as follows. In Section 2 we describe the proposed

dynamic principal components of a vector time series based on a reconstruction criterion. In Sec-

tion 3 we study the particular case where the proposed dynamic principal components depend only

on one lag. In Section 4 we show the results of a Monte Carlo study that compares the proposed

dynamic principal components procedure with the ordinary principal components used in a dy-

namic way and with the Brillinger’s DPC procedure. The comparison is done for both: stationary

and non stationary series. We also compare our procedure with the one developed by Forni et

al. (2009) for the factor models introduced in this work. We show the good performance of our

proposal in all these models, including the case of very large number of series. We also apply

our procedure to two nonstationary vector time series real examples. In Section 5 we define robust

dynamic principal components using a robust reconstruction criterion and illustrate in one example

the good performance of this estimator to drastically reduce the influence of outliers. In Section 6

some final conclusions are presented. Supplemental Material containing mathematical derivations

is available on line.
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2 Finding time series with optimal reconstruction properties

Suppose that we observezj,t,1 ≤ j ≤ m, 1 ≤ t ≤ T, and consider two integer numbersk1 ≥ 0 and

k2 ≥ 0. We can define the first dynamic principal component withk1 lags andk2 leads as a vector

f =( ft)−k1+1≤t≤T+k2, so that the reconstruction of serieszj,t,1 ≤ j ≤ m, as a linear combination of

f = ( ft−k1, ft−k1+1, .... ft, ft+1, ..., ft+k2) is optimal with the mean square error (MSE) criterion. More

precisely, given a possible factorf , a m× (k1 + k2) matrix of coefficientsγ = (γ∗j,i)1≤ j≤m,−k1≤i≤k2,and

α = (α1, ..., αm), the reconstruction of the original serieszj,t is defined as

ẑj,t =

k2∑

i=−k1

γ j,i ft+i + α j .

Let k = k1 + k2 and put

f ∗t = ft−k1,1 ≤ t ≤ T + k, β∗j,h = γ j,h−k1−1,1 ≤ h ≤ k+ 1.

and also define

f ∗∗t = f ∗t+k,1− k ≤ t ≤ T, β∗∗j.,h = β∗j,k+2−h,1 ≤ h ≤ k+ 1. (5)

Then, the reconstructed series can also be obtained as

ẑj,t=

k∑

i=−k1

β j,i ft+i+k1 + α j =

k∑

h=0

β∗j,h+1 f ∗t+h + α j =

k∑

h=0

β∗∗j,h+1, f
∗∗
t−h + α j .

Then, without generality we can use indistinctlyk lags or k leads of the principal component

to reconstruct the series. Although the reconstruction of the series withk lags is intuitively more

appealing , we will derive the optimal solution for the case ofk leads. The reason for this is that

to derive the optimal solution using lags requires to deal with more cumbersome equations due

to the occurrence of negative subscripts. Anyway, once obtained the forward optimal solution we

can immediately obtain the backward one using (5).

Let f = ( f1, ..., fT+k)′, β = (β j,i)1≤ j≤m,1≤i≤k+1 and α = (α1, ...αm), then the MSE loss function

when we reconstruct them series usingk leads is given by

MSE(f , β, α) =
1

Tm

m∑

j=1

T∑

t=1

(zj,t − ẑj,t(f , β j , α j))
2 =

1
Tm

m∑

j=1

T∑

t=1

(zj,t −
k∑

i=0

β j,i+1 ft+i − α j)
2. (6)
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ACCEPTED MANUSCRIPT

Note that this loss function is well defined and makes sense even in the case of nonstationary vector

time series. The optimal choices off = ( f1, ..., fT+k)′ andβ = (β j,i)1≤ j≤m,1≤i≤k+1 , α = (α1, ...αm) are

defined by

(̂f ,̂β, α̂) = arg min
f∈RT+k,β∈Rm×(k+1),α∈Rm

MSE(f , β, α). (7)

Clearly if f is optimal, γf+δ is optimal too. Thus, we can choosef so that
∑T+k

t=1 ft = 0 and

(1/(T + k))
∑T+k

t=1 f 2
t = 1. We call f̂ the first DPC of orderk of the observed seriesz1, ..., zt. Note

that the first DPC of order 0 corresponds to the first regular principal component of the data.

Let C j(α j) = (cj,t,q(α j))1≤t≤T+k,1≤q≤k+1 be the (T + k) × (k+ 1) matrix defined by

cj,t,q(α j) =





(zj,t−q+1 − α j) if 1 ∨ (t − T + 1) ≤ q ≤ (k+ 1)∧ t

0 if otherwise
, (8)

wherea∨ b = max(a,b) anda∧ b = min(a,b). Let D j(β j) = (dj,t,q(β j)) be the (T + k) × (T + k)

given by

dj,t,q(β j) =





∑t∧T
v=(t−k)∨1 β j,q−v+1β j,t−v+1 if ( t − k) ∨ 1 ≤ q ≤ (t + k) ∧ (T + k)

0 if otherwise

and

D(β) =
m∑

j=1

D j(β j). (9)

Differentiating (6) with respect toft in Section 1 of the Supplemental Material we derive the

following equation

f = D(β)−1
m∑

j=1

C j(α)β j . (10)

Obviously, the coefficientsβ j andα j, 1 ≤ j ≤ m, can be obtained using the least squares estimator,

that is



β j

α j



=

(
F(f )′F(f )

)−1 F(f )′ z( j), (11)
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ACCEPTED MANUSCRIPT

wherez( j) = (zj,1, ..., zj,T)′ andF(f ) is theT × (k+ 2) matrix with t-th row (ft, ft+1, ..., ft+k,1). Then

the first DPC is determined by equations (10) and (11). The second DPC is defined as the first DPC

of the residualsr j,t(f , β). Higher order DPC are defined in a similar manner.

2.1 Computational algorithm for the DPC

To define an iterative algorithm to compute (f̂ ,̂β,̂α) is enough to givef (0) and a rule describing how

to computeβ(h), α(h), f (h+1) oncef (h) is known. The following two steps based on (10) and (11)

describe a natural rule to perform this recursion.

step 1 Based on (11), defineβ(h)
j andα(h)

j , for 1 ≤ j ≤ m , by




β(h)
j

α(h)
j



=

(
F(f (h))′F(f (h))

)−1
F(f (h))′z( j).

step 2 Based on (10), definef (h+1) by

f ∗ = D(β(h))−1C(α(h))β(h)

and

f (h+1)= (T+k)1/2(f ∗ − f
∗
)/|||f ∗ − f

∗
||.

The initial valuef (0) can be chosen equal to the standard (non dynamic) first principal compo-

nent, completed withk zeros. We stop the iterations when

MSE(f (h), β(h), α(h))−MSE(f (h+1), β(h+1), α(h+1))

MSE(f (h), β(h), α(h))
< ε

for some valueε.

Remark 1. Note that the dimension of the matrices to be inverted to computef (h), β(h), α(h) are

independent of the number of time series and therefore we can deal with large number of variables.

9
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Remark 2. Note also that there are no restrictions on the values off and in particular we do

not assume, as in Brillinger, that their components must be linear combinations of the series. In

this way the values off can be adapted to the nonstationarity character of the time series.

Assume we are consideringp dynamic principal components of orderk and letβ j,i,s 1 ≤ j ≤

m,1 ≤ i ≤ k + 1, be the coefficientβ j.i corresponding to thes−th component, 1≤ s ≤ p. Then,

the number of values required to reconstruct the original series are the (T + k)p values of thep

factors plus (k+ 1)mpvalues for the coefficientsβ j,i,s plus them interceptsα j . Thus the proportion

of the original information required to reconstruct the series is ((T + k)p + (k + 1)mp+ m)/mT

and whenT is large compared tok andm, this ratio is close top/m. In practice, the number of

lags to reconstruct the series,k, and the number of principal components,p, need to be chosen.

Of course the accuracy of the reconstruction improves when any of these two numbers is enlarged,

but also the size of the information required will also increase. For largeT increasing the number

of components introduces more values to store than increasing the number of lags. However, we

should also take into account the reduction in MSE due to enlarging each of these components. In

general, increasing the number of lags after some point will have a negligible effect on the MSE.

Then, if the level of the MSE is larger than desired, a new component should be added. Thus

one possible strategy is to start with one principal component and increase the number of lags

until the reduction of further lags is smaller than some valueε. Then a new principal component

is introduced and the same procedure is applied. The process stops when the MSE reaches some

satisfactory value. Note that this rule is similar to what is generally used for determining the

numberp in ordinary principal components.
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3 Dynamic Principal Components whenk = 1

To illustrate the computation of the first DPC, let us consider the simplest case ofk = 1. Then, we

search for̂β=(̂β ji )1≤ j≤m,1≤i≤2 and̂f= ( f̂1, ..., f̂T+1)′ such that

(̂f ,̂β) = arg min
1

T∑

t=1

m∑

j=1

(zj,t − β j,1 ft − β j,2 ft+1)
2. (12)

Suppose now thatzt is stationary, then in Section 2 of the Supplemental Material is shown that,

except in both ends,̂ft, can be approximated by

f̂ ∗t =
1
α




m∑

j=1

β̂ j,1

∞∑

q=−∞

c|t−q|zj,q +

m∑

j=1

β̂ j,2

∞∑

q=−∞

c|t−q|zj,q−1


 , (13)

where|c| < 1. Therefore the DPC is approximated by linear combinations of the stationary series

zj,t +

∞∑

i=1

ci(zj,t+i + zj,t−i), andzj,t−1 +

∞∑

i=1

ci(zj,t−1+i + zj,t−1−i),1 ≤ j ≤ m. These series give the largest

weight to the periodst and t − 1 respectively and the weights decrease geometrically when we

move away of these values. We conjecture that in the case of the first DPC of orderk, a similar

approximation outside both ends of̂ft by an stationary process can be obtained.

4 Monte Carlo simulation and examples

4.1 Simulation results for the stationary case

We perform a Monte Carlo study using as vector serieszt = (z1,t, z2,t, ..., zm,t)′, 1 ≤ t ≤ T generated

as follows:

zi,t = 10 sin(2pi(i/m)) ft + 10 cos(2pi(i/m)) ft−1 + 10(i/m) ft−2 + ui,t,1 ≤ i ≤ m,1 ≤ t ≤ T, (14)

where ft,−2 ≤ t ≤ T andui,t, ≤ t ≤ T, 1 ≤ i ≤ m are i.i.d. random variables with distribution

N(0,1). We compute three different principal components: (i) The ordinary principal component
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ACCEPTED MANUSCRIPT

used in a dynamic way withk lags to reconstruct the original series (OPCk) (ii) the dynamic prin-

cipal component (DPCk) proposed here, (iii) Brillinger dynamic principal components (BDPCk)

adapted for finite samples as follows:

ft =
k∑

i=−k

c′i zt−i , k+ 1 ≤ t ≤ T − k, (15)

whereck are the coefficients defined below (4) in Section 1. In this simulation we used OPC2,DPC2

and BDPC10. To reconstruct the original series with the three procedures we used least squares.

The BDPCk components were computed using the R code developed for Hörmann, Kidzínski and

Hallin (2014) that was kindly provided by the authors. However, we were not able to run this

program for dimensionm = 1000 because of lack of enough memory (our computer has 8 GB of

installed memory). We performed for each case 1000 Monte Carlo replications and in Table 1 we

show the MSE of the reconstructed series.

We observe that the performances of DPC2 and BDPC10 are quite similar and that the MSEs

are close to one, that is, equal to the variance of the error termsui,ts. We also observe that the MSE

of the reconstructed series with the OPC2 procedure is much larger.

In Figure 1 we plot the estimated factor loadings for a data set satisfying (14) withT = 200

andm= 1000.

We observe that the estimated loadings follow a pattern quite close to the one satisfied by the

true values: sin, cosine and a linear trend.

4.2 Simulation results in the nonstationary case: VARI(1,1) model.

In this case we consider a VARI(1,1) m−dimensional vector serieszt generated as follows. Con-

sider an stationary VAR(1) modelxt = Axt−1+ut,1 ≤ t ≤ T, where theuts are i.i.d.m-dimensional

vectors with distribution Nm(0, I ) and letzt = zt−1 + xt. We consider 1000 replications and in each

replication we generate a new matrixA of the formA = VΛV′, whereV is an orthogonal matrix
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generated at random with uniform distribution andΛ is a diagonal matrix, where the diagonal ele-

ments are independent with uniform distribution in the interval [0,0.9]. We tookm = 20,100 and

200 andT = 400. We obtained the first principal component using the OPC10, DPC10 and BDPC10

procedures. In Table 2 we show the percentage of explained variance for each procedure. We con-

sider that, since in this case we are not dealing with a factor model, this measure of performance

is easier to interpret than the MSE of the reconstructed series.

We observe that the best performance is achieved by the DPC10. We also tried to use the

different procedures with larger number of lags obtaining essentially the same results.

4.3 Simulation results using the factor model in Forni et al. (2009)

In this subsection we compare by means of a Monte Carlo simulation the dynamic principal com-

ponents procedures with the one developed by Forni et. al (2009) (FGLR) for a special class of

factor models that may be seen either as a static model withr factors or as a dynamic model with

q factor withq < r. In our Monte Carlo study we consider a vector serieszt = (z1,t, z2,t, ..., zm,t)′,

1 ≤ t ≤ T, where

zi,t = sin(2πi/m) f1t + cos(2i/m) f2t + ui,t,1 ≤ i ≤ m,1 ≤ t ≤ T,

where all theui,t are independent with distributionN(0,1). The vector of static factorsft = ( f1t, f2t)

satisfies the autoregressive modelft = Af t−1 + vtb,1 ≤ t ≤ T, where allvt are independent N(0,1),

A is a 2× 2 diagonal matrix with diagonal equal to (−0.8,0.7) andb = (1,1)′. We tookm = 5,

100 and 1000, T = 200 and 400 and the number of replications was 1000. Note that in this case

r = 2 andq = 1. In Table 3 we show the MSEs of the reconstructed series. The code for the

FGLR procedure was kindly provided by the authors of Forni et al. (2009). As was explained in

Subsection 4.1, we were not able to run the BDPC10 procedure withm= 1000.

We observe that for smallm the MSEs of the reconstructed series with the principal compo-

nents procedures are smaller than those reconstructed with the FGLR. Instead, for largem, both
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reconstruction errors are close to the variance of the idiosyncratic componentui,t. The reason for

this is that the goal of factor analysis models is accounting for cross-correlations (the instantaneous

ones, in the static case, the instantaneous and lagged ones in the dynamic case) while the goal of

principal components is dimension reduction, that is, to obtain an approximate reconstruction of

the original data based on an small number of unobserved variables, However, it can be proved that

whenm increases the MSEs of the reconstructed series using dynamic factor analysis or dynamic

principal components converge to the variance of the idiosyncratic component. Therefore the com-

parison between both principal component methods and the FGLR factor analysis method is only

relevant whenm is large. The results presented in Table 3 indicates that both DPC and FGLR give

very good results in this case.

4.4 Example 1

We illustrate the DPC with a small data sets with six series corresponding to the Industrial Pro-

duction Index (IPI) of France, Germany, Italy, United Kingdom, USA and Japan. We use monthly

data from January 1991 to December 2012 and the data are taken from Eurostat. The six series are

plotted in Figure 2.

In Table 4 we show the percentage of the variance explained by the OPCk and DPCk procedures

for k = 1,5,10,12 and for the BDPC12 procedure. The reason to take onlyk = 12 for the BPC is

to be close to the original Brillinger definition.

We note that the reconstruction of the series using the DPC is notably better that the one ob-

tained by means of the OPC and BDPC procedures with the same lags. Increasing the number of

lags obviously improves the reconstruction obtained by both components, although the improve-

ment is larger with the DPC.

Figure 3 shows the boxplots of the absolute value of the reconstructed series errors for the

OPC12 and DPC12 procedures. Note that the reconstruction errors are significantly smaller when
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using the DPC12 procedure.

4.5 Example 2.

In this example the data set is composed of 30 daily stock prices in the stock market in Madrid

corresponding to the 251 trading days of the year 2004. The source of the data is the Ministry

of Economy, Spain. In Table 5 we show the percentage of the variance explained by the different

procedures using the OPCk,DPCk BDPCk procedures.

We observe that the best performance corresponds to the DPCk procedure. As shown in Table

5 including lags in the OPC does not make much difference in the results, but it has an important

effect on the DPC. In Figure 4 we show the percentage of the variance explained be the DPC5

against the one explained by the DPC5. for the 30 stock prices. We note the for most of the

variables the best performance correspond to the DPC5 procedure.

Figure 5 presents the first OPC5 and DPC5. The first DPC5, which is much smoother than the

first OPC5, seems to be very useful to represent the general trend of the set of time series.

5 Robust Generalized DPCs

As most procedures defined by minimizing the mean square error, the DPC given by (7) is not

robust. In fact a very small fraction of outliers may have an unbounded influence on (f , α, β). The

procedure proposed by Brillinger seems to be very difficult to robustify. At first sight, it may seems

that it may be robustified by using a robust estimator of the spectral matrix. For example, Spangl

and Dutter (2005) and Li (2012) proposed robust estimators for the spectral matrix. However this is

not enough to obtain robust DPCs. In fact, a robust estimator of the spectral matrix only guarantees

the robustness of the coefficients in the linear combinations defining the principal components.

However, the result of applying these coefficients to the original series may be largely affected

by outlying observations. Instead, the DPC procedure defined by (7) is easier to robustify. An
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standard way to obtain robust estimates for many statistical models is to replace the minimization

of the mean square scale for the minimization of a robust M-scale. This strategy was used for

many statistical models, including among others linear regression (Rousseeuw and Yohai, 1984),

the estimation of a scatter matrix and multivariate location for multivariate data (Davis, 1987) and

to estimate the ordinary principal components (Maronna, 2005). The estimators defined by means

of a robust M-scale are called S-estimators. In this section we introduce S-estimators for DPC.

Special care is required for time series with strong seasonality. The reason is that when the

values corresponding to a particular season are very different to the others they will be considered

as outliers by a robust procedure, and therefore they will be downweighted. As a consequence, the

reconstruction of this season may be affected by large errors. Thus, the procedure we present here

assumes that the series have been adjusted by seasonality to avoid this problem.

5.1 Generalized S -DPCs

Letρ0 be a symmetric, non-decreasing function forx ≥ 0 andρ0(0) = 0.Given a samplex = (x1, ..., xn),

the M-scale estimatorS(x) is defined as the values solution of

1
n

n∑

i=1

ρ0

( xi

s

)
= b. (16)

If ρ0 is bounded, then the breakdown point to∞ of S(x), that is, the minimum fraction of outliers

than can takeS(x) to∞ is b/maxρ0. Moreover, the breakdown point to 0, that is, the minimum

fraction of inliers that can takeS(x) to 0, is 1− (b/maxρ0). Note that ifb/maxρ0 = 0.5 both

breakdown points are 0.5 (see section 3.2.2. in Maronna, Martin and Yohai, 2006). In what

follows we assume without loss of generality that maxρ0 = 1. Moreoverρ0 is chosen so that

Eφ(ρ0(x)) =b,whereφ is the standard normal distribution. This condition guarantees that for normal

samplesS(x) is a consistent estimator of the standard deviation. One very popular family ofρ
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functions is the Tukey biweight family defined by

ρT
c (x) =





1−
(
1− (x/c)2

)3
if |x| ≤ c

1 if |x| > c
.

Givenf = ( f1, ..., fT+k), β j = (β j,0, β j,1, ..., β j,k) andα j ,1 ≤ j ≤ m, let r j,t(f , β j , α j) =zj,t−
∑k

i=0 β j,i ft+i−

α j , r j(f , β j , α j) = (r j,1(f , β j , α j), ...,r j,T(f , β j , α j)). Let β them× (k+ 1) matrix whosej-th row isβ j,

α = (α1, ...αm) and

SRS(f , β, α) =
1
m

m∑

j=1

S2(r j(f , β j , α j)). (17)

We define the first S-DPĈf by

(̂f , β̂, α̂) = arg min
f∈RT+k,β∈Rm×(k+1),α∈Rm

SRS(f , β, α). (18)

Note that̂β andα̂ are the coefficients that should be used to reconstruct thezj,t’s from f̂ .

We can observe that the only difference with the definition given in (7) is that instead of mini-

mizing the MSE of the residuals, we minimize the sum of squares of the robust M-scales applied

to the residuals of them series. Putψ = ρ′,w(u) = ψ(u)/u,

sj = sj(f , β j , α j) = S(r (f , β j ,α j)). (19)

Thensj satisfies

1
T

T∑

t=1

ρ



zv−

∑k
i=0 β j,i+1 fv+i − α j

sj


 = b. (20)

Define the weights

wj,t = wj,t(f , β j , α j) = w

(
r j,t(f , β j)

sj

)

, 1 ≤ j ≤ m, 1 ≤ t ≤ T (21)

and

Wj,t,v = Wj,t,v(f , β, α, s) =
s2

j wj,v(f , β j , α j , sj)
∑t∧T

h=(t−k)∨1 wj,h(f , β j , α j , sj)r2
j,h

, (22)
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wheres=(s1, ...sm). Let C j(f , β j , s) = (cj,t,q(f , β j , s))1≤t≤T+k,0≤q≤k be the (T + k) × (k + 1) matrix

defined by

cj,t,q(f , β, α,s) =





Wj,t,t−q+1(f , β, α, s)(zj,t−q+1 − α j) if 1 ∨ (t − T + 1) ≤ q ≤ (k+ 1)∧ t

0 if otherwise
, (23)

D j (f , β, α,s) = (dj,t,q(f , β, α,s)) the (T + k) × (T + k) matrix with elements

dj,t,q(f , β, α,s) =





∑t∧T
v=(t−k)∨1 Wj,t,vβ j,q−v+1β j,t−v+1 if ( t − k) ∨ 1 ≤ q ≤ (t + k) ∧ (T + k)

0 if otherwise

and

D(f , β, α,s) =
m∑

j=1

D j(f , β, α,s). (24)

Differentiating (20) with respect toft we derive in Section 3 of the Supplemental Material the

following equation

f = D(f , β, α, s)−1
m∑

j=1

C j(f , β, α,s)β j . (25)

Let F(f ) be theT × (k + 2) matrix with t-th row (ft, ft+1, ..., ft+k,1) andWj(f , β,s) be the diagonal

matrix with diagonal equal towj,1((f , β j , s), ...,wj,T(f , β j , s). Then differentiating (20) with respect

to β j,i andα jwe derive in Section 3 of the Supplemental Material




β j

α j



=

(
F(f )′Wj(f , β j , s)F(f )

)−1
F(f )W j(f , β j , s)

′z( j). (26)

Then the first S-PDC is determined by equation (19),(25)and (26). Note that the estimator defined

by (7) is an S-estimate corresponding toρ2
0(u) = u2 andb = 1. Then for this case (25) and (26)

become (10) and (11) respectively. The second S-DPC is defined as the first S-DPC of the residuals

r j,t(f , β). Higher order S-DPC are defined in a similar manner.

One important point is the choice ofb. At first sight,b = 0.5 may seem a good choice, since in

this case we are protected against up to 50 % of large outliers. However, the following argument
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shows that this choice may not be convenient. The reason is that with this choice, the procedure

has the so called 50% exact fitting property. This means that when 50 % of ther j,t(f , β j ,α j)s are

zero the scaleS(r j(f , β j , α j)) is 0 no matter the value of the remaining values. Moreover, if 50 % of

the |r j,t(f , β j ,α j)| are small the scaleS(r j(f , β j , α j)) is small too. Then whenb = 0.5, the procedure

may choosef , β andα so to reconstruct the values corresponding to 50% of the periods even if

the dataset do not contain outliers.. For this reason it is convenient to choose a smaller value as

b, as for exampleb = .10. In that case to obtainS(r j(f , β j , α j)) = 0, it is required that 90% of

the r j,t(f , β j ,α j)s be 0. One may wonder why for regression is common to useb = 0.5 and the

50% exact fitting property does not cause the problems mentioned above. The reason is that in this

case, if there are no outliers, the regression hyperplane fitting 50% of the observations also fits the

remaining 50%. This does not occur in the case of the dynamic principal components.

5.2 Computational algorithm for the S-DPC

An iterative algorithm similar to the one described for the DPC in Section 2 can be used to compute

the S-DPC. The only difference is that it should be based on (25)and (26) instead on (10) and (11).

The initial valuef (0) can be chosen equal to a regular (non dynamic) robust principal com-

ponent, for example the one proposed in Maronna (2005). Oncef (0) is computed we can use this

value to compute a matrixF(0) = F with i-th row (f (0)
i , f (0)

i+1, ..., f (0)
i+k,1). The j-th row of β(0) and

α(0)
j can be obtained using a regression S-estimate takingz( j) as response andF(0) as design matrix.

Finally s(0)
j = S(r j(f (0), β(0)).

A procedure similar to the one described at the end of Section 2 can be used to determine a

convenient number of lags and components replacing the MSE by the SRS.
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5.3 Example 3

We will use the data of example 2 to illustrate the performance of the robust DPC. This dataset was

modified as follows: each of the 7530 values composing the dataset was modified with probability

0.05 adding 20 to the real value. In Table 6 we show the MSEs of the series reconstructed with the

DPC. Since the DPC is very sensitive to the presence of outliers, we also compute the S-DPC. Since

the MSE is also very sensitive to outliers, we evaluate the performance of the dynamic principal

components procedures using the SRS criterion. We take asρ the bisquare function withc = 5.13

andb = 0.1. These values make the M-scale consistent to the standard deviation in the Gaussian

case. Table 6 gives the MSEs and the SRSs for the DPCk and S-DPCk procedures fork = 1,5 and

10.

We observe that the robust measure of performance SRS corresponding to the S-DPC is much

smaller than the one corresponding to the DPC. In Figure 6 we show the boxplots for the first 16

stock prices with the DPCk and with the S-DPCk. For a better visualization, we have eliminated the

outliers larger than 10. These boxplots shows that the S-DPCk is much less affected by the outliers

than the DPCk.The boxplots of the fourteen remaining stocks are similar, but are not shown by

shortness sake.

6 Conclusions

We have proposed two dynamic principal components procedures for multivariate time series: the

first one using a minimum squared error criterion to evaluate the reconstruction of the original

time series and the second one using a robust scale criterion. Both criteria make sense even if in

the case of nonstationary series. A Monte Carlo study shows that the proposed dynamic principal

component based on the MSE criterion can improve considerably the reconstruction obtained using

ordinary principal components in a dynamic way. In the case of stationary series the performance

of the proposed procedure is comparable with a finite sample version of Brillinger’s approach and
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in the case of nonstationary series our procedure seems to behave better. We have also shown in

an example that the robust procedure based on a robust scale is not much affected by the presence

of outliers.

A simple heuristic rule to determine a convenient value for the number of components,p, and

the number of lags,k, is suggested. However, further research may lead to better methods to choose

these parameters trading off accuracy in the series reconstruction and economy in the number of

values stored for that purpose.

Although the proposed DPC seems to be very powerful for data reconstruction they have some

limitations for forecasting, because they use information from leads and lags to reconstruct the

series, an this is not convenient for forecasting. However, they may be useful to find the dimension

of the factors space in factor models and this will be the subject of further research.

7 Supplemental Material

The Supplemental Material available on line contains the proofs of (10), (13), (25) and (26).
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m T OPC2 DPC2 BDPC10

20 100 52.53 0.91 0.94
200 55.86 0.92 0.95

100 100 54.89 0.95 0.99
200 57.65 0.97 0.99

500 100 53.56 0.96 1.00
200 57.14 0.98 1.00

1000 100 54.88 0.96 -
200 59.09 1.00 -

Table 1: MSE of the Reconstructed Series for the Stationary Model with one Factor
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m OPC10 DPC10 BDPC10

20 67 83 55
100 67 86 62
200 69 86 62

Table 2: Percentage of Explained Variance in the VARI(1,1) Model
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m T DPC5 BDPC10 FGLR
5 200 0.66 0.71 0.91

400 0.71 0.74 0.89
100 200 0.93 0.97 1.02

400 0.95 0.97 1.01
1000 200 0.96 - 1.02

400 0.98 - 1.01

Table 3: MSE of the Reconstructed Series for a Factor Model with r=2 and q=1
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k OPCk DPCk BDPCk

1 66 82 -
5 77 90 -
10 78 95 -
12 80 97 89

Table 4: Percentage of Explained Variance of the IPI Series Using the OPC, DPC and BDPC
Procedures
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k OPCk DPCk BDPCk

0 60 60 -
1 60 82 -
5 61 87 -
10 62 88 60

Table 5: Explained variability of the OPC and DPC for the stock prices series with different number
of lags
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k MSE of the DPCk SRS of the DPCk SRS of the S-DPCk
1 18.81 6.05 0.84
5 17.75 6.64 0.50
10 16.90 7.63 0.48

Table 6: MSE and SRS of the DPCk and S DPCk for the contaminated stock prices series
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Figure 1: Loadings for one Replication of the Stationary Model with T=200 and m=1000
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Figure 2: Industrial Production Index of Six Countries 1991-2012
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Figure 3: Boxplots of the Absolute Values of the Errors of the Reconstructed IPI Series
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Figure 4: Percentage of the Variance Explained by the DPC5 Against the Percentage Explained by
the OPC5 Procedure.
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Figure 5: First OPC5 and DPC5 for the Stock Prices Series
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Figure 6: Boxplots of the Residual Absolute Values of the Stock Prices Obtained with the DPC5

and S-DPCC5 Procedures
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