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This work studies outlier detection and robust estimation with data that are naturally distributed into groups
and which follow approximately a linear regression model with fixed group effects. For this, several methods
are considered. First, the robust fitting method of Peña and Yohai [A fast procedure for outlier diagnostics
in large regression problems. J Am Stat Assoc. 1999;94:434–445], called principal sensitivity components
(PSC) method, is adapted to the grouped data structure and the mentioned model. The robust methods
RDL1 of Hubert and Rousseeuw [Robust regression with both continuous and binary regressors. J Stat
Plan Inference. 1997;57:153–163] and M-S of Maronna and Yohai [Robust regression with both contin-
uous and categorical predictors. Journal of Statistical Planning and Inference 2000;89:197–214] are also
considered. These three methods are compared in terms of their effectiveness in outlier detection and their
robustness through simulations, considering several contamination scenarios and growing contamination
levels. Results indicate that the adapted PSC procedure is able to detect a high percentage of true outliers
and a small number of false outliers. It is appropriate when the contamination is in the error term or in the
covariates, detecting also possibly masked high leverage points. Moreover, in simulations the final robust
regression estimator preserved good efficiency under Normality while keeping good robustness properties.

Keywords: linear models with fixed effects; masking effect; outlier detection; principal sensitivity
components; robust estimation

1. Introduction

Linear regression models are widely used in many fields of science. Fitting of these models is
commonly done by least squares (LS), due to the simplicity of the idea of minimizing the sum of
squared residuals and the interpretability of the final model parameter estimates. However, it is also
well known that outliers, considered here as heterogeneous observations in comparison with the
bulk of the data, might strongly affect these estimators. Robust estimation methods downweight
observations with extreme residuals to provide an estimator that is less affected by these extreme
values. On the other hand, diagnostic methods try to identify the outliers. Outlier detection is an
important issue because singular observations might hide possibly relevant phenomena affecting
our measurements. These outliers are typically pointed out using scaled residuals obtained from
a previous model fit. However, both the scale and the previous fit used to obtain residuals might
be also affected by the outliers unless they come from an initial robust fit. Thus, outlier detection
and robust fitting are very related issues.

This paper deals with grouped data, where the groups might be socioeconomic population
subgroups, geographical regions, strata used in the sampling scheme or, more generally, the

*Corresponding author. Email: isabel.molina@uc3m.es

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

85
.4

8.
23

6.
70

] 
at

 0
4:

53
 0

1 
N

ov
em

be
r 

20
14

 



Journal of Statistical Computation and Simulation 2653

levels of a categorical variable that is related with the outcome of interest. Assuming that the
majority of the data in each group follow a linear regression model with fixed group effects,
methods for outlier detection and robust estimation are studied. General robust fitting methods
for linear regression are reviewed and their suitability to the grouped data structure is discussed.
Then three methods that are appropriate for this setup are presented and compared in simulation
studies, in terms of their performance in outlier detection and their robustness. The first method
is an adaptation of the principal sensitivity components (PSC) method of Peña and Yohai [1] to
the grouped data structure. The other two are particularizations of general methods designed to
fit models with continuous and categorical variables, concretely the RDL1 method of Hubert and
Rousseeuw [2] and the M-S estimator of Maronna and Yohai.[3]

The work is organized as follows. Section 2 describes the data structure and the model with fixed
group effects. Section 3 reviews general robust approaches for linear mixed models, discussing
their potential applicability to deal with outliers under grouped data. Section 4 introduces the
PSC method of Peña and Yohai [1] and describes its adaptation to the model with fixed group
effects. Sections 5 and 6 particularize respectively the RDL1 method of Hubert and Rousseeuw
[2] and the M-S estimator of Maronna and Yohai [3] to the mentioned model. The results of a
Monte Carlo simulation study are reported in Section 7. An application is included in Section 8
and finally, concluding remarks are given in Section 9.

2. Linear regression model with group effects

Let X = (X1, . . . , Xp)
T be a vector of continuous auxiliary variables (also called covariates) related

to the study variable (also called outcome) Y , with p ≥ 1. Consider that there are n sample
observations of X and Y coming from D different population groups of sizes n1, . . . , nD with
nd ≥ 2, d = 1, . . . , D, where the overall sample size is n = ∑D

d=1 nd . These groups are defined by
the categories of a categorical variable or by the crossings of the categories of several variables.
We consider that the number of groups D is fixed, i.e., it does not grow with n. Let ydj be the
value of the study variable Y for jth sample unit from dth group and xdj = (xdj1, . . . , xdjp)

T the
vector with the values of the p covariates for the same unit. In absence of outliers, we assume that
sample observations follow the linear regression model

ydj = xT
djβ + αd + εdj, j = 1, . . . , nd , d = 1, . . . , D, (1)

where αd is the effect of dth group, assumed to be fixed, and εdj is the model error, satisfying the
usual assumptions

εdj ∼ iid N(0, σ 2), j = 1, . . . , nd , d = 1, . . . , D, (2)

where σ 2 > 0 is unknown. Defining the vectors yd = (yd1, . . . , ydnd )
T and εd = (εd1, . . . , εdnd )

T

and the matrix Xd = (xd1, . . . , xdnd )
T, the model can be expressed as

yd = Xdβ + αd1nd + εd , d = 1, . . . , D,

where 1nd denotes a vector of ones of size nd . Here, εd ∼ N(0nd , σ 2Ind ), where 0nd is the zero
vector of size nd and Ind is the nd × nd identity matrix.

The LS estimators of β and αd , d = 1, . . . , D, are given by

β̂ = S−1
X sXY , α̂d = ȳd − x̄T

d β̂, d = 1, . . . , D, (3)
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2654 B. Pérez et al.

where x̄d = (x̄d1, . . . , x̄dp)
T with x̄dq the mean of the qth auxiliary variable Xq within group d, for

q = 1, . . . , p, ȳd = n−1
d

∑nd
j=1 ydj, d = 1, . . . , D,

SX = 1

n

D∑
d=1

nd∑
j=1

(xdj − x̄d)(xdj − x̄d)
T, sXY = 1

n

D∑
d=1

nd∑
j=1

(xdj − x̄d)(ydj − ȳd).

Predicted values are given by

ŷdj = xT
djβ̂ + α̂d , j = 1, . . . , nd , d = 1, . . . , D.

The vector of predicted values for group d, ŷd = Xd β̂ + α̂d1d , can be expressed as a linear
combination of the outcome vectors for each group as ŷd = ∑D

�=1 Hd�y�, where

Hd� = n−1
d 1nd 1

T
nd

I(d = �) + (Xd − 1nd x̄
T
d )(nSX)−1(XT

� − x̄�1T
n�

), d, � = 1, . . . , D.

Here, I(d = �) denotes the indicator taking value 1 when d = � and 0 otherwise. We define
the hat matrix associated with dth group as Hdd = (hd

jk)j,k=1,...,nd = ∂ ŷd/∂yT
d . The matrix Hdd

is symmetric but not idempotent. The element (j, k) of this matrix measures the effect that an
infinitesimal change in the outcome of kth observation from group d has on the predicted values
of jth observation from that same group. The leverage effect of jth observation from group d is
given by

hd
jj = n−1

d + (xdj − x̄d)
T(nSX)−1(xdj − x̄d), d = 1, . . . , D. (4)

This indicates that observations in smaller groups have larger leverage effects than observations
in larger groups, when keeping the values of the covariates the same.

In this paper, we assume that the model (1)–(2) holds for at least half of the data in each of
the groups. Then, an outlier is an observation that does not follow the assumed model (1)–(2).
Outliers are typically identified as the points with poor fit by means of residuals,

edj = ydj − ŷdj, j = 1, . . . , nd , d = 1, . . . , D

after an appropriate scaling. To scale these residuals, a not necessarily very efficient but very robust
estimator of the scale (in the sense of high breakdown point) is recommended. Still, outliers with
high leverage effect are difficult to detect by standard procedures based on residuals. Specifically,
several outliers with similar values on the variables can severely affect the final estimates, but
these are exactly the ones that are more difficult to detect due to the masking effect.

3. General robust methods for linear models

It is well known that the LS estimators given in Equation (3) are very sensitive to outliers in the
sense that a single outlier can have an arbitrarily large effect on the estimate. This means that their
finite sample breakdown point (FBP), the proportion of observations that may drive the estimate
to infinity, is 1/n; their asymptotic breakdown point (ABP) is zero (see, e.g. [4]). Moreover, if
we try to use a classical outlier detection procedure to find the outliers, delete them and maybe
find a robust estimator based on the clean data, we might end up deleting a full group and this
would prevent the estimation of the corresponding group effect. Thus, straightforward application
of general outlier detection methods for linear models is not appropriate in this case.

Among robust fitting methods for linear models, we first find M estimation.[5] This method
is designed to deal with outliers in the outcome and is based on minimizing a function ρ of
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scaled residuals, where ρ is an even function with unique minimum at zero, and the scale can
be a previous scale estimator or a simultaneous M scale estimator. However, again the ABP of
M estimators is zero under the presence of extreme values in the covariates (or ‘high leverage
points’). Generalized M (GM) estimators [6] bound the influence of leverage points by solving
a weighted version of the M estimating equations, in which leverage points are downweighted.
Still, their ABP under the group effects model would be at most 1/(p + D + 1) [7] and simulation
results indicate that reaching the maximum ABP is unlikely.

The least median of squares (LMS) method [8] minimizes the median of squared residuals.
This method achieves a 50% ABP but has very low efficiency in absence of outliers, since its
convergence rate is n−1/3 instead of the usual n−1/2 of other methods. Moreover, the LMS loss
function is very nonsmooth, exhibiting many local minima. Since it is not differentiable, gradient
methods cannot be applied. Stromberg [9] provided an exact algorithm that in the setup of this
paper would be of order Cn,p+D+1, the number of combinations of p + D + 1 elements out of n.
This is feasible only for small values of p, D and n. Approximate algorithms based on subsampling
are also computationally expensive, and in the case of the grouped data, the subsamples are likely
to be collinear yielding singular matrices.

Alternatively, least trimmed squares (LTS) minimizes the sum of trimmed squared residuals,
in which a fraction of the largest absolute residuals are trimmed. The fraction can be chosen to
achieve maximum breakdown point (BP) and their convergence rate remains to be n−1/2. However,
again the exact algorithm for this method is computationally very expensive whereas the methods
based on subsampling procedures might produce singular matrices.[2]

Another method with high BP and fully efficient is the weighted likelihood estimator (WLE) of
Agostinelli and Markatou.[10] This estimator solves a weighted likelihood equation with smaller
weights for observations at which the kernel density estimator is far from the smoothed assumed
density (large Pearson residual). Markatou et al. [11] developed a method that avoids the need
for an initial high BP estimator, by searching for all the possible solutions using a bootstrap
root search. The WLE method is not designed to deal with a grouped data structure and in our
simulations the R function wle.lm() of the R library wle many times failed to give a solution.

Similarly, MM estimators have high BP and high efficiency.[12] They start with an initial
consistent estimate with high BP but possibly low normal efficiency. Then a robust scale based on
residuals from that estimate is obtained. Finally, an M estimate with bounded loss function ρ and
using the preliminary scale estimator is computed. Unfortunately, MM methods need an initial
high BP estimator such as the LMS or the LTS estimators, which have the already mentioned
problems under the grouped data structure.

Thus, none of the mentioned methods are appropriate for grouped data and specific methods
are needed under this situation.

Let γ = (βT, α1, . . . , αD)T denote the vector of regression parameters in model (1). Under
this model, an S estimator [7] of γ is obtained by minimizing s(e11(γ), . . . , eDnD(γ)), where
s is an M scale estimator. Again, solving this problem exactly is usually too computationally
demanding and, in practice, approximate S estimators are obtained by minimizing for γ ∈ A,
where A = {γ1, . . . , γN } is a finite set of candidates. A method that pre-selects the candidates
as those that are more likely to be the minimum can fasten considerably the algorithm. This is
the basic idea of the groupwise principal sensitivity components (GPSC) algorithm introduced
in Section 4.2. Unfortunately, it is known that S estimators cannot have both high BP and high
normal efficiency. However, their efficiency can be improved without decreasing their BP by the
one-step reweighting procedure proposed by Rousseeuw and Leroy.[13] Starting with a high BP
estimate γ̂0 and a robust scale of residuals based on this estimate s = s(e11(γ̂0), . . . , eDnD(γ̂0)),
a new estimator is obtained by weighted LS with weights wdj = W(edj(γ̂0)/s), where W(t) is a
decreasing function of |t| such as the ‘hard rejection’ function W(t) = I(|t| ≤ k) with k equal to
a quantile of the distribution of |t|. Under normality, this is equivalent to discarding observations
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2656 B. Pérez et al.

with large absolute standardized residuals and then obtain the LS estimator with the remaining
ones. He and Portnoy [14] showed that this reweighting process preserves the order of consistency
of the initial estimator γ̂0. The GPSC procedure introduced in Section 4.2 leads to an approximate
S estimator followed by a reweighting step.

The M-S method of Maronna andYohai [3] described in Section 6 makes profit of the efficiency
of M estimators and the high BP of S estimators. The RDL1 of Hubert and Rousseeuw [2] described
in Section 5 is a weighted L1 estimator with small weights for high leverage points. The properties
of these three methods will be compared under finite sample sizes. Another method that is suitable
for the grouped data structure is the PROGROUP algorithm of Hubert and Rousseeuw.[4] This
method is somehow similar to the GPSC procedure in that directions of maximum outlyingness
are searched for each group. Then, these directions are used to find potentially clean subsets of data
that help to approximate the LMS estimate. However, in our simulations, this method appeared to
be very robust but its efficiency was very low in comparison with the other considered methods.
At the same time, it was computationally much slower, so we decided not to include its results in
Section 7 because we found it not competitive with the other methods.

4. Groupwise principal sensitivity components

4.1. The PSC method

Peña andYohai [1] proposed a fast robust fitting procedure for a linear regression model called here
PSC method. This method consists of two stages. In the first stage, an approximate S estimator
is obtained by minimizing a robust scale of residuals. In the second stage, the efficiency of this
estimator is improved by a kind of reweighting procedure based on robust t tests.

To obtain the approximate S estimator in Stage 1, the minimization over all possible values of
the regression parameter is reduced to a finite set of candidate estimates. These candidates are
obtained by LS fits to subsets of data that are potentially clean of low and high leverage outliers,
including masked outliers. This stage is iterative. Each iteration (except for the first one which
omits this step), starts by pointing out and deleting observations with extreme residuals according
to a robust scale (low leverage outliers). The sensitivity vector associated with each observation
is defined as the vector of changes in the predicted value of this observation when each of the data
points is deleted. The PSC are simply the principal components of these sensitivity vectors. High
leverage outliers are expected to appear with extreme coordinates in at least one of these PSC,
see Theorem 1 in [1, p. 438]. Consider a LS estimator obtained by deleting the 50% of the points
with most extreme coordinates in one of the PSC. This will be one of the candidate estimates of
the regression parameter. Deletion of the 50% of the points with more extreme values in each
component leads to a different estimate of the regression parameter. Each of these estimates has
a set of residuals attached and the one with the minimum value of the robust scale of residuals
is selected.

4.2. The adapted PSC method

The PSC method described above cannot be directly applied to model (1) because subsets of 50%
of the observations might exclude some of the groups. Intuitively, a small group with a larger
mean is likely to be fully discarded because the observations in that group might be considered as
outliers in comparison with the rest of observations. In fact, since observations in smaller groups
tend to have higher leverage, these small groups will be more likely to be fully discarded. We
indeed experienced this problem in the simulation experiments described in Section 7.

D
ow

nl
oa

de
d 

by
 [

85
.4

8.
23

6.
70

] 
at

 0
4:

53
 0

1 
N

ov
em

be
r 

20
14

 



Journal of Statistical Computation and Simulation 2657

Here we propose an adaptation of this method, in which subsets are selected for each group
separately based on GPSC. Sensitivity vectors are defined for each group and the directions of
maximum variability of these sensitivity vectors are computed for each group. Group specific
PSC are more likely to point out to outliers within the groups. Besides, no more than 50% of data
points of the same group can be discarded. Moreover, the procedure gives a large set of candidate
estimates of the regression parameter. Minimization of a robust scale of residuals with respect to
a larger set of candidate estimates makes it more likely to select an estimate that is based on an
initial clean subset, which would lead to a final robust estimator.

Let ŷdj(dk) be the predicted value of ydj when observation (ydk , xT
dk) is deleted, that is

ŷdj(dk) = xT
djβ̂(dk) + α̂d(dk), (5)

where β̂(dk) and α̂d(dk) denote respectively the LS estimates of β and αd obtained exactly the same
as in Equation (3), using all observations from all the groups except for (ydk , xT

dk). Similarly as in
[1] but restricted to group d, for each observation ydj within that group, we define the vector of
changes in the predicted value when each data point from group d is eliminated, i.e.

rdj = (ŷdj − ŷdj(d1), . . . , ŷdj − ŷdj(dnd ))
T.

The vectors rdj, j = 1, . . . , nd , are called sensitivity vectors of group d. Next, we define the
sensitivity matrix Rd for dth group as the matrix with the sensitivity vectors of group d in the
rows, i.e.

Rd =
⎛
⎜⎝

ŷd1 − ŷd1(d1) · · · ŷd1 − ŷd1(dnd )

...
. . .

...
ŷdnd − ŷdnd (d1) · · · ŷdnd − ŷdnd (dnd )

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

rd1

rd2
...

rdnd

⎞
⎟⎟⎟⎠ (6)

It is easy to see that the elements of this matrix can be obtained from the leverages and the residuals
of the LS fit as

ŷdj − ŷdj(dk) = hd
jk edk

1 − hd
kk

, (7)

avoiding to do nd different fits. This matrix can be expressed as Rd = HddWd , where Wd =
diag1≤j≤nd

{edj/(1 − hd
jj)}. The matrix Rd has rank p + 1, which means that the sensitivity vectors

for group d lie in a subspace of dimension p + 1. Then, similarly as in [1], we summarize their
information by choosing an appropriate basis on this subspace and projecting them over this
basis. The first vector vd

1 of this basis is chosen as the direction of maximum sensitivity, that is,
the direction v that is solution of the problem

max‖v‖=1

nd∑
j=1

(vTrdj)
2.

Thus, our chosen basis is the set of eigenvectors {vd
q , q = 1, . . . , p + 1} associated with the non

null eigenvalues of matrix Md = RT
d Rd . The maximum eigenvalue of Md , denoted λd

1, can be
interpreted as a measure of global effect of the observations of dth group on the predicted values of
the observations in that group. The eigenvector vd

1 associated with λd
1 is the direction of maximum

sensitivity of observations in dth group. Observe that {vd
q , q = 1, . . . , p + 1} are the orthogonal

directions in which the joint effect of deleting several data points from group d in the predicted
values is maximized. Also, note that since Wd is diagonal, the eigenvectors of Md are the same
as those of matrix HddHdd , and also the same as those of the leverage matrix Hdd . Thus, we can
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2658 B. Pérez et al.

use the projections zd
q = Rdvd

q on the directions vd
q , q = 1, . . . , p + 1, to detect the points that

have a high joint effect within dth group. These projections are the principal components of the
sensitivity vectors. As in [1], groups of points that jointly have a leverage effect within group d
are expected to have extreme coordinates in at least one of the p + 1 PSC {zd

q ; q = 1, . . . , p + 1}.
As described in Section 4.3, selection of data subsets that are clean of low and high leverage

points will lead to find an approximate S estimator in a computationally faster manner. The
efficiency of this estimator will then be improved in a second stage by a one-step reweighting
scheme based on robust testing for outlyingness of each potential outlier.

4.3. The adapted robust fitting algorithm

The GPSC procedure described above allows us to select subsets of data that are free of high
leverage outliers. This procedure can be integrated in the following iterative algorithm that discards
both high and low leverage outliers in each of the D groups and provides an approximate S
estimator of the regression parameter γ = (βT, α1, . . . , αD)T under model (1):

STAGE 1. The first iteration, r = 1, starts by constructing a set A1 of candidate estimates
of γ as follows: Obtain the sensitivity matrix Rd using Equation (7) and compute its PSC zd

q ,
q = 1, . . . , p + 1 for each group d = 1, . . . , D. Now, for each component q, construct different
data sets as follows. Look at each group d and consider two different data sets from that group;
in the first set include all observations from the group and in the second, delete the 50% of the
observations with largest coordinates in the vector dd

q = |zd
q − median(zd

q)|. Combining the two
data sets from each of the D groups we have 2D full samples. We do this for each of the components
q = 1, . . . , p + 1, obtaining 2D(p + 1) samples. Some times the outliers appear spread in the
extremes of different PSCs and therefore we cannot detect all of them at a time by looking at
the 50% more extreme points in only one of the components. For this reason, another small but
potentially clean data set was constructed as follows. For each observation from a given group,
identify at which components this observation appears to be in the set of 50% more extreme
points. In order to weight by the importance of each component (measured by the corresponding
eigenvalue), we calculated the sum of eigenvalues of the components in which the observation
appears in the set of the 50% more extreme points. The new data set was the 1/4 of the observations
in each group with smallest sum of eigenvalues. Thus, we have a total of 2D(p + 1) + 1 potentially
clean samples. A much smaller set of samples which does not depend on D can be obtained by
applying Remark 1 . Application of Remark 1 makes the algorithm considerably faster specially
for D large. Then using each of these full samples, compute the LS estimators. The LS estimates
obtained from each of these samples compose the set of candidate estimates A1. For each candidate
γ = (βT, α1, . . . , αD)T, obtain residuals

edj(γ) = ydj − xT
djβ − αd , j = 1, . . . , nd , d = 1, . . . , D.

Then select the estimate γ (1) satisfying

γ (1) = argmin
γ∈A1

s(e11(γ), . . . , eDnD(γ)), (8)

where s is an M scale estimator with high breakdown point such as the median absolute deviation
(MAD). Let γ (r) = ((β(r))T, α(r)

1 , . . . , α(r)
D )T be the estimator obtained by minimizing the robust

scale in iteration r. In iteration r + 1, obtain the set of residuals associated with γ (r),

e(r+1)

dj = edj(γ
(r)) = ydj − xT

djβ
(r) − α

(r)
d , j = 1, . . . , nd , d = 1, . . . , D,

and let s(r+1)

d = s(e(r+1)

d1 , . . . , e(r+1)

dnd
)T be a robust scale for dth group such as the normalized

MAD (NMAD). Then eliminate all observations with |e(r+1)

dj | ≥ C1 · s(r+1)

d where C1 is a constant,
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d = 1, . . . , D.With all the remaining observations from the D groups, obtain the LS estimators as in
Equation (3) and compute again the PSC. Construct the set Ar+1 with the new set of candidate esti-
mates γ exactly as described before, but include in the set also the estimator obtained in previous
iteration γ (r). The iterations end when γ (r+1) = γ (r) and then, γ∗ = γ (r+1) = (β∗T , α∗

1 , . . . , α∗
D)T

is the preliminary robust estimator, which is an approximate S estimator. This preliminary robust
estimator is obtained from a possibly clean subset of data points, in which potential outliers have
been discarded. To improve the efficiency of this estimator, in Stage 2 each of these potential
outliers is tested using a robust version of the t test that uses only the set of clean data points.
Observations that are not rejected by this test are used to find the final estimator.

STAGE 2. Compute residuals from the preliminary robust estimator,

e∗
dj = edj(γ

∗) = ydj − xT
djβ

∗ − α∗
d , j = 1, . . . , nd , d = 1, . . . , D,

and let s∗
d = s(e∗

d1, . . . , e∗
dnd

) be a robust scale for dth group such as the NMAD. Delete the
observations with |e∗

dj| > C2 · s∗
d , where C2 is a constant, for d = 1, . . . , D. Let n∗ be the total

number of deleted observations. With the remaining n − n∗ observations, compute the LS esti-
mators as given in Equation (3) and denote them by β̃ and α̃d , d = 1, . . . , D. Compute also
the standard error σ̃ using the residuals of these remaining observations and the correspond-
ing leverages h̃d

jj. Then, test the outlyingness of each of these n∗ elements by using the robust t
test statistic

tdj = ydj − xT
djβ̃ − α̃d

σ̃

√
1 + h̃d

jj

(9)

Each of the n∗ observations is finally eliminated only if |tdj| > C3, where C3 is a con-
stant. The remaining observations are used to calculate the final LS estimator, denoted γ̂

∗ =
(β̂

∗T
, α̂∗

1 , . . . , α̂∗
D)T.

This GPSC procedure detects individual outliers in the mean and gives a robust estimator of the
vector of regression parameters with respect to this type of outliers. The final estimate could be
used afterwards to detect outlying groups in the variance. This could be done easily by calculating
residuals from the robust estimate, computing again robust group-specific scales sd and then
carrying a robust homogeneity test for the null hypothesis that all group-specific variances are
equal.

As in any other robust procedure, there is always a trade off between robustness and efficiency.
This trade off is controlled by the constants C1, C2 and C3, with smaller values of these constants
providing more robustness whereas larger values implying more efficiency. Since Stage 1 is meant
to provide a high breakdown point estimator, it is convenient to choose a small value for C1 in
Stage 1. Since Stage 2 is more focused in achieving efficiency under absence of outliers, then
constants C2 and C3 should be larger. By our experience obtained from several simulation studies,
constants that seem to keep a good trade off between robustness and efficiency are C1 = 2 and
C2 = C3 = 3.

The procedure in Stage 1 gives an approximate S estimator. If the function ρ defining the
M scale estimator in Equation (8) satisfies conditions (R1)–(R3) in [7], then the S estimator
can achieve a high BP. Under model (1)–(2) with the grouped data structure, S estimators with
a bounded ρ function achieve at least the maximum FBP of equivariant estimators, given by
[(min(nd) − 1)/2]/n where [·] denotes the integer part, see Section 5.6.1 of Maronna.[15] In
addition, S estimators are asymptotically normally distributed with asymptotic covariance matrix
given in [7], provided the extra regularity conditions in Theorem 3 of that paper hold. The final
one-step reweighted estimator obtained from Stage 2 preserves the asymptotic normality and its
asymptotic covariance matrix can be calculated by Taylor expansions.[16]
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2660 B. Pérez et al.

Remark 1 One way of speeding up considerably the GPSC fitting algorithm, specially for large
D, is the following. In Stage 1, after computing the p + 1 PSCs zd

q , q = 1, . . . , p + 1, for each group
d, instead of considering the two data sets obtained by deleting 0% and 50% of observations with
largest coordinates in dd

q within group d, we can consider only the data set obtained by deleting

the 50% of observations with largest coordinates in dd
q . This would be done for each component

q = 1, . . . , p + 1. In this case, the number of candidate estimates A1 does not depend on the
number of groups D and the algorithm becomes much faster. Forcing the deletion of 50% of
observations could in principle affect the efficiency of the algorithm, but Stage 2 then improves
the estimator by returning to the sample the observations that are not really outliers. Simulation
studies in Section 7 indicate that this faster version preserves similar finite sample properties as
the original GPSC algorithm.

Remark 2 In Stage 1, it is necessary to compute the eigenvectors of matrix Md of size nd × nd .
For groups d with nd > p + D, this can be replaced by computing the eigenvectors of a (p + D) ×
(p + D) matrix. For this, define the matrices

X =
⎛
⎜⎝

X1
...

XD

⎞
⎟⎠ , Z = diag(1n1 , . . . , 1nD), X∗ = [X|Z] =

⎛
⎜⎝

X∗
1

...
X∗

D

⎞
⎟⎠ . (10)

It can be seen that Md = �d�
T
d , where

�d = WdX∗
d((X

∗)TX∗)−1((X∗
d)

TX∗
d)

1/2.

Define now the (p + D) × (p + D) matrix Qd = �T
d �d . For a group d with nd > p + D, it is faster

to compute eigenvalues and eigenvectors of matrix Qd . Consider an eigenvector uk of matrix
Qd = �T

d �d associated with eigenvalue λk . Then, the eigenvector of Md = �d�
T
d associated with

the same eigenvalue λk is equal to vk = �duk . Then, the principal sensitivity component associated
with vk is the projection of the rows of Rd on vk , which is equal to

zk = Rdvk = Rd�duk = λkX∗
d((X

∗
d)

TX∗
d)

−1/2uk .

Remark 3 The final estimator γ̂
∗ = γ̂

∗
(X∗, y) obtained from Stage 2 is regression and scale

equivariant, that is, if we transform y by λy + X∗δ, where λ ∈ IR and δ ∈ IRp+D, then

γ̂ ∗(X∗, λy + X∗δ) = λγ̂ ∗(X∗, y) + δ.

It is also affine equivariant when transforming the matrix of covariates X by XA, where A is a
nonsingular p × p matrix.

Remark 4 In this paper we consider that nd → ∞, d = 1, . . . , D, but nd/n → λ ∈ (0, 1), d =
1, . . . , D, whereas D = O(1) as n → ∞. This allows group effects to be estimated efficiently.
Under this setup, the complexity of each iteration in Stage 1 of the algorithm is polynomial. It
is difficult to find out the maximum number of iterations of this Stage, but in our simulations
the procedure needed only two or three iterations most of the times and never more than eight
iterations. The computational complexity of Stage 2 is also polynomial.

5. RDL1 method

Hubert and Rousseeuw [2] proposed the RDL1 method to find a robust regression estimator in
linear models that include categorical variables. This method consists of using a robust distance to
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downweight high leverage points, and then using those weights to obtain a weighted L1 regression
estimator. The method, particularized to model (1)–(2), proceeds as follows:

(1) First, search for high leverage points in the set X = {xdj, j = 1, . . . , nd , d = 1, . . . , D}, by
computing the minimum volume ellipsoid of Rousseeuw.[17] The idea is to consider all
ellipsoids of approximately 50% of the observations and then select the one with smallest
volume. The mean vector and the covariance matrix of that ellipsoid are considered as robust
location and scatter matrix, M(X ) and C(X ), respectively, of the set of data points X . Then,
compute the robust distances of each observation to the location as

RD(xdj) = (xdj − M(X ))C(X )−1(xdj − M(X ))T, j = 1, . . . , nd , d = 1, . . . , D.

Observations with large robust distances are regarded as high leverage points.
(2) Let us define the vector of group effects α = (α1, . . . , αD)T. Estimate the regression parameter

γ = (βT, αT)T by a weighted L1 regression, that is, by solving the problem

min
γ

D∑
d=1

nd∑
j=1

wdj|edj(γ)|,

where the weights are given by wdj = min{1, p/RD(xdj)}, j = 1, . . . , nd , d = 1, . . . , D.
(3) Let γ̂ be the estimate obtained by the weighted L1 regression in Step 2. Following the

recommendation of Maronna andYohai [3] we compute the NMAD of the non null residuals,

σ̂ = 1.4826 · median{|edj(γ̂)| with edj(γ̂) 
= 0, j = 1, . . . , nd , d = 1, . . . , D}.
Then an observation is classified as an outlier if its corresponding absolute standardized residual,

|edj(γ̂)/σ̂ |, exceeds 2.5.
Hubert and Rousseeuw [2] state that an exact formula of the BP of the RDL1 procedure is hard

to find but by construction, the estimator RDL1 protects against leverage points by giving them
small weights, whereas vertical outliers have only a small effect on the L1 stage.

6. M-S estimator

Maronna and Yohai [3] proposed an alternating M and S estimator for models that include cat-
egorical variables, where an M estimator is used for the vector of parameters of the categorical
predictors and an S estimator is used for the parameters of the continuous ones. The particulariza-
tion of this method to model (1) is defined as follows. Assume first that β is known. Then, obtain
an M estimator of α as

α(β) = argmin
α

D∑
d=1

nd∑
j=1

ρ(ydj − xT
djβ − αd), (11)

where ρ is an even convex function. Consider the vectors of residuals

ed(β, α) = yd − xT
djβ − αd1nd , d = 1, . . . , D.

Then, the estimator of β is obtained by minimizing an M scale S estimator of the residuals obtained
using the M estimator α(β), that is

β̂ = argmin
β

s(e1(β, α(β)), . . . , eD(β, α(β))).

Maronna and Yohai [3] introduced also an estimator called M-GM for models with categorical
variables. This estimator is a weighted L1 regression estimator similar to RDL1, but in this case the
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2662 B. Pérez et al.

weights wdj are function of a measure of the outlyingness of the previously centred data points.
In a simulation experiment carried out by these authors, this estimator broke down when the
number of continuous predictors was greater than 3, while the M-S estimator resisted. Thus, they
recommended the latter for p > 3.

M-S estimators are regression and affine equivariant. They are also asymptotically normal.
Moreover, under model (1)–(2), if min(nd) < min(n − p, n − D + 1), then the M-S estimator
achieves also a FBP of at least [(min(nd) − 1)/2]/n, see Maronna and Yohai.[3]

7. Monte Carlo simulation experiment

Typically, when sample sizes grow, the effect on the final estimators of a limited number of finite
outliers goes to zero. Thus, it seems convenient to study the performance of robust methods under
limited sample sizes, which is also a much more realistic setup.

This section reports the results of a simulation experiment designed to compare the outlier
detection performance and the robustness of LS and the three robust procedures introduced here,
namely GPSC, RDL1 and M-S methods, under finite group sample sizes. For this, we simulated
data trying to imitate a data set from the Australian Agricultural and Grazing Industries Survey
(AAGIS) and used in [18,19]. This data set contains several variables measured to 1652 Australian
farms.Among these variables, we find the total cash receipts of the farm business over the surveyed
year (income), the total area of the farm (hectares), the area of crops grown on the farm (crops),
the number of beef cattle on the farm (beef ) and the number of sheep (sheep).

Data corresponding to D = 5 groups with a total sample size of n = 200 were generated.
The group sample sizes were respectively nk = 10k + 10, k = 1, 2, . . . , 5. We considered four
covariates. For Scenarios A and B below, the values of the covariates were generated indepen-
dently from the distributions X1 ∼ N(3.31, 0.82), X2 ∼ N(1.74, 1.10), X3 ∼ N(1.70, 1.28) and
X4 ∼ N(2.41, 1.61), where the given means and standard deviations were taken as the sample
means and standard deviations of the variables hectares, crops, beef and sheep, respectively, of
the AAGIS data. In the case of Scenarios C and D, good data points were generated from a bivari-
ate distribution for (X1, X2), with the same marginal for X1 as before but X2 = 1 − 0.5X1 + v,
with v ∼ N(0, 0.7). As true values of regression coefficients, we have taken the fitted values of the
model to the AAGIS data, given by (β1, β2, β3, β4) = (0.45, 0.14, 0.05, 0.005). The fixed effects
αd , d = 1, . . . , 10, were generated from a normal distribution with zero mean and standard devi-
ation σα = 1. The errors εdj were generated independently from a normal distribution with zero
mean and standard deviation equal to σ = 0.1. Then, keeping the group effects αd and the val-
ues of the covariates fixed, we carried out L = 1000 Monte Carlo replicates. In each replicate,
we generated the model responses ydj from model (1). Then, we considered four contamination
scenarios:

A. No contamination.
B. Vertical outliers: A subset Dc ⊆ {1, 2, . . . , D} of the groups was selected for contamination.

Within these selected groups Dc, a given percentage of the observations were contaminated
only in the outcome. We considered two cases, asymmetric and symmetric contamination. In
the symmetric case, for each selected group d ∈ Dc, half of the contaminated observations
were replaced by cd1 = ȳd + k sY ,d and the other half by cd2 = ȳd − k sY ,d with k = 4, 5,
where ȳd and sY ,d are respectively the mean and the standard deviation of the generated clean
outcomes in dth group. Note that the outliers are generated taking into account also the slopes
since ȳd ≈ x̄T

d β + αd . In this way, the contaminated observations are clear outliers as compared
with the non-outliers. In the asymmetric case, all contaminated observations were replaced
by cd1.
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Figure 1. Scatterplots of Y vs. X1, X2 and X3, and finally X2 vs. X1 for data with 20% of symmetric contamination type
D with k = 4 within group d = 5.

C. Good leverage points: Here extreme values were introduced in the covariate values only. For X3

and X4, a percentage of observations was replaced by extreme cases. This was done marginally
and similarly as before, that is, setting xdjq, for q = 3, 4, equal to cd3 = x̄dq + k sXq ,d , where x̄dq

and sXq ,d are respectively the mean and standard deviation of the clean data of Xq in dth group
and taking k = 4, 5. For X1 and X2, we considered atypical values in the joint distribution of
(X1, X2). Note that these are not outliers according to our definition.

D. High leverage outliers: Again, extreme cases were created for the covariates in exactly the
same way as in Scenario C. Finally, the responses ydj corresponding to the extreme values of
covariates were contaminated similarly as described in scenario B.

We selected for contamination three out of the D = 5 groups, concretely Dc = {1, 3, 5}. Figure 1
shows graphically the data from group d = 5 containing nd = 60 observations with 20% of
symmetric contamination type D with k = 4. The four plots in this figure show respectively, from
left to right and from top to bottom, the outcomes of all sample observations against their values
in the covariates Xq, for q = 1, 2, 3, and the values of X2 against those of X1. Note that even if
k = 4 seems a large value, since k sY ,d is added or subtracted to the mean value of the group ȳd to
create the outliers, in fact some of these outliers are rather close to some of the clean data points.
Thus, some of them are actually very mild outliers.

Thus, for each Monte Carlo replicate l = 1, . . . , L, we applied five different estimation proce-
dures to fit model (1) to the simulated data: LS, the GPSC as described in Stages 1 and 2 (called
GPSC1), the GPSC faster algorithm suggested in Remark 1 (GPSC2), the RDL1 and the M-S
methods. The original PSC algorithm of Peña and Yohai [1] was also applied, but in the case of
high percentages of contamination (20% or more), the algorithm deleted either in Stages 1 or 2
all the observations in at least one of the groups in several Monte Carlo replicates. In particular,
with 20% of symmetric contamination type B within selected groups, this occurred for six Monte
Carlo replicates. Due to this, simulation results for the original PSC method cannot be shown. In
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2664 B. Pérez et al.

case of smaller groups, groups with more uneven means, larger percentages of contamination or
outliers spread in more groups, the probability of deleting a whole group is likely to increase.

Four performance criteria were used to compare the results of the considered estimators. The
first two are used to evaluate the outlier detection performance and the other two assess their
robustness properties. The first one is the percentage of the Monte Carlo replications in which
all outliers were detected (ALLD). The second criterion is the average over the Monte Carlo
simulations of the number of false outliers (AFO) found by each of these procedures. The AFO
summarizes the swamping effect, which occurs when non-outliers are wrongly identified due to
the effect of some hidden outliers, see Lawrence.[20] The third criterion is the empirical mean
squared error (MSE) of the final estimator γ̂ obtained by each of the three procedures, defined as

MSE(γ̂) = 1

L

L∑
l=1

‖(γ̂ (l) − γ)‖2. (12)

Finally, the fourth criterion is the empirical median squared error (MNSE), given by

MNSE(γ̂) = median{‖(γ̂ (l) − γ)‖2, 1 ≤ l ≤ L}. (13)

To get more insight, we computed also the separate MNSE for slopes and intercepts,

MNSE(β̂) = median{‖(β̂(l) − β)‖2, 1 ≤ l ≤ L},
MNSE(α̂) = median{‖(α̂(l) − α)‖2, 1 ≤ l ≤ L}.

Hubert and Rousseeuw [2] provided the code for obtaining the RDL1 estimator and the M-S
estimator is implemented in the function lmRob of the R package robust. Now to detect outliers,
since the M-S estimator is asymptotically normal, in this paper we follow the rule proposed by
Rousseeuw and van Zomeren [21] for the LMS estimator, in which an observation is regarded
as an outlier if the absolute value of the standarized residual (using the NMAD) exceeds 2.5.
The analogous rule is considered using LS estimators with residuals standardized also with the
NMAD. The GPSC automatically provides the labels of the outliers.

Tables 1–6 report the simulation results for three cases: symmetric contamination generated
using k = 5, asymmetric contamination and k = 5, and symmetric contamination and k = 4.
Table 1 lists the resulting values of the first performance criteria, ALLD, for the outlier detection
rules based on LS, GPSC1, GPSC2, RDL1 and M-S estimators, under contamination levels of
5%, 10%, 20% and 30%. Table 2 shows the values of the second performance criteria, AFO, for
the same classification rules and contamination levels. Tables 3 and 4 report the resulting MSEs
and MNSEs, respectively. Finally, Tables 5 and 6 show the separated MNSE values for the slopes
and the intercepts respectively.

Tables 1 and 2 indicate that for the simulated data, the classifying rule based on the GPSC
method achieves high percentages of correct detection while keeping very small the number of
observations wrongly identified as outliers (swamping effect). However, under 30% of asymmetric
contamination type B and with outliers generated using k = 4, the rules based on the two GPSC
procedures have a slightly weaker power detection. Remember that for k = 4 not all the introduced
outliers are clearly separated from the clean data points (Figure 1). Then, the observed weaker
power detection of not so clear outliers might not be a sign of poor performance. See also that
when the sample is not contaminated by outliers, the two GPSC rules present the lowest AFO
as compared with the classifying rules based on the RDL1 and M-S methods. Both the RDL1

and M-S rules wrongly identify as outliers some non-outliers, see Table 2. This agrees with the
fact that these methods have slightly larger measures ALLD. Thus, this methods are detecting
practically all outliers together with few non outliers.

D
ow

nl
oa

de
d 

by
 [

85
.4

8.
23

6.
70

] 
at

 0
4:

53
 0

1 
N

ov
em

be
r 

20
14

 



Journal of Statistical Computation and Simulation 2665

Table 1. ALLD for the outlier detection rules based on LS, GPSC1, GPSC2, RDL1 and M-S fitting
methods, under contamination scenarios B and D with 5%, 10%, 20% and 30% of symmetric or
asymmetric contamination with k = 4, 5 within each group d ∈ {1, 3, 5}.

5% 10% 20% 30%

Case Method B D B D B D B D

LS 100.0 100.0 100.0 100.0 99.9 100.0 98.8 100.0
Sym GPSC1 100.0 99.5 100.0 99.3 100.0 99.8 99.2 99.9
k = 5 GPSC2 100.0 99.6 100.0 99.3 100.0 99.9 99.1 99.8

MS 100.0 99.9 100.0 99.9 100.0 100.0 100.0 100.0
RDL1 100.0 99.9 100.0 99.9 100.0 100.0 100.0 100.0

LS 100.0 6.6 99.5 0.0 57.8 0.0 0.0 0.0
Asym GPSC1 100.0 98.7 100.0 98.8 99.2 99.1 87.4 97.3
k = 5 GPSC2 100.0 98.5 100.0 98.1 99.3 99.3 82.4 96.3

MS 100.0 99.8 100.0 99.8 100.0 100.0 100.0 100.0
RDL1 100.0 99.8 100.0 99.8 100.0 99.9 100.0 99.7

LS 100.0 99.9 99.2 100.0 97.4 100.0 92.4 99.8
Sym GPSC1 99.9 91.7 98.2 86.7 93.0 91.4 78.6 93.1
k = 4 GPSC2 99.6 91.6 97.6 85.0 93.1 89.9 78.9 92.3

MS 100.0 97.1 99.7 92.9 98.7 96.8 94.9 98.5
RDL1 99.9 93.2 99.6 92.0 98.4 96.8 96.8 98.8

Table 2. AFO for the rules based on LS, GPSC1, GPSC2, RDL1 and M-S methods, under contamination scenarios
A, B and C with 5%, 10%, 20% and 30% of symmetric or asymmetric contamination with k = 4, 5 within each group
d ∈ {1, 3, 5}.

5% 10% 20% 30%

Case Method A B C D B C D B C D B C D

LS 2.84 2.28 2.78 2.34 1.78 2.57 1.73 1.15 2.45 0.98 0.61 2.31 0.49
Sym GPSC1 1.16 0.45 0.52 0.48 0.34 0.50 0.39 0.28 0.47 0.27 0.20 0.45 0.19
k = 5 GPSC2 1.15 0.42 0.49 0.46 0.33 0.47 0.37 0.25 0.44 0.26 0.19 0.45 0.18

MS 3.52 2.88 3.37 2.97 1.81 3.21 1.90 0.95 3.02 0.95 0.41 2.86 0.39
RDL1 2.86 2.33 2.70 2.43 1.56 2.64 1.51 0.79 2.30 0.82 0.28 2.24 0.31

LS 2.84 3.85 2.78 2.26 2.86 2.57 1.98 0.33 2.45 1.59 0.03 2.31 1.25
Asym GPSC1 1.16 0.47 0.52 0.43 0.37 0.50 0.36 0.28 0.47 0.23 0.71 0.45 0.17
k = 5 GPSC2 1.15 0.45 0.49 0.42 0.34 0.47 0.33 0.22 0.44 0.23 0.51 0.45 0.16

MS 3.52 2.66 3.37 2.56 1.88 3.21 1.81 0.85 3.02 0.84 0.30 2.86 0.27
RDL1 2.86 2.17 2.70 2.22 1.56 2.64 1.55 0.78 2.30 0.74 0.27 2.24 0.29

LS 2.84 2.27 2.78 2.31 1.67 2.57 1.72 1.08 2.45 0.92 0.57 2.31 0.45
Sym GPSC1 1.16 0.44 0.52 0.48 0.36 0.50 0.36 0.29 0.47 0.27 0.19 0.45 0.19
k = 4 GPSC2 1.15 0.45 0.49 0.48 0.32 0.47 0.35 0.26 0.44 0.25 0.17 0.45 0.18

MS 3.52 2.87 3.37 2.99 1.82 3.21 1.91 0.95 3.02 0.94 0.40 2.86 0.38
RDL1 2.86 2.33 2.70 2.43 1.56 2.64 1.51 0.79 2.30 0.82 0.28 2.24 0.31

Concerning now the robustness performance criteria MSE and MNSE, Tables 3 and 4 show
that the two GPSC estimators are practically as efficient as LS under Scenario A without outliers.
This agrees with the fact discussed above about the low percentage of false outliers detected.
It also presents slightly better MSE and MNSE figures than the other estimators in most of the
cases, except for the case of 30% of asymmetric contamination type B. In the rest of cases, the
results of the M-S estimator are quite similar. See how the MSEs and MNSEs of LS estimators
increase considerably even with 10% of outliers within selected groups. Tables 5 and 6 show
similar conclusions when looking at the detailed MNSE results for slopes and intercepts.

Simulations were also performed by introducing contamination in several groups of the same
size instead of groups of different sizes. Results suggested that the GPSC method works better
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2666 B. Pérez et al.

Table 3. MSE(×100) of the LS, GPSC1, GPSC2, RDL1 and M-S estimators, under contamination scenarios A, B and
C with 5%, 10%, 20% and 30% of symmetric or asymmetric contamination with k = 4, 5 within each group d ∈ {1, 3, 5}.

5% 10% 20% 30%

Case Method A B C D B C D B C D B C D

LS 0.73 8.51 0.68 10.70 31.57 0.66 36.02 71.47 0.66 72.46 130.60 0.71 117.99
Sym GPSC1 0.75 0.70 0.71 0.84 0.78 0.68 0.80 0.84 0.67 0.85 0.90 0.73 0.98
k = 5 GPSC2 0.75 0.70 0.70 0.84 0.78 0.68 0.80 0.83 0.68 0.85 0.92 0.73 0.98

MS 0.84 0.79 0.84 0.94 0.84 0.80 0.87 0.88 0.76 0.87 0.90 0.84 0.96
RDL1 1.27 1.38 1.26 1.36 1.44 1.37 1.44 1.75 1.37 1.66 2.02 1.38 1.72

LS 0.73 21.13 0.68 14.57 59.61 0.66 27.38 193.54 0.66 42.49 388.35 0.71 47.65
Asym GPSC1 0.75 0.72 0.71 0.80 0.79 0.68 0.85 0.83 0.67 0.84 6.36 0.73 1.75
k = 5 GPSC2 0.75 0.72 0.70 0.80 0.79 0.68 0.85 0.83 0.68 0.83 7.89 0.73 2.10

MS 0.84 0.81 0.84 0.87 0.85 0.80 0.90 0.86 0.76 0.83 0.96 0.84 0.96
RDL1 1.27 1.45 1.26 1.42 1.71 1.37 1.64 2.21 1.37 1.94 3.40 1.38 3.01

LS 0.73 6.21 0.68 9.27 24.01 0.66 31.14 58.07 0.66 61.37 109.26 0.71 98.94
Sym GPSC1 0.75 0.70 0.71 0.88 0.79 0.68 0.88 0.87 0.67 0.94 1.08 0.73 1.17
k = 4 GPSC2 0.75 0.71 0.70 0.88 0.80 0.68 0.90 0.89 0.68 0.99 1.08 0.73 1.18

MS 0.84 0.79 0.84 0.94 0.84 0.80 0.90 0.88 0.76 0.91 0.96 0.84 0.98
RDL1 1.27 1.38 1.26 1.36 1.44 1.37 1.44 1.75 1.37 1.66 2.02 1.38 1.72

Table 4. MNSE(×100) of LS, GPSC1, GPSC2, RDL1 and M-S estimators, under contamination scenarios A, B and C
with 5%, 10%, 20% and 30% of symmetric or asymmetric contamination with k = 4, 5 within each group d ∈ {1, 3, 5}.

5% 10% 20% 30%

Case Method A B C D B C D B C D B C D

LS 0.43 3.31 0.38 5.26 11.95 0.38 19.20 34.33 0.38 39.42 66.55 0.40 67.22
Sym GPSC1 0.44 0.41 0.40 0.48 0.45 0.40 0.46 0.48 0.38 0.47 0.51 0.42 0.56
k = 5 GPSC2 0.44 0.41 0.40 0.49 0.45 0.40 0.46 0.48 0.37 0.47 0.52 0.41 0.56

MS 0.47 0.44 0.44 0.50 0.47 0.43 0.48 0.49 0.40 0.49 0.52 0.44 0.54
RDL1 0.67 0.80 0.72 0.79 0.75 0.79 0.86 0.91 0.87 0.96 1.06 0.83 0.95

LS 0.43 8.59 0.38 12.89 35.90 0.38 24.34 147.94 0.38 37.48 322.31 0.40 40.82
Asym GPSC1 0.44 0.45 0.40 0.47 0.44 0.40 0.48 0.45 0.38 0.48 0.63 0.42 0.56
k = 5 GPSC2 0.44 0.45 0.40 0.47 0.44 0.40 0.49 0.44 0.37 0.47 0.67 0.41 0.57

MS 0.47 0.45 0.44 0.49 0.47 0.43 0.48 0.45 0.40 0.47 0.52 0.44 0.56
RDL1 0.67 0.83 0.72 0.82 0.96 0.79 0.97 1.24 0.87 1.03 1.90 0.83 1.75

LS 0.43 2.25 0.38 4.85 9.45 0.38 19.25 30.62 0.38 39.02 62.17 0.40 63.57
Sym GPSC1 0.44 0.41 0.40 0.51 0.44 0.40 0.48 0.49 0.38 0.52 0.58 0.42 0.59
k = 4 GPSC2 0.44 0.40 0.40 0.50 0.45 0.40 0.50 0.51 0.37 0.53 0.59 0.41 0.59

MS 0.47 0.44 0.44 0.51 0.48 0.43 0.49 0.50 0.40 0.51 0.54 0.44 0.54
RDL1 0.67 0.80 0.72 0.79 0.75 0.79 0.86 0.91 0.87 0.96 1.06 0.83 0.95

than the other methods for contaminated groups of medium or large size under Scenario B (low
leverage outliers). Studies also showed that the GPSC method works better when the groups means
are clearly different, i.e. when the variance of groups effects σ 2

α is clearly greater than individual
error variance σ 2.

8. Application

From the original AAGIS data set, we consider as outcome the variable income, as covari-
ates the variables hectares, crops, beef and sheep and as grouping variable the variable state,
which gives the state in which the farm is located, with 1 = New South Wales, 2 = Victoria,
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Table 5. MNSE(×100) for LS, GPSC1, GPSC2, RDL1 and M-S estimators of the slopes vector, under contamination
scenarios A, B and C with 5%, 10%, 20% and 30% of symmetric or asymmetric contamination with k = 4, 5 within each
group d ∈ {1, 3, 5}.

5% 10% 20% 30%

Case Method A B C D B C D B C D B C D

LS 0.01 0.17 0.02 0.71 0.54 0.01 2.08 1.17 0.01 2.96 2.20 0.01 3.38
Sym GPSC1 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03
k = 5 GPSC2 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03

MS 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03
RDL1 0.02 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.04

LS 0.01 0.22 0.02 2.82 0.48 0.01 6.32 1.08 0.01 12.39 1.72 0.01 17.35
Asym GPSC1 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03
k = 5 GPSC2 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03

MS 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03
RDL1 0.02 0.03 0.03 0.04 0.03 0.03 0.05 0.04 0.03 0.10 0.04 0.03 0.22

LS 0.01 0.12 0.02 0.68 0.37 0.01 1.98 0.86 0.01 2.74 1.67 0.01 3.09
Sym GPSC1 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.03 0.02 0.01 0.03
k = 4 GPSC2 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.03 0.02 0.01 0.03

MS 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03
RDL1 0.02 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.04

Table 6. MNSE(×100) of LS, GPSC1, GPSC2, RDL1 and M-S estimators of the intercepts, under contam-
ination scenarios A, B and C with 5%, 10%, 20% and 30% of symmetric or asymmetric contamination with
k = 4, 5 within each group d ∈ {1, 3, 5}.

5% 10% 20% 30%

Case Method A B C D B C D B C D B C D

LS 0.41 3.09 0.36 4.47 11.48 0.37 17.00 33.05 0.36 36.84 64.24 0.39 63.81
Sym GPSC1 0.43 0.40 0.38 0.46 0.43 0.38 0.44 0.46 0.36 0.45 0.49 0.41 0.53
k = 5 GPSC2 0.42 0.40 0.38 0.47 0.43 0.38 0.44 0.46 0.35 0.45 0.50 0.40 0.53

MS 0.46 0.42 0.43 0.47 0.45 0.42 0.45 0.47 0.39 0.46 0.50 0.43 0.51
RDL1 0.65 0.76 0.68 0.75 0.74 0.74 0.81 0.89 0.83 0.91 1.02 0.81 0.91

LS 0.41 8.37 0.36 9.90 35.60 0.37 18.01 146.69 0.36 25.06 320.97 0.39 23.53
Asym GPSC1 0.43 0.43 0.38 0.45 0.43 0.38 0.45 0.44 0.36 0.45 0.61 0.41 0.53
k = 5 GPSC2 0.42 0.43 0.38 0.44 0.43 0.38 0.46 0.43 0.35 0.45 0.64 0.40 0.54

MS 0.46 0.43 0.43 0.46 0.46 0.42 0.45 0.44 0.39 0.45 0.50 0.43 0.54
RDL1 0.65 0.80 0.68 0.78 0.94 0.74 0.88 1.20 0.83 0.94 1.86 0.81 1.53

LS 0.41 2.09 0.36 4.26 9.05 0.37 17.25 29.71 0.36 36.21 60.10 0.39 60.75
Sym GPSC1 0.43 0.40 0.38 0.47 0.43 0.38 0.46 0.48 0.36 0.49 0.56 0.41 0.56
k = 4 GPSC2 0.42 0.39 0.38 0.47 0.44 0.38 0.47 0.50 0.35 0.50 0.57 0.40 0.55

MS 0.46 0.42 0.43 0.48 0.45 0.42 0.46 0.48 0.39 0.48 0.53 0.43 0.51
RDL1 0.65 0.76 0.68 0.75 0.74 0.74 0.81 0.89 0.83 0.91 1.02 0.81 0.91

3 = Queensland, 4 = South Australia, 5 = Western Australia, 6 = Tasmania and 7 = Northern
Territory. If we fit model (1) using the raw variables, a histogram of residuals reveals a strongly
skewed distribution. Taking logs of the outcome (adding a constant to make it always positive)
and the covariates and fitting again the model, a histogram of residuals does not seem far from the
normal density but still several outliers appear. Trying to identify the true outliers, we applied all
the robust fitting methods considered in this paper apart from LS. Table 7 lists the number of farms
remaining in each State after deleting the atypical farms pointed out by the classification rules
based on each method. Observe that the rule based on RDL1 method is the one that eliminates the
most quantity of atypical farms over all States, with the largest difference in States 1 and 3. Finally,
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Table 7. Number of farms remaining in each State after deletion of outliers based on LS,
RDL1, M-S, GPSC1 and GPSC2 methods.

State Original LS RDL1 M-S GPSC1 GPSC2

1 451 438 432 443 446 446
2 265 258 258 262 260 260
3 382 358 355 361 372 372
4 241 235 235 238 239 239
5 221 214 210 210 215 215
6 62 60 61 61 62 62
7 30 28 26 28 29 29

Total 1652 1591 1577 1603 1623 1623

Table 8. Regression parameter estimates obtained by LS, RDL1, M-S, GPSC1
and GPSC2 methods.

Parameters LS RDL1 M-S GPSC1 GPSC2

Hectares 0.335 0.339 0.379 0.367 0.367
Crops 0.169 0.144 0.165 0.165 0.165
Beef 0.079 0.060 0.065 0.068 0.068
Sheep 0.029 0.161 0.022 0.023 0.023
State 1 0.677 0.291 0.588 0.617 0.617
State 2 0.604 0.195 0.490 0.523 0.523
State 3 0.607 0.131 0.523 0.554 0.554
State 4 0.534 0.146 0.426 0.465 0.465
State 5 0.667 0.320 0.582 0.608 0.608
State 6 0.711 0.273 0.633 0.663 0.663
State 7 0.543 0.659 0.363 0.454 0.454

Table 8 reports the final regression parameter estimates provided by each method. Observe that the
RDL1 estimates of the group effects are quite different from the estimates obtained by the other
methods. This might be due to the mentioned swamping effect that could be strongly affecting the
RDL1 estimates. The original GPSC method (GPSC1) and the faster version (GPSC2) deliver the
same figures. Moreover, the results obtained by the M-S and the GPSC methods are somewhat
similar. The observed similarity between the M-S and GPSC estimates gives some credibility to
these two methods.

9. Concluding remarks

This work studies outlier detection and robust estimation for grouped data following a linear
regression model with fixed group effects. We compare several robust methods and the corre-
sponding outlier detection rules based on these methods. We introduce the GPSC method that
provides an S estimation with a one-step reweighting procedure. The GPSC procedure as intro-
duced here is recommended in practice when the swamping effect must be kept small, ensuring
good efficiency under absence of outliers and at the same time keeping a good detection power.

We present two different implementations of the GPSC algorithm. The faster algorithm pro-
posed in Remark 1 keeps similar properties as the original GPSC algorithm and at the same time
reduces drastically the computation time, making it independent of the number of groups D. This
faster implementation takes approximately 0.4 times the computation time of the M-S algorithm.
R functions for the two versions of the GPSC procedure together with all necessary subroutines
are available in the link http://halweb.uc3m.es/esp/Personal/personas/imolina/esp/perso.html.
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