
Chapter 15
Finding Outliers in Linear and Nonlinear Time
Series

Pedro Galeano and Daniel Peña

15.1 Introduction

Outliers, or discordant observations, can have a strong effect on the model building
process for a given time series. First, outliers introduce bias in the model parameter
estimates, and then, distort the power of statistical tests based on biased estimates.
Second, outliers may increase the confidence intervals for the model parameters.
Third, as a consequence of the previous points, outliers strongly influence predic-
tions. There are two main alternatives to analyze and treat outliers in time series.
First, robust procedures can be applied to obtain parameter estimates not affected
by the presence of outliers. These robust estimates are then used to identify outliers
by using the residuals of the fit. Second, diagnostic methods are useful to detect the
presence of outliers by analyzing the residuals of the model fit through iterative test-
ing procedures. Once the outliers have been found, their effects are jointly estimated
with the model parameters, obtaining, as a by-product, robust model parameter esti-
mates. In this paper we focus on diagnostic methods and refer to Chap. 8 of Maronna
et al. (2006) for a detailed review of robust procedures for ARMA models and Muler
and Yohai (2008) and Muler et al. (2009) for two recent references.

For linear models, Fox (1972) introduced additive outliers (AO), which affect a
single observation, and innovative outliers (IO), which affect a single innovation,
and proposed the use of likelihood ratio test statistics for testing for outliers in au-
toregressive models. Tsay (1986) proposed an iterative procedure to identify out-
liers, to remove their effects, and to specify a tentative model for the underlying
process. Chang et al. (1988) derived likelihood ratio criteria for testing the existence
of outliers of both types and criteria for distinguishing between them and proposed
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an iterative procedure for estimating the time series parameters in ARIMA models.
Tsay (1988) extended the previous findings to two new types of outliers: the level
shift (LS), which is a change in the level of the series, and the temporary change
(TC), which is a change in the level of the series that decreases exponentially. Chen
and Liu (1993a) proposed an iterative outlier detection to obtain joint estimates of
model parameters and outlier effects that leads to more accurate model parameter
estimates than previous ones. Luceño (1998) developed a multiple outlier detection
method in time series generated by ARMA models based on reweighed maximum
likelihood estimation. Gather et al. (2002) proposed a partially graphical procedure
based on mapping the time series into a multivariate Euclidean space which can be
applied online. Sánchez and Peña (2010) proposed a procedure that keeps the power-
ful features of previous methods but improves the initial parameter estimate, avoids
confusion between innovative outliers and level shifts and includes joint tests for se-
quences of additive outliers in order to solve the masking problem. Finally, papers
dealing with seasonal ARIMA models are Perron and Rodríguez (2003), Haldrup
et al. (2011) and Galeano and Peña (2012), among others.

Recently, the focus has moved to outliers in nonlinear time series models. For
instance, Chen (1997) proposed a method for detecting additive outliers in bilinear
time series. Battaglia and Orfei (2005) proposed a model-based method for detecting
the presence of outliers when the series is generated by a general nonlinear model
that includes as particular cases the bilinear, the self-exciting threshold autoregres-
sive (SETAR) model and the exponential autoregressive model, among others. In
financial time series modeling, Doornik and Ooms (2005) presented a procedure
for detecting multiple AO’s in generalized autoregressive conditional heteroskedas-
ticity (GARCH) models at unknown dates based on likelihood ratio test statistics.
Carnero et al. (2007) studied the effect of outliers in the identification and esti-
mation of GARCH models. Grané and Veiga (2010) proposed a general detection
and correction method based on wavelets that can be applied to a large class of
volatility models. Hotta and Tsay (2012) introduced two types of outlier in GARCH
models: the level outlier (LO) corresponds to the situation in which a gross error
affects a single observation that does not enter into the volatility equation, while the
volatility outlier (VO) corresponds to the previous situation but the outlier enters
into the volatility affecting all the remaining observations in the time series. Finally,
Fokianos and Fried (2010) introduced three different outliers for the particular case
of integer-valued GARCH (INGARCH) models and proposed a multiple outlier de-
tection procedure for such outliers.

The literature on outliers in multivariate time series is brief. Tsay et al. (2000)
generalized the four types of outliers usually considered in ARIMA models to the
case of vector autoregressive moving average (VARMA) models and highlighted the
differences between univariate and multivariate outliers. Importantly, the effect of a
multivariate outlier not only depends on the model and the outlier size, as in the uni-
variate case, but on the interaction between the model and size. These authors also
proposed an iterative procedure for estimating the location, type and size of multi-
variate outliers. Galeano et al. (2006) proposed a method based on projections for
identifying outliers without requiring initial specification of the multivariate model.
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These authors showed that a multivariate outlier produces at least a univariate outlier
in almost every projected series, and by detecting the univariate outliers, it is pos-
sible to identify the multivariate ones. Baragona and Battaglia (2007a) and Barag-
ona and Battaglia (2007b) have proposed methods to discover outliers in dynamic
factor models and in multiple time series by means of an independent component
approach, respectively. Finally, Pankratz (1993) has considered outliers in dynamic
regression models.

Other interesting issues related with outliers have been analyzed in the literature.
For instance, detection of outliers in online monitoring data have been developed in
Davies et al. (2004) and Gelper et al. (2009), among others. The effects of outliers in
exponential smoothing techniques have been considered by Kirkendall (1992) and
Koehler et al. (2012). The relationship between outliers, missing observations and
interpolation techniques have been analyzed in Peña and Maravall (1991), Battaglia
and Baragona (1992), Ljung (1993) and Baragona (1998). Forecasting time series
with outliers have been addressed by Chen and Liu (1993b), for ARMA models,
Franses and Ghijsels (1999), for GARCH models, and Gagné and Duchesne (2008),
for dynamic vector time series models.

The rest of this contribution is organized as follows. In Sect. 15.2, we review out-
liers in univariate ARIMA models and discuss procedures for outlier detection and
robust estimation. In Sect. 15.3, we consider outliers in non-linear time series mod-
els. Section 15.4 is devoted to outliers in multivariate time series models. Finally,
Sect. 15.5 concludes the paper.

15.2 Outliers in ARIMA Models

This section reviews outliers in ARIMA time series models. We first introduce the
four types of outliers usually considered in these models: additive outlier, innovative
outlier, level shift and temporary change. Another type of unexpected events can
be considered in the framework of an intervention event in the time series data,
such as the ramp shift. Then, we describe procedures for outlier identification and
estimation.

15.2.1 Types of Outliers in ARIMA Models

15.2.1.1 The ARIMA Model

We say that xt follows an ARIMA(p,d, q) model if xt can be written as:

φ(B)(1−B)dxt = c+ θ(B)et , (15.1)

where c is a constant, B is the backshift operator such that Bxt = xt−1, φ(B) and
θ(B) are polynomials in B of orders p and q given by φ(B)= 1−φ1B−· · ·−φpBp
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Fig. 15.1 Stationary series with and without an AO

and θ(B)= 1+ θ1B + · · · + θqB
q , respectively, d is the number of unit roots and

et is a white noise sequence of independent and identically distributed (i.i.d.) Gaus-
sian with mean zero and variance σ 2

e . It is further assumed that the roots of φ(B)
and θ(B) are outside the unit circle and have no common roots. The autoregres-
sive representation of the ARIMA model in (15.1) is given by π(B)xt = cπ + et ,
where cπ = θ−1(B)c and π(B)= θ(B)−1φ(B)(1−B)d , while the moving average
representation reduces to xt = cψ + ψ(B)et , where cψ = φ−1(B)(1− B)−dc and
ψ(B)= φ(B)−1(1−B)−dθ(B).

15.2.1.2 Additive Outliers

An additive outlier (AO) corresponds to an exogenous change of a single observa-
tion of the time series and is usually associated with isolated incidents like mea-
surement errors or impulse effects due to external causes. A time series y1, . . . , yT
affected by the presence of an AO at t = k is given by:

yt = xt +wI
(k)
t

for t = 1, . . . , T , where xt follows an ARIMA model in (15.1), w is the outlier size
and I (k)t is an indicator variable such that I (k)t = 1, if t = k, and I (k)t = 0, otherwise.

Figure 15.1 shows a simulated series with sample size T = 100 following an
AR(1) model with parameter φ = 0.8 and innovation variance σ 2

e = 1, and the same
series with an AO of size w = 10 at t = 50. Note how only a single observation
is affected. An AO can have pernicious effects in all the steps of the time series
analysis, i.e., model identification, estimation and prediction. For instance, the auto-
correlation and partial autocorrelation functions, that are frequently used for model
identification, can be severely affected by the presence of an AO.

15.2.1.3 Innovative Outliers

An innovative outlier (IO) corresponds to an endogenous change of a single innova-
tion of the time series and is usually associated with isolated incidents like impulse
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Fig. 15.2 Stationary series with and without an IO

Fig. 15.3 Nonstationary series with and without an IO

effects due to internal causes. The innovations of a time series y1, . . . , yT affected
by the presence of an IO at time point t = k is given by:

at = et +wI
(k)
t , (15.2)

where et are the innovations of the clean series xt . Multiplying ψ(B) in both sides
of (15.2) leads to the equation for the observed series:

yt = xt +ψ(B)wI
(k)
t .

The effects of an IO on a series depend on the series being stationary or not.
To see this point, Fig. 15.2 shows a simulated series with sample size T = 100
following an AR(1) model with parameter φ = 0.8 and innovation variance σ 2

e = 1,
and the same series with an IO of size w = 10 at t = 50. Note how the IO modifies
several observations of the series although its effect tends to disappear after a few
observations. On the other hand, Fig. 15.3 shows a simulated series with sample
size T = 100 following an ARIMA(1, 1, 0) model with parameter φ = 0.8 and
innovation variance σ 2

e = 1, and the same series with an IO of size w = 10 at t = 50.
Note how, in this case, the IO affects all the observations of the series starting from
time point t = 50.
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Fig. 15.4 Stationary series with and without a LS

15.2.1.4 Level Shifts

A level shift (LS) is a change in the mean level of the time series starting at t = k and
continuing until the end of the observed period. Therefore, a time series y1, . . . , yT
affected by the presence of a LS at t = k is given by:

yt = xt +wS
(k)
t ,

where S
(k)
t = (1 − B)−1I

(k)
t is a step function. Note that a LS serially affects the

innovations as follows:

at = et + π(B)wS
(k)
t .

Figure 15.4 shows a simulated series with sample size T = 100 following an
AR(1) model with parameter φ = 0.8 and innovation variance σ 2

e = 1, joint with
the same series with a LS of size w = 10 at t = 50. Note how the LS affects all the
observation of the series after t = 50. A LS has a strong effect in both identification
and estimation of the observed series. Indeed, the effect of an LS is close to the
effect of an IO on a nonstationary series.

15.2.1.5 Temporary Changes

A temporary change (TC) is a change with effect that decreases exponentially.
Therefore, a time series y1, . . . , yT affected by the presence of a TC at t = k is
given by

yt = xt + 1

1− δB
wI

(k)
t ,

where δ is the exponential decay parameter such that 0 < δ < 1. Note that if δ tends
to 0, the TC reduces to an AO, whereas if δ tends to 1, the TC reduces to a LS.
Under the presence of a TC, the innovations are affected as follows:

at = et + π(B)

1− δB
wI

(k)
t .
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Fig. 15.5 Stationary series with and without a TC

Then, if π(B) is close to 1− δB , the effect of a TC on the innovations is very close
to the effect of an IO. Otherwise, the TC can affect several innovations.

Figure 15.5 shows a simulated series with sample size T = 100 following an
AR(1) model with parameter φ = 0.8 and innovation variance σ 2

e = 1, and the same
series with an TC of size w = 10 and decay rate δ = 0.7 at t = 50. Note how the TC
have a decreasing effect in the observations of the series after t = 50.

15.2.1.6 Ramp Shifts

Finally, a ramp shift (RS) is a change in the trend of the time series in an
ARIMA(p,1, q) model starting at t = k and continuing until the end of the ob-
served period. Therefore, a time series y1, . . . , yT affected by the presence of a RS
at t = k is given by

yt = xt +wR
(k)
t ,

where R(k)
t = (1− B)−1S

(k)
t is a ramp function. Note that a RS on the I (1) series

yt is a LS on the differenced series (1− B)yt . Note also that a RS serially affects
the innovations as follows:

at = et + π(B)wR
(k)
t .

Other types of unexpected events have been considered in the literature. For in-
stance, variance changes have been considered in Tsay (1988), while patches of
additive outliers have been studied in Justel et al. (2001) and Penzer (2007). Mod-
eling alternative unexpected events is also possible as the intervention framework is
flexible enough to model many different situations. For example, new effects can be
defined using combinations of the outliers previously considered.
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15.2.2 Outlier Identification and Estimation

In general, all the types of outliers that we have presented can be written in a general
equation:

yt = xt + ν(B)wI
(k)
t , (15.3)

where ν(B) = 1 for an AO, ν(B) = ψ(B) for an IO, ν(B) = (1− B)−1 for a LS,
ν(B)= (1− δB)−1 for a TC and ν(B)= (1− B)−2 for a RS, respectively. There-
fore, outliers in time series can be seen as particular cases of interventions, intro-
duced by Box and Tiao (1975), to model dynamic changes on a time series at known
time points.

Assume that we observe a series, y1, . . . , yT , following an ARIMA(p,d, q)
model as in (15.1) with known parameters and with an outlier of known type at
t = k. Multiplying by π(B) in (15.3) leads to the equation for the innovations:

at = et +wizi,t , (15.4)

for i =AO, IO, LS and TC, where wAO, wIO, wLS and wTC is the size of the outlier
for AO, IO, LS and TC, respectively, and zi,t = π(B)νi(B)I

(k)
t , where νAO(B)= 1,

νIO(B)=ψ(B), νLS(B)= (1−B)−1 and νTC(B)= (1−δB)−1, respectively. From
(15.4), for any particular case, one can easily estimate the size of the outlier by least-
squares leading to:

ŵi =
∑T

t=1 zi,t at∑T
t=1 z

2
i,t

with variance ρ2
i σ

2
e where ρ2

i = (
∑T

t=1 z
2
i,t )

−1. Consequently, knowing the type and
location of the outlier, it is easy to adjust the outlier effect on the observed series
using the corresponding estimates, ŵAO, ŵIO, ŵLS or ŵTC, respectively.

Also, the estimates of the outlier size can now be used to test whether one outlier
of known type has occurred at t = k. Indeed, the likelihood ratio test statistic for the
null hypothesis H0 :wi = 0 against the alternative H1 :wi 
= 0, is given by

τi,k = ŵi,k

ρiσe
.

The statistic τi,k , under the null hypothesis, follows a Gaussian distribution.
However, in practice, the number, location, type and size of the outliers are un-

known. Several papers, including Chang et al. (1988), Tsay (1988), Chen and Liu
(1993a) and Sánchez and Peña (2010), among others, have proposed iterative pro-
cedures in which the idea is to compute the likelihood ratio test statistics for all the
observations of the series under the null hypothesis of no outliers. In particular, the
procedure by Chen and Liu (1993a), which is standard nowadays, works as follows.
In a first step, an ARIMA model is identified for the series and the parameters are es-
timated using maximum likelihood. Then, the likelihood ratio test statistics τi,t , for
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i =AO, IO, LS and TC, are computed. If the maximum of all these statistics is sig-
nificant, an outlier of the type that provides with the maximum statistic is detected.
Then, the series is cleaned of the outlier effects and the parameters of the model
are re-estimated. This step is repeated until no more outliers are found. In a second
step, the outliers effects and the ARIMA model parameters are estimated jointly
using a multiple regression model. If some outlier is not significant, it is removed
from the outliers set. Then, the multiple regression model is re-estimated. This step
is repeated until all the outlier effects are significant. In a final step, the two pre-
vious steps are repeated but initially using the ARIMA model parameters estimates
obtained at the end of the second step. However, this procedure has three main draw-
backs. First, when a level shift is present in the series, the procedure tends to identify
an innovative outlier instead of the level shift. Second, the initial estimation of the
model parameters usually leads to a very biased set of parameters that may produce
the procedure to fail. Third, the masking and swamping effects, although mitigated
with respect to previous procedures, are still present if a sequence of outlier patches
is present in the time series. Sánchez and Peña (2010) proposed a procedure for mul-
tiple outlier detection and robust estimation that tries to avoid these three problems.
In particular, to solve the first problem, it is proposed to compare AO versus IO and
deal with LS alone. To solve the second problem, it is proposed to use influence
measures to identify the observations that have a larger impact on estimation and
estimate the parameters assuming that the most influential observations are missing.
Finally, to solve the third problem, an influence measure for LS or sequences of
patchy outliers is proposed that can be used to carry out the initial cleaning of the
time series.

15.3 Outliers in Nonlinear Time Series Models

This section reviews outliers in some nonlinear time series models. In particular, we
first consider the model-based method proposed by Battaglia and Orfei (2005) for
detecting the presence of outliers when the series is generated by a general nonlinear
model. Second, we summarize the effect of outliers in GARCH models following
Carnero et al. (2007) and present a method proposed by Hotta and Tsay (2012) for
detecting outliers in GARCH models. Finally, we describe the method proposed by
Fokianos and Fried (2010) to detect outliers in INGARCH models.

15.3.1 Outliers in a General Nonlinear Model

Battaglia and Orfei (2005) assumed a time series xt following the model:

xt = f
(
x(t−1), e(t−1))+ et , (15.5)
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where f is a nonlinear function also containing unknown parameters, x(t−1) =
(xt−1, xt−2, . . . , xt−p)′, e(t−1) = (et−1, et−2, . . . , et−p)′ and et is a white noise se-
quence of independent and identically distributed (i.i.d.) Gaussian with mean zero
and variance σ 2

e . Note that the model in (15.5) covers several well known nonlin-
ear models, such as the bilinear model, the self-exciting threshold autoregressive
(SETAR) model and the exponential autoregressive model, among others.

For the model in (15.5), Battaglia and Orfei (2005) consider additive and in-
novative outliers. First, for an AO at t = k, the observed series is y1, . . . , yT ,
given by yt = xt + wI

(k)
t , for t = 1, . . . , T , where xt follows the model in (15.5).

Therefore, the observed series can be written as yt = f (y(t−1),a(t−1))+ at , where
y(t−1) = (yt−1, yt−2, . . . , yt−p)′ and a(t−1) = (at−1, at−2, . . . , at−p)′, respectively,
for t = 1, . . . , T . The innovations of the observed series can be obtained recursively
from at = yt − f (y(t−1),a(t−1)). On the other hand, for an IO at t = k, the ob-
served series is given by yt = f (y(t−1),a(t−1))+ at , where at = et +wI

(k)
t , where

y(t−1) = (yt−1, yt−2, . . . , yt−p)′ and a(t−1) = (at−1, at−2, . . . , at−p)′, respectively,
for t = 1, . . . , T .

Estimation of outlier effects can be done similarly to the ARIMA case through
least squares. Battaglia and Orfei (2005) showed that the LS estimate of w for an
IO is given by ŵIO = ak with variance σ 2

e , and that the LS estimate of w for an AO
is given by

ŵAO =
∑T−k

j=0 cjak+j∑T−k
j=0 c

2
j

with variance (
∑T−k

j=0 c
2
j )σ

2
e , where

cj =−
[

∂

∂yt−j
f
(
y(k+j−1), a(k+j−1))+

j∑
i=1

cj−i
∂

∂at−j
f
(
y(k+j−1), a(k+j−1))

]
,

for j = 1, . . . , T − k. Consequently, the likelihood ratio test statistics to test for the
presence of an AO and a IO at t = k are given by

τIO = ak

σe
,

and

τAO =
∑T−k

j=0 cjak+j√∑T−k
j=0 c

2
j σe

,

respectively. Under the null hypothesis of no outlier, τAO and τIO have a standard
Gaussian distribution.

In order to detect the presence of several outliers in a nonlinear time series,
Battaglia and Orfei (2005) considered a procedure similar to that used in Chen and
Liu (1993a).
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15.3.2 Outliers in GARCH Models

Carnero et al. (2007) have analyzed the effects of outliers on the identification and
estimation of GARCH models. Regarding identification, Carnero et al. (2007) de-
rived the asymptotic biases caused by outliers on the sample autocorrelations of
squared observations generated by stationary processes and obtained the asymptotic
biases of the ordinary least squares (OLS) estimator of the parameters of ARCH(p)
models. Finally, these authors also studied the effects of outliers on the estimated
asymptotic standard deviations of the estimators considered and showed that they
are biased estimates of the sample standard deviations.

Recently, Hotta and Tsay (2012) have distinguished two types of outliers in
GARCH models and have proposed a method for their detection. For simplicity
of presentation, we consider the ARCH(1) model given by

xt =
√
htet ,

ht = α0 + α1x
2
t−1,

where α0 > 0, 0 < α1 < 1, and et are independent and identically distributed stan-
dard Gaussian random variables. Outliers in an ARCH(1) model encounter two dif-
ferent scenarios because an outlier can affect the level of xt or the volatility ht .
Therefore, a volatility outlier, denoted by VO, and defined as follows

yt =
√
htet +wI

(k)
t ,

ht = α0 + α1y
2
t−1

affects the volatility of the series, while a level outlier, denoted by LO, and given by

yt =
√
htet +wI

(k)
t ,

ht = α0 + α1
(
yt−1 −wI

(k)
t−1

)2
only affects the level of the series at the observation where it occurs.

Hotta and Tsay (2012) estimated w by means of the ML estimation method.
These authors showed that the ML estimate of w for a VO is given by

ŵVO = yk,

and that there are two ML estimates of w for a LO: the first one is ŵLO = yk and the
second one is ŵLO = yk − x̂k , where x̂k = is the square root of the positive solution
of the second order equation:

g(x) = α2
1x

2 + (2α0α1 + α2
1

(
α0 + α1y

2
k−1

))
x

+ (α2
0 + α0α1

(
α0 + α1y

2
k−1

)− α1y
2
k+1

(
α0 + α1y

2
k−1

))
,

provided that such a solution exists.
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In order to test for the presence of a VO or a LO, Hotta and Tsay (2012) propose
the use of the Lagrange multiplier (LM) test statistic that, for a VO, is defined as

LMVO
k = y2

k

α0 + α1y
2
k−1

,

while for a LO, it is given by

LMLO
k = LMVO

k

{
1+ α1hk

(
1

hk+1
− y2

k+1

h2
k+1

)}2(
1+ 2α2

1hk
y2
k

h2
k+1

)−1

.

Note that LMLO
k = LMVO

k if α1 = 0. Therefore, the two test statistics should not
differ substantially when α1 is close to 0. To detect multiple outliers, Hotta and
Tsay (2012) thus propose to compute the maximum LM statistics

LMVO
max = max

2≤t≤n
LMVO

k , LMLO
max = max

2≤t≤n
LMLO

k ,

for which it is easy to compute critical values via simulation. If both statistics are
significant, one may choose the outlier that gives the smaller p-value.

15.3.3 Outliers in INGARCH Models

Fokianos and Fried (2010) consider outliers in the integer-valued GARCH (IN-
GARCH) model given by

xt |Fx
t−1 ∼ Poisson(λt ),

λt = α0 +
p∑

j=1

αjλt−j +
q∑
i=1

βixt−i ,
(15.6)

for t ≥ 1, where λt is the Poisson intensity of the process xt , Fx
t−1 stands for the

σ -algebra generated by {xt−1, . . . , x1−q, λt−1, . . . , λ0}, α0 is an intercept, αj > 0,

for j = 1, . . . , p and βi > 0, for i = 1, . . . , q and
∑p

j=1 αj +
∑q

i=1 βi < 1 to get

covariance stationarity. Outliers in the INGARCH model (15.6) can be written as

yt |Fy

t−1 ∼ Poisson(κt ),

κt = α0 +
p∑

j=1

αjκt−j +
q∑
i=1

βiyt−i +w(1− δB)−1I
(k)
t ,

(15.7)

for t ≥ 1, where κt is the Poisson intensity of the process yt , Fy

t−1 stands for the
σ -algebra generated by {yt−1, . . . , y1−q, κt−1, . . . , κ0}, w is the size of the outlier,
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and 0≤ δ ≤ 1 is a parameter that controls the outlier effect. In particular, δ = 0 cor-
responds to an spiky outlier (SO) that influences the process from time k on, but to a
rapidly decaying extent provided that α1 is not close to unity, 0 < δ < 1 corresponds
to a transient shift (TS) that affects several consecutive observations although its ef-
fect becomes gradually smaller as time grows and, finally, δ = 1 corresponds to a
level shift (LS) that affects permanently the mean and the variance of the observed
series.

Fokianos and Fried (2010) propose to estimate the outlier effect w via conditional
maximum likelihood. Therefore, given the observed time series y1, . . . , yT , the log-
likelihood of the parameters of model (15.7), η = (α0, α1, . . . , αp,β1, . . . , βq,w)

′
conditional on Fy

0 is given, up to a constant, by

!(η)=
T∏

t=q+1

(
yt logκt (η)− κt (η)

)
(15.8)

with score function

∂l(η)

∂η
=

T∑
t=q+1

(
yt

κt (η)
− 1

)
∂κt (η)

∂η
.

In addition, the conditional information matrix for η is given by

G(η)=
T∑

t=q+1

Cov

[
∂l(η)

∂η

∣∣∣Fy

t−1

]
=

T∑
t=1

1

κt (η)

(
∂l(η)

∂η

)(
∂l(η)

∂η

)′
.

Consequently, ŵ is obtained from the ML estimate η̂ after maximizing the log-
likelihood function (15.8). In order to test for the presence of an outlier at t = k,
Fokianos and Fried (2010) propose to use the score test given by

Tk =�′G(α̃0, α̃1, . . . , α̃p, β̃1, . . . , β̃q ,0)−1�,

where

�= ∂l(α̃0, α̃1, . . . , α̃p, β̃1, . . . , β̃q ,0)

∂η
,

and (α̃0, α̃1, . . . , α̃p, β̃1, . . . , β̃q ,0)′ is the vector that contains the ML estimates of
the parameters of the model (15.6) and the value w = 0. Under the null hypothesis
of no outlier, Tk has an asymptotic χ2

1 distribution. To detect an outlier of a certain
type at an unknown time point, the idea is to obtain

T = max
q+1≤t≤T

Tt ,

and reject the null hypothesis of no outlier if T is large. The distribution of this
statistic can be calibrated using bootstrap. Finally, to detect the presence of several
outliers in a INGARCH time series, Fokianos and Fried (2010) proposed a proce-
dure similar to that used in Chen and Liu (1993a).
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15.4 Outliers in Multivariate Time Series Models

Outliers in multivariate time series has been much less analyzed than in the univari-
ate case. Multivariate outliers were introduced in Tsay et al. (2000). These authors
have also proposed a detection method based on individual and joint likelihood ra-
tio statistics. Alternatively, Galeano et al. (2006) used projection pursuit methods
to develop a procedure for detecting outliers. In particular, Galeano et al. (2006)
showed that testing for outliers in certain projection directions can be more power-
ful than testing the multivariate series directly. In view of these findings, an iterative
procedure to detect and handle multiple outliers based on a univariate search in
these optimal directions were proposed. The main advantage of this procedure is
that it can identify outliers without prespecifying a vector ARMA model for the
data. An alternative method based on linear combinations of the components of the
vector of time series can be found in Baragona and Battaglia (2007b) that considers
an independent component approach. Finally, Baragona and Battaglia (2007a) have
proposed a method to discover outliers in a dynamic factor model based on linear
transforms of the observed time series. In this section, we briefly review the main
findings in Tsay et al. (2000) and Galeano et al. (2006).

15.4.1 The Tsay, Peña and Pankratz Procedure

A r-dimensional vector time series Xt = (X1t , . . . ,Xrt )
′ follows a vector ARMA

(VARMA) model if

Φ(B)Xt =C+Θ(B)Et , t = 1, . . . , T , (15.9)

where Φ(B) = I − Φ1B − · · · − ΦpB
p and Θ(B) = I − Θ1B − · · · − ΘqB

q are
r × r matrix polynomials of finite degrees p and q , C is a r-dimensional con-
stant vector, and Et = (E1t , . . . ,Ert )

′ is a sequence of independent and identi-
cally distributed Gaussian random vectors with zero mean and positive-definite
covariance matrix Σ . The autoregressive representation of the VARMA model
in (15.9) is given by Π(B)Xt = CΠ + Et , where Φ(1)CΠ = C and Π(B) =
Θ(B)−1Φ(B)= I−∑∞i=1 ΠiB

i , while the moving-average representation of Xt is
given by Xt = CΨ + Ψ (B)Et , where Φ(1)CΨ = C and Φ(B)Ψ (B) =Θ(B) with
Ψ (B)= I+∑∞i=1 ΨiB

i .
Tsay et al. (2000) generalize four types of univariate outliers to the vector

case. Under the presence of a multivariate outlier, we observe a time series Y =
(Y ′1, . . . , Y ′T )′, where Yt = (Y1t , . . . , Yrt )

′, can be written as follows:

Yt =Xt +Λ(B)wI (k)t , (15.10)

where w= (w1, . . . ,wr)
′ is the size of the outlier and Xt follows a VARMA model.

The type of the outlier is defined by the matrix polynomial Λ(B): for a multi-
variate innovational outlier (MIO), Λ(B) = Ψ (B); for a multivariate additive out-
lier (MAO), Λ(B) = I; for a multivariate level shift (MLS), Λ(B) = (1 − B)−1I;
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and, finally, for a multivariate temporary (or transitory) change (MTC), Λ(B) =
(I− δIB)−1. In practice, an outlier may produce a complex effect, given by a linear
combination of the previously discussed pure effects. Furthermore, different com-
ponents of Xt may suffer different outlier effects. An example of this kind of mixed
effects can be found in Galeano et al. (2006).

Given the parameters of the VARMA model for Xt , the series of innovations are
defined by At =Π(B)Yt −CΠ and the relationship with the true innovations, Et ,
is given by

At = Et + Γ (B)wI (k)t ,

where Γ (B) = Π(B)Λ(B) = I −∑∞i=1 ΓiB
i . Now, the least squares estimate of

the size of an outlier of type i at time point k is given by

wi,k =−
(
n−k∑
j=0

Γ ′jΣ−1Γj

)−1(n−k∑
j=0

Γ ′jΣ−1Ak+j

)
,

where Γ0 = −I and i = MIO, MAO, MLS and MTC for subscripts, and has a
covariance matrix given by Σi,k = (

∑n−k
j=0 Γ

′
jΣ

−1Γj )
−1. The likelihood ratio test

statistic for testing for the presence of a multivariate outlier of type i at t = k is
Ji,k = w′i,kΣ

−1
i,k wi,k . Under the null hypothesis of no outlier, Ji,k has a χ2

r dis-

tribution. Tsay et al. (2000) also proposed a second statistic defined by Ci,k =
max{|wj,i,k|/√σj,i,k : 1≤ j ≤ r}, where wj,i,k is the j th element of wi,k and σj,i,k
is the j th element of the main diagonal of Σi,k , with the aim of look for outliers in
individual components of the vector of series.

In practice, the parameter matrices are then substituted by their estimates and the
following overall test statistics are defined:

Jmax(i, ki)= max
1≤t≤n

Ji,t , Cmax
(
i, k∗i
)= max

1≤t≤n
Ci,t ,

where ki and k∗i denote respectively the time points at which the maximum of the
joint test statistics and the maximum component statistics occur.

15.4.2 The Galeano, Peña and Tsay Procedure

Galeano et al. (2006) have proposed a method for detecting multivariate outliers in
time series without requiring initial specification of the multivariate model. This is
very important in these settings because model identification is quite complicated
in the presence of outliers. The method is based on univariate outlier detection ap-
plied to some useful projections of the vector time series. The basic idea is simple:
a multivariate outlier produces at least a univariate outlier in almost every projected
series, and by detecting the univariate outliers we can identify the multivariate ones.
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First, a non-zero linear combination of the components of the VARMA model in
(15.9) follows a univariate ARMA model. Second, when the observed series Yt is
affected by an outlier, as in (15.10), the projected series yt = v′Yt satisfies yt = xt +
v′Λ(B)wI (k)t . Specifically, if Yt has a MAO, the projected series is yt = xt +ωI

(k)
t ,

so that it has an additive outlier of size ω= v′w at point t = k provided that v′w 
= 0.
Similarly, the projected series of a vector process with a MLS of size w will have a
level shift with size ω= v′w at t = k. The same result also applies to MTC. A MIO
can produce several effects. In particular, a MIO can lead to a patch of consecutive
outliers with sizes v′w, v′Ψ1w, . . . ,v′ΨT−hw, starting at t = k. Assuming that k
is not close to T and because Ψj → 0, the size of the outlier in the patch tends
to zero. In the particular case that v′Ψiw = ψiv′w, for i = 1, . . . , T − k, then yt
has an innovational outlier at t = k with size β = v′w. However, if v′Ψiw = 0,
for i = 1, . . . , T − k, then yt has an additive outlier at t = k with size v′w, and if
v′Ψiw= v′w, for i = 0, . . . , T − k, then yt has a level shift at t = k with size β =
v′w. Therefore, the univariate series yt obtained by the projection can be affected
by an additive outlier, a patch of outliers or a level shift.

Galeano et al. (2006) have shown that it is possible to identify multivariate out-
liers better by applying univariate test statistics to optimal projections than by using
multivariate statistics on the original series. More precisely, it is possible to show
that, in the presence of a multivariate outlier, the directions that maximize or min-
imize the kurtosis coefficient of the projected series include the direction of the
outlier, that is, the direction that maximizes the ratio between the outlier size and
the variance of the projected observations. Therefore, Galeano et al. (2006) pro-
posed here a sequential procedure for outlier detection based on the directions that
minimize and maximize the kurtosis coefficient of the projections. The procedure
is divided into four steps: (1) obtain the optimal directions; (2) search for outliers
in the projected univariate time series; (3) remove the effect of all detected outliers
by using an approximated multivariate model; (4) iterate the previous steps applied
to the cleaned series until no more outliers are found. It is important to note that in
Step (2), the detection is carried out in two stages: first, MLS’s are identified; sec-
ond, MIO’s, MAO’s and MTC’s are found. This is done in order to avoid confusions
between multivariate innovational outliers and multivariate level shifts.

15.5 Conclusions

This chapter summarized outliers in both univariate and multivariate time series. Al-
though many work has been done, more research is still needed in order to analyze
outliers and unexpected events in time series. First, new effects in nonlinear time
series models can be considered. For instance, level shifts in bilinear and SETAR
models, transitory changes in GARCH models or additive outliers in INGARCH
models would be of interest. Second, as far as we know, outlier detection in mul-
tivariate nonlinear time series models have been not considered yet. For instance,
the extension of additive and volatility outliers to most of the available multivariate
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GARCH models is almost straightforward. Likewise, outliers in multivariate bilin-
ear and SETAR time series models is of interest. Finally, most of the existing liter-
ature on outlier detection focus on iterative testing procedures. Recently, Galeano
and Peña (2012) have proposed a method to detect additive outliers by means of
the use of a model selection criterion. The main advantage of the procedure is that
all the outliers are detected in a single step. Although the computational cost of the
procedure is high, the detection of outliers by means of model selection criteria is
a promising line of research. Finally, this chapter is closely related with those by
Barme–Delcroix (Chap. 3) who analyzes extreme events and Huskova (Chap. 11)
who analyzes robust change point analysis.
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