
Nearest-Neighbors Medians Clustering

Daniel Peña1, Júlia Viladomat2∗ and Ruben Zamar2

1Department of Statistics, Universidad Carlos III de Madrid, Spain

2Department of Statistics, UBC, Vancouver, Canada

Received 28 October 2010; revised 15 March 2012; accepted 7 April 2012
DOI:10.1002/sam.11149

Published online 3 July 2012 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: We propose a nonparametric cluster algorithm based on local medians. Each observation is substituted by its local
median and this new observation moves toward the peaks and away from the valleys of the distribution. The process is repeated
until each observation converges to a fixpoint. We obtain a partition of the sample based on the convergence points. Our
algorithm determines the number of clusters and the partition of the observations given the proportion α of neighbors. A fast
version of the algorithm where only a subset of the observations from the sample is processed is also proposed. A proof of the
convergence from each point to its closest fixpoint and the existence and uniqueness of a fixpoint in a neighborhood of each
mode is given for the univariate case. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 5: 349–362, 2012

Keywords: cluster analysis; local median; nearest neighbors; number of clusters

1. INTRODUCTION

Given a sample of p-dimensional observations drawn
from a mixture of g populations, cluster analysis partitions
the sample into homogeneous groups according to the
populations that generate them. Several cluster algorithms,
such as kmeans [1] or its robust version Partitioning
Around Medoids (PAM) [2], require the number of clusters
to be specified by the user. Estimation of the number of
clusters is one of the most difficult problems in cluster
analysis and several approaches have been proposed to deal
with this problem. One such approach is to obtain several
partitions of the data for different values of g and choose
the one that optimizes a given measure of the clusters
strength [3]. For instance, mclust [4] uses the bic criteria
to choose the number of clusters. A second strategy that
can be considered is the partition of the data into many
small clusters and merge some of them in a second stage
[5]. There are also approaches that extract one cluster at a
time [6] and others that try to detect modes or bumps [7].

Recently, a new strategy for the estimation of g has
appeared. The idea is to iteratively move the data points
toward the cluster centers and to use the number of different

Correspondence to: Júlia Viladomat
(juliavc@stanford.edu)

limiting points as an estimate for the number of clusters.
In this sense, gravitational clustering [8–11] assumes that
the data points are particles of unit mass with zero velocity
that move toward cluster centers as a result of gravitational
forces. Furthermore, mean-shift clustering [12–17] uses
kernel functions in density estimation to move data points
toward denser areas.

In this paper we also present an algorithm that moves
the observations toward their cluster centers, but using the
nearest-neighbors approach [18]. In particular, we benefit
from the robust properties of local medians and see that
they have the ability to move toward the peaks and away
from the valleys of the distribution. For each observation we
iteratively calculate local medians and see that the sequence
of medians converges to a neighborhood of a data mode.
We propose a clustering algorithm, attractors, that yields
a partition of the sample based on the resulting conver-
gence fixpoints. attractors is a modification of a similar
algorithm, clues, proposed by Wang et al. [19]. At each
iteration both algorithms identify the neighbors of the target
points. An important difference between the two procedures
is that in clues at each step all the observations are globally
updated toward the values of their respective local medians.
In attractors, on the other hand, we do not perform this
global update and so the neighbors are always points from
the original sample. The difference is essential in order to

© 2012 Wiley Periodicals, Inc.

350 Statistical Analysis and Data Mining, Vol. 5 (2012)

derive theoretical results because the repeated update of all
the points in clues makes this procedure much more com-
plex from mathematical and computational points of view.
Using the mathematical simplicity of attractors (com-
pared with clues) we prove the convergence of each point
to its closest fixpoint as well as the existence and unique-
ness of a fixpoint in the neighborhood of each mode, for
the univariate case (see details in Section 3). Our theoretical
results shed some light on—and yield some tools for—the
choice of the number of neighbors [nα], a key parameter
for our algorithm. Specifically, our results link α to the
size of the smallest cluster we wish to detect. We believe
that choosing α in this way is more intuitive than choos-
ing directly the number g of clusters, the approach taken by
many clustering algorithms (see Section 4). Another impor-
tant improvement over clues is that attractors allows for
a considerable gain in computational efficiency because we
can restrict attention to a subset of observations drastically
reducing the computational time. Section 5.1 addresses this
issue. Finally, unlike clues, attractors can be easily
parallelized.

The rest of the paper is organized as follows. In Section 2
we present the relationship between local medians and
cluster analysis. We derive some mathematical properties
for the one-dimensional case in Section 3. Section 4
proposes a method to determine the key parameter α based
on the theoretical results from Section 3. Section 5 presents
the algorithm and introduce a fast modified version. In
Sections 6 and 7 we study the performance of the algorithm
through real examples and numerical simulations. Finally,
we give our conclusions in Section 8. Our mathematical
results are all proved in the Appendix.

2. LOCAL MEDIANS AND CLUSTER ANALYSIS

Let X be a p-dimensional random vector with density
function f and support S.

DEFINITION 1: The α-nearest-neighbors median at x ∈
R

p is defined as gα(x) = (m1, . . . , mp)T, where mj is the
median of the conditional distribution Xj | X ∈ Bx , with
Bx being a ball around x such that P(X ∈ Bx) = α.

Several definitions of multivariate median can be found
in the literature. Here we use coordinate-wise median for
computational ease. Performance and computational issues
regarding other definitions of multivariate median are topics
of future research interest.

DEFINITION 2: A fixpoint of gα is any point x ∈ S

such that gα(x) = x.

−3 −2 −1 0 1 2 3

Fig. 1 The median (dotted lines) of the central point of an
interval (dashed lines) moves toward the denser areas. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

If x is a fixpoint, the local median of X at x is x. If
not, the local median has the property of moving toward
the peaks and away from the valleys of f , because it is
located at the denser region of Bx . Figure 1 illustrates this
main idea when Bx is an interval (p = 1).

We will show in the next section that if we iterate
this process defining xk+1 = gα(xk) for any starting value
x0 ∈ R

p, the sequence {xk} converges to a fixpoint of gα .
If we apply this iteration to each point in R

p, we obtain
a partition of R

p based on where the sequences of local
medians have converged to (fixpoints). This motivates the
following iteration which is the core of attractors, our
clustering algorithm described in Section 5.

The iteration: Let x1, . . . , xn be a sample from the
random vector X. For given 0 < α < 1 let m = [αn] be
the number of neighbors. For each data point, the algorithm
iterates as follows:

xi
k+1 = ĝα(xi

k),

starting from xi
0 = xi , and where ĝα(xi

k) = (m̂1, . . . , m̂p)T

is the m-nearest-neighbor median at xi
k , and m̂j is the

median of the j th component of x(1), . . . , x(m), the m

observations from the sample that minimize the Euclidean
distances ‖xi

k − xl‖, l = 1, . . . , n. The iteration stops when
xi

k+1 = xi
k for i = 1, . . . , n. This iteration yields a partition

of the sample into as many clusters as fixpoints.
Figure 2 illustrates the local medians for a mixture of

three normal distributions with means −4, 0 and 4 and
variance 1. In Fig. 2(a) we show the density function f and

Statistical Analysis and Data Mining DOI:10.1002/sam

Peña, Viladomat and Zamar: Median Cluster 351

−5 0 5

−8
−6

−4
−2

0
2

4

g(x)
density function

(a)

−5 0 5

−8
−6

−4
−2

0
2

4

g(x)
density function

(b)

Fig. 2 Function gα , ĝα and density function f for a mixture of three normal distributions with means μ1 = −4, μ2 = 0 and μ3 = 4.
(a) gα and f . (b) ĝα . [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

the local median function gα with α = 1/3. In Fig. 2(b) we
display the estimated function ĝα from a random sample of
size 100 drawn from the normal mixture distribution. The
black line corresponds to the identity function g(x) = x

and thus every x for which gα(x) = x, corresponds to a
fixpoint of gα(x). In this example, the function gα has
five fixpoints, three of them (attractors) correspond to the
three modes. Because the populations are symmetric, the
fixpoints coincide with the modes. The other two fixpoints
correspond to the two valleys of the mixture distribution
and attract no points. Observe that all points in (−∞, v1)

converge to μ1, the points in (v1, v2) converge to μ2 and
the ones in (v2,∞) converge to μ3, where v1 and v2 are the
two valleys. One can see that if we draw the sequence of
local medians for any given x, it will stop at one of the three
modes. For instance, the points in the extremes have already
converged after the first iteration (gα[(−∞, μ1)] = μ1 and
gα[(μ3,∞)] = μ3).

3. THEORETICAL RESULTS

The results in this section only apply to the univariate
case. Extension to the multivariate case is nontrivial
and may require a significant amount of original work.
Nonetheless, the guidance and practical conclusions derived
from this study of the univariate case are readily applicable
to the general case.

We will prove the existence and uniqueness of a
fixpoint near each mode and the convergence of each
point to its closest fixpoint. These two results guarantee

the identification of all the modes in a mixture of
distributions.

Let X be a random variable with distribution function F

and density function f with convex support S. Given
α ∈ [0, 1], the local median gα(x) of f at x ∈ R is the
conditional median defined by the following equations:

F(gα(x)) − F(x − dx) = α

2
(1)

where dx is such that

F(x + dx) − F(x − dx) = α. (2)

Substituting Eq. (2) in Eq. (1), gα(x) can also be
written as

gα(x) = F−1
[
F(x + dx) + F(x − dx)

2

]
.

Following Definition 2, if x is a fixpoint, the local
median of f at x is x, the center of the interval. In
Theorem 1 we prove that any density with convex support
has at least one point with this property.

In the extreme case α = 1, the local median of f is the
global median, for any x ∈ R. Therefore, the global median
is the unique fixpoint of gα(x) in this case. Naturally
this case is of no interest to us and will not be further
considered.

The following results are proved in the Appendix.

THEOREM 1: Let f be a density with convex support
S, for 0 < α < 1, the function gα has at least one fixpoint.

Statistical Analysis and Data Mining DOI:10.1002/sam

352 Statistical Analysis and Data Mining, Vol. 5 (2012)

Theorem 2 below shows that any x ∈ R moves toward
a fixpoint in the iteration xk+1 = gα(xk), with x0 = x.
Theorem 2 also shows where the sequence {xk} converges.
If x0 is located on a part of f with positive slope, the
sequence {xk} converges to the first fixpoint larger than x0.
Similarly, if x0 is located on a part of f with negative
slope, {xk} converges to the first fixpoint smaller than x0.
In summary, the sequence escalates the density function
toward the local mode.

THEOREM 2: Let f be a density with convex support
S. Consider the iteration

xk+1 = gα(xk).

Then, for any starting value x0 ∈ R, and for 0 < α <

1, the sequence {xk} converges to a fixpoint of gα . In
particular, if x0 < gα(x0), {xk} converges to the smallest
fixpoint greater than x0. If x0 > gα(x0), {xk} converges to
the greatest fixpoint smaller than x0.

The next theorem states that, if the distribution is
unimodal, the corresponding local median function gα has
only one fixpoint for any 0 < α < 1.

THEOREM 3: Let f with convex support S be a strictly
unimodal density, then, for 0 < α < 1, the function gα of
f has a unique fixpoint.

The following Corollaries shed light on the actual
location of the fixpoints. The smaller the value of α the
closer the fixpoint is to the corresponding mode.

COROLLARY 1: Let xm be the mode of f , then
|F(x∗) − F(xm)| ≤ α

2 , where x∗ is the fixpoint.

COROLLARY 2: If α → 0 then x∗ → xm.

DEFINITION 3: xm is a (δ1, δ2)-mode if it is a mode
and f is strictly unimodal in the interval [F−1(ym − δ1),

F−1(ym + δ2)], where ym = F(xm) and δ1, δ2 > 0.

Theorem 4 and its corollary are the main results in
this section: for small enough α, there exist a unique
fixpoint in the neighborhood of every mode of f . More
precisely, if f is strictly unimodal in an interval of
weight δ1 + δ2, for any α ≤ min(δ1, δ2) the identification
of the population that induces the mode is guaranteed. Any
x0 ∈ [

F−1(ym − δ1 + α/2), F−1(ym + δ2 − α/2)
]

will be
attracted by a fixpoint x∗, which assures the existence of
a mode in its proximity. Therefore, any population in f

characterized by a (δi, δj)-mode with α ≤ min(δi, δj) will
be found. Theorem 4, thus, gives some guidance for the
usage of our algorithm.

THEOREM 4: Let xm be a (δ1, δ2)-mode, then,
for any α ≤ min(δ1, δ2), there exists a fixpoint x∗ ∈(
F−1(ym − α/2), F−1(ym + α/2)

)
and it is the only fix-

point in the interval [F−1(ym − δ1 + α/2), F−1(ym + δ2 −
α/2)].

COROLLARY 3: Following Theorems 2 and 4, for any
starting value x0 ∈ [

F−1(ym − δ1 + α/2), F−1(ym + δ2 −
α/2)

]
, the sequence {xk} converges to x∗.

4. THE CHOICE OF α

In practice, α must be chosen by the user. In principle,
choosing α sufficiently small guarantees the identification
of all the clusters represented by modes, at the population
level (Theorem 4 proves this in the univariate setting).
However, for finite samples, small values of α could
result in spurious fixpoints. It may happen—as observed
in our numerical study—that in situations where x is not a
fixpoint, just by chance the same number of neighbors can
be found on both sides of every entry of x. This would cause
the iteration to prematurely stop. These unwanted fixpoints
are more likely to occur when α is too small. On the other
hand, if α is too large, some interesting clusters may go
undetected. Consequently, the choice of α is a trade-off.

Our approach is to set α so that any cluster that represents
at least a proportion q of the dataset is identified. Therefore,
one must decide a priori the size q of the smallest clusters
which we would like to detect. Setting α in this way, all
clusters of size larger than q should be detected. In other
words, using the notation in Theorem 4, we wish to uncover
(by identifying the corresponding fixpoint) any (δ1, δ2)-
mode representing a population of size q. In this context
q = δ1 + δ2, and so α has to satisfy the inequality

α ≤ q − max(δ1, δ2).

In practice, we generally do not know δ1 and δ2, and so
we suggest the following procedure:

1. If there is evidence that the clusters are approxi-
mately symmetric, set α = q/2.

2. If not, hoping that the clusters are not completely
left- or right-skewed, set α = q/3.

Suppose we wish to detect any cluster with minimal size
q. According to the results in Section 3, α should be chosen
smaller than the values given in Table 1. It should be noted
that these values (chosen so that α ≤ min(δ1, δ2)) are very
conservative. Good performances can still be obtained using
values of α below these bounds. For instance, in the case

Statistical Analysis and Data Mining DOI:10.1002/sam

Peña, Viladomat and Zamar: Median Cluster 353

Table 1. Maximum values of α to be able to uncover (δ1, δ2)-
modes representing a population of size q

q Symmetric Not symmetric

0.05 0.025 0.017
0.10 0.05 0.033
0.20 0.10 0.067
0.30 0.15 0.1
0.40 0.20 0.133

of Fig. 2, the size of each component of the mixture is
1/3, and the corresponding δ1 and δ2 are all equal to 1/6
for each (symmetric) population. To draw the graph, we
have used α = 1/3, which does not satisfy the requirements
of Table 1. In spite of that all three clusters were well
identified.

In view of the above comments, we recommend the
use of a relatively small value for α (i.e., between 5 and
20%). The algorithms attractors and Fast-attractors
described in the next section have a second phase to
eliminate unwanted fixpoints. Spurious fixpoints are not
difficult to identify because they attract just a handful of
observations. In this second phase, all fixpoints attracting
less than [α/3n] are eliminated, and the observations
converging to them are reassigned to the closest remaining
fixpoint. In addition, we consider a final step where we
merge any pair of clusters if their means are too close in
terms of the Mahalanobis distances.

In summary, we believe that choosing α having in mind
the size of the smallest cluster one wishes to detect is
rather natural and often more appealing than choosing the
actual number of clusters. For example, for a sample size
of 5000, one may wish to detect any cluster with at least
100 observations, but we may not know anything about
the number of clusters, which ranges from 1 to 5000.
Suppose, following this example, that there are six clusters
of different sizes and the two largest clusters are very close.
If we run the algorithm kmeans with four groups, for
example, it will likely merge these two large groups. On
the other hand, attractors with a small α would identify
both groups, and later on, during the merging phase it may
consider (but not force) the merging of these two groups.
Since the merging decision is based on the Mahalanobis
distance between the cluster means it is likely that these
two clusters will remain separated.

5. THE ATTRACTORS AND FAST-ATTRACTORS
ALGORITHMS

Let x1, . . . , xn be a sample. The following steps con-
stitute the attractors algorithm. Steps 1–3 are the main
steps. Steps 4 and 5 are needed to eliminate and merge
unwanted spurious clusters.

1. Choose α, the proportion of neighbors and set the
number of neighbors m equal to [αn] (here [] means
integer part).

2. For each observation xi , i = 1, . . . , n:

(a) Set xi
0 = xi and for k > 0.

(i) Calculate the local median at xi
k ,

xi
k = ĝα(xi

k−1).

(ii) If xi
k �= xi

k−1 set k = k + 1 and
return to (i). Otherwise set φ(xi) =
xi

k , the fixpoint to which the se-
quence {xi

k} has converged.

3. Let x∗
1 , . . . , x∗

g be the elements of
⋃n

i=1{φ(xi)}. For
each t = 1, . . . , g, set Gt = {xi | φ(xi) = x∗

t }. That
is, Gt is the set of observations attracted by the
fixpoint x∗

t .

4. For each j = 1, . . . , g, discard x∗
j if |Gj | < Glow,

where in general |A| equals the number of elements
in the set A and Glow = [α/3n]. In this case, update
the number of fixpoints, g, and reassign the elements
of Gj to the closest cluster Gt . To determine the clos-
est cluster Gt minimize the Mahalanobis distances
MD(xGj

, xGt , SGt) over t = 1, . . . , g. Replace x∗
t by

the weighted mean between x∗
j and x∗

t .

5. For each pair of clusters (j, t), j = 1, . . . , g, t > j ,
calculate the Mahalanobis distance MD(xGj

, xGt ,

Sj,t), where Sj,t is the covariance matrix for the
largest of the two clusters.
Sort the distances by ascending order and con-
sider the pair (j, t) with minimum distance. If
MD(xGj

, xGt , SGj
) < χ2

0.9, merge the groups Gj and
Gt , replace x∗

j by the weighted mean of x∗
j and x∗

t

and iterate 5. Otherwise stop.

The last step of the algorithm uses a measure of distance
between groups to decide whether to merge them or not.
For every pair of groups, it calculates the Mahalanobis
distance between their means, using the covariance matrix
of the largest one. After all the distances are calculated, it
merges the pair with minimum distance if that distance is
smaller than a chi-squared threshold. It then proceeds to
recalculate the distances, repeating the procedure until the
smallest distance between groups is large enough.

5.1. Improving the Computational Efficiency

attractors determines the neighbors and calculates
local medians several times for each observation until

Statistical Analysis and Data Mining DOI:10.1002/sam

354 Statistical Analysis and Data Mining, Vol. 5 (2012)

convergence. When n is large, this step can be time
consuming. Therefore, we propose a modified version
of the algorithm, Fast-attractors, where only a subset
of ‘sampled observations’ is considered. In this paper
the sampled observations are chosen randomly, but other
approaches could also be considered. A key issue is to
decide the size nsub for the set of sampled observations.
Let x∗ be a fixpoint attracting a proportion q > 0 of the
data points. Thus, the probability of a randomly chosen
data point to converge to x∗ is q. Therefore, the probability
of a consecutive sampled observations not converging to
x∗ is (1 − q)a . If a tends to ∞, (1 − q)a tends to 0. Hence
there exist N such that for any a > N the probability
(1 − q)a is arbitrarily small. Therefore, if after sampling
N consecutive observations none of them has converged to
a new fixpoint x∗ we can assume such x∗ does not exist.
We set γ = (1 − q)N to be very small and so determine
N = log(γ)/ log(1 − q), where q is the minimum size for
a fixpoint to be considered of interest, in the sense that
we do not mind missing fixpoints attracting less than a
proportion q of points (see Section 4). The procedure starts
sampling observations and marking to which fixpoint they
have converged using a counter to keep track of the number
of consecutive observations that converge to old fixpoints.
Whenever an observation converges to a new fixpoint (a
fixpoint appears for the first time) we set the counter to
zero. If we find N consecutive observations converging to
‘old’ fixpoints, that is, if the counter reaches the value
N , we stop sampling. Each non-sampled observation is
then assigned its closest fixpoint. Note that the number of
sampled observations will be nsub.

Depending on the values of q, γ and the sample size n,
we may encounter nsub to be larger than n. In this case, all
observations are treated and we experience no improvement
in computational efficiency. However, this only happens for
small datasets, where we do not have any problem to begin
with. On the other hand, when n is large, n − nsub also
tends to be large and the efficiency gains are significant.

Finally, an attractive by-product of Fast-attractors
is that, since not all observations are sampled, fewer
spurious fixpoints are found (observed in our numerical
experiments).

Fast-Attractors algorithm: Let x1, . . . , xn be a sample.
The following steps implement the fast version of the
algorithm.

1. Set γ to a very small value and choose q to be the
maximum size for a cluster. Choose α, the proportion
of neighbors. Set N = log(γ)

log(1−q)
, m = [αn] to be the

number of neighbors, s = 0 to be the counter and
i = 1. Order the n observations randomly.

2. While s < N and i ≤ n repeat the following:

(a) Let xi
0 = xi and k = 0.

(i) Calculate the local median at xi
k ,

xi
k+1 = ĝα(xi

k).

(ii) If xi
k �= xi

k+1 set k = k + 1 and
return to (i). Otherwise φ(xi) = xi

k

is the fixpoint where the sequence
{xi

k} converges.

(iii) If φ(xi) ∈ � then s = s + 1. Other-
wise set s = 0 and �= �

⋃{φ(xi)}.
Set i = i + 1.

3. Set nsub = i − 1 and let x∗
1 , . . . , x∗

g be the elements
of �. For each j = 1 : g, define the group Gj =
{xi | φ(xi) = x∗

j } as the set of observations attracted
by the fixpoint x∗

j , where i = 1 : nsub.

4. For each i = nsub + 1 : n, assign xi to the cluster
Gj , where j is such that the Euclidean distance
‖xi − xGj

‖ is minimized, for j = 1 : g.

5. Apply additional steps 4 and 5 of the previous
attractors algorithm.

Note that the algorithm does not need to choose q and
α independently, and therefore only requires one input
parameter.

6. EXAMPLES

We start by illustrating the behavior of attractors on
two well-known examples from the literature.

The Ruspini dataset—described by Ruspini [20]—is a
two-dimensional example consisting on 75 observations
divided into four well-separated clusters. Figure 3(a) shows
the true partition. Figure 3(b)–3(d) shows the first, second
and third iterations of attractors with α = 0.2. The
gray points represent the original observations and the
colored points represent the corresponding local medians.
Figure 3(d) shows that the 75 sequences have all converged
to four different fixpoints, perfectly identifying the four
clusters. Notice that in this case the additional steps of the
algorithm to avoid spurious fixpoints are not needed.

The Iris dataset—described by Fisher [21]—consists of
50 flowers from each of three species: Iris setosa, Iris
versicolor and Iris virginica. The four variables are the
length and the width of the sepal and petal, respectively.
One of the species is easily separable from the other
two, which tend to overlap and therefore are harder
to separate. Figure 4(a) displays the observations in the

Statistical Analysis and Data Mining DOI:10.1002/sam

Peña, Viladomat and Zamar: Median Cluster 355

0 20 40 60 80 100 120

0
50

10
0

15
0

(a)

0 20 40 60 80 100 120

0
50

10
0

15
0

(b)

0 20 40 60 80 100 120

0
50

10
0

15
0

(c)

0 20 40 60 80 100 120

0
50

10
0

15
0

(d)

Fig. 3 Ruspini data and the local medians (colored points) after three iterations of attractors with α = 0.2. (a) Original observations;
(b) 1st iteration: 27 different local medians; (c) 2nd iteration: 6 different local medians and (d) 3rd iteration: 4 fixpoints. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

space spanned by the variables ‘sepal-width’ and ‘petal-
length’. We apply attractors as well as the algorithms
mclust, clues, hierarchical, kmeans and meanshift
to these data (we give details on the packages used and
their specifications at the beginning of the next section
(Section 7)). attractors performs very well, with only
three flowers being misclassified (see Fig. 4(b)). mclust
assumes that the sample comes from a mixture of elliptical
distributions and estimates the parameters following a
model-based clustering approach. It repeats the process
for different number of clusters, choosing the number
that maximizes the bic criteria. Figure 4(c) shows the
mclust results. The algorithm does not perform well,
merging the overlapping clusters. clues obtains partitions
of the sample for different number of clusters and chooses
the best, according to a measure of clusters strength.

Notice that although mclust and clues are very different
clustering procedures, they have similar approaches for
determining the number of clusters. The implementation
of clues in R allows for the choice between the Silhouette
index [2] and the Calinski and Harabasz [22] index. From
our experiments, we have found that the Silhouette index
outperforms the CH-index most of the time. This behavior
is also observed with the Iris dataset, where 15 flowers are
misclassified using Silhouette, whereas the CH-index gives
the same results as mclust, merging the two overlapping
groups. hierarchical with complete linkage finds four
clusters instead of three; with single linkage finds two
clusters; with average linkage it finds the three groups
but misclassifies 14 flowers. meanshift finds two groups
(merging the two overlapping clusters). Finally, kmeans
identify the 3 clusters but misclassifies 16 observations.

Statistical Analysis and Data Mining DOI:10.1002/sam

356 Statistical Analysis and Data Mining, Vol. 5 (2012)

2.0 2.5 3.0 3.5 4.0

1
2

3
4

5
6

7

1
2

3
4

5
6

7

1
2

3
4

5
6

7

(a)

2.0 2.5 3.0 3.5 4.0
(b)

2.0 2.5 3.0 3.5 4.0

(c)

Fig. 4 Iris data in the space spanned by the variables ‘sepal-width’ and ‘petal-length’. Results obtained by mclust and attractors
(α = 0.1). (a) True clusters, (b) attractors and (c) mclust. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Finally, we use the simulated data in Fig. 5 (n = 1000)
to illustrate the behavior of Fast-attractors. attractors
with α = 0.10 returns no misclassification error. On the
other hand, Fast-attractors with q = 0.1 and γ =
0.001, misclassifies 14 observations. The algorithm samples
only nsub = 160 observations, 1/6 of the whole sample,
considerably reducing the computational time. In this case,
since q = 0.1 and γ = 0.001, the stop-sampling parameter
is N = 66 (required number of consecutive observations
not revealing a new fixpoint).

7. NUMERICAL RESULTS

In this section we investigate the properties of attrac-
tors using Monte Carlo simulations. We run 100 replica-
tions for each sampling situation and consider two main

settings. First we generate samples from mixtures of g

multivariate normal distributions (g = 2, 4, 8) with differ-
ent means and scatter matrices. The considered dimensions
are p = 4, 8, 15. The number of observations in each clus-
ter is determined randomly, but ensuring that the total
sample size is equal to n = 100p and that each cluster
contains a minimum of p + 1 observations. The means for
the normal distributions are chosen at random as values
from a multivariate normal distribution with mean zero
and covariance matrix f

√
pI . The factor f is selected

so that the probability of overlapping between groups is
roughly equal to 1%, see Table 1 in ref. 23. The covariance
matrices are different for each cluster and randomly gener-
ated using the formula S = UDUT, where U is a random
orthogonal matrix and D is a diagonal matrix, its diago-
nal elements are independent uniform random variables on
[10−3, 5

√
p].

Statistical Analysis and Data Mining DOI:10.1002/sam

Peña, Viladomat and Zamar: Median Cluster 357

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

Fig. 5 Partition of the dataset using fast-attractors algorithm
with α = 0.1. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

We also consider mixtures of non-normal distributions.
In this case, the clusters are generated using independent
Student’s-t random variables with 2 degrees of freedom.
Each variable is multiplied by the factor 2f/

√
p. See

ref. 23 for details on the scaling factor f . The clusters
now are non-elliptical and star shaped. The cluster sizes
and centroids are randomly selected, as in the normal case.

We compare the following clustering algorithms:

• attractors, with α = 0.05. We also consider other
values of α (see below) but α = 0.05 has consistently
given the best results in our simulations.

• mclust, implemented by the R-package mclust.

• clues, implemented by the R-package clues [27].

• hierarchical, hierarchical agglomerative clustering,
implemented by the R-package hclust.

• kmeans, implemented by the R-package kmeans.

• meanshift, moves data points toward denser areas
in the dataset(such as clues and attractors).
Implemented by the R-package Local Principal Curve
Methods (LPCM).

• kurtosis, which uses projections that optimize the
kurtosis coefficient to identify the clusters [23]). We
use the Matlab implementation provided by the
authors.

As implemented in clues, the algorithm clues can use
the silhouette index [2] or the Calinski and Harabasz

[22] index to determine the final number of clusters. We
report the results using both procedures. Also, meanshift
implementation has a built-in function (select.self.coverage)
to select the kernel bandwidth for its density estimator. This
function returns, for the given data, the best option for the
bandwidth. Details are found in the study by Einbeck [24].
On the other hand, hierarchical and kmeans need
the number of clusters k to be specified by the user.
Hence we apply the algorithms for different values of
k, ranging from 2 to 14, and use the Calinski and
Harabasz [22] index to decide the number of clusters.
Milligan and Cooper [25] compare several measures of
clusters strength and conclude that the best performance
is obtained by the Calinski and Harabasz [22] index, which
is defined as [tr(B)(n − k)]/[tr(W)(k − 1)], where B and
W are the between and pooled within cluster sum of
squares. In addition to that, hierarchical requires the
choice of a dissimilarity measure. We report the results
for the three most commonly used measures: single,
complete and average linkage. Finally, we run mclust for
several number of clusters as well (1–14) and the Mclust
function itself chooses the one that maximizes the bic
criteria.

We wish to assess the performance of the different
methods regarding (i) their ability to estimate the number of
clusters and (ii) their ability to find the clusters themselves
(clusters strength). We use the Hubert and Arabie’s [26]
adjusted Rand index to measure the clusters strength, as
suggested by a Referee. Similar conclusions are achieved
using the percentage of misclassified observations. The
adjusted Rand index ranges between 0 and 1, with 1
corresponding to a perfect match between the estimated and
true partitions. We also report the percentage of samples
for which the estimated and the true number of clusters
coincide.

Table 2 gives our results for ‘clusters strength’ and
Table 3 gives our results for ‘number of clusters’. Each
entry in these tables is an average over 100 replications.
Looking at Table 2, notice that attractors performs
very well under elliptical and non-elliptical distributions,
showing robustness against different cluster shapes. mclust
does very well in the normal case—as expected because
mclust was designed to estimate mixtures of elliptical
distributions. However, mclust’s performance deteriorates
in the Student’s-t case (also as expected). hierarchical,
meanshift and kurtosis perform very well in the normal
mixture case. For mixtures of Student’s-t distributions
their performance considerably deteriorates, especially for
large p. The results for kmeans and clues are relatively
weak when compared with the top performers in the
normal case. In the Student’s-t case they share the second
best performance after attractors. Similarly, kurtosis
performs very well in the normal case but not so well

Statistical Analysis and Data Mining DOI:10.1002/sam

358 Statistical Analysis and Data Mining, Vol. 5 (2012)

Table 2. Hubert and Arabie adjusted Rand index.

p = 4 p = 8 p = 15

Normal mixtures g = 2 g = 4 g = 8 g = 2 g = 4 g = 8 g = 2 g = 4 g = 8

attractors 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99
mclust 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
kmeans 1.00 0.75 0.76 1.00 0.77 0.73 1.00 0.73 0.73
HCaverage 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
HCcomplete 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
HCsingle 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
meanshift 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
cluesCH 0.72 0.80 0.79 0.78 0.81 0.79 0.77 0.84 0.77
cluesSilhouette 0.71 0.78 0.78 0.77 0.84 0.85 0.77 0.86 0.85
kurtosis 0.93 0.96 0.97 0.94 0.98 0.98 0.96 0.98 0.99

Student’s-t mixtures g = 2 g = 4 g = 8 g = 2 g = 4 g = 8 g = 2 g = 4 g = 8

attractors 0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.98 0.98
mclust 0.20 0.37 0.49 0.16 0.34 0.44 0.13 0.32 0.43
kmeans 0.97 0.81 0.84 0.92 0.86 0.87 0.93 0.84 0.89
HCaverage 0.97 0.95 0.96 0.90 0.91 0.88 0.04 0.18 0.15
HCcomplete 0.97 0.95 0.97 0.92 0.94 0.95 0.70 0.81 0.70
HCsingle 0.97 0.91 0.91 0.79 0.82 0.69 0.05 0.13 0.06
meanshift 0.92 0.85 0.89 0.85 0.82 0.86 0.50 0.45 0.39
cluesCH 0.74 0.78 0.78 0.76 0.82 0.85 0.73 0.83 0.82
cluesSilhouette 0.74 0.82 0.82 0.75 0.84 0.87 0.72 0.84 0.87
Kurtosis 0.57 0.74 0.83 0.47 0.65 0.75 0.40 0.58 0.65

Table 3. Percentage of times the estimated and true number of cluster coincide.

p = 4 p = 8 p = 15

Normal mixtures g = 2 g = 4 g = 8 g = 2 g = 4 g = 8 g = 2 g = 4 g = 8

attractors 100 91 59 99 91 54 98 92 52
mclust 99 99 95 98 97 99 97 98 99
kmeans 100 39 13 100 40 9 100 34 5
HCaverage 100 99 98 100 100 100 100 100 100
HCcomplete 100 99 98 100 100 100 100 100 100
HCsingle 100 99 98 100 100 100 100 100 100
meanshift 100 98 91 100 100 100 100 100 100
cluesCH 65 24 17 70 27 10 72 30 15
cluesSilhouette 75 19 7 76 20 8 78 31 7

Student’s-t mixtures g = 2 g = 4 g = 8 g = 2 g = 4 g = 8 g = 2 g = 4 g = 8

attractors 100 92 60 99 91 60 100 82 57
mclust 0 0 0 0 0 1 0 0 2
kmeans 85 18 9 77 37 8 69 28 10
HCaverage 42 15 15 9 5 1 80 1 0
HCcomplete 53 22 14 20 8 5 20 6 0
HCsingle 29 11 9 19 2 2 76 1 2
meanshift 15 21 14 2 9 2 1 7 1
cluesCH 67 24 15 70 29 15 62 27 15
cluesSilhouette 73 17 7 76 25 8 72 29 13

in the Student’s-t case. The results for clues are stable
but somewhat weaker, with misclassification rates varying
between 9 and 18% for all the considered cases.

Table 3 gives the percentage of samples (replicates)
where the estimated and true number of clusters coincide.

The results are consistent with those of Table 2, with all
methods, except for kmeans and clues doing very well
for the normal case but rather poorly in the non-elliptical
case. We notice that when g is large, attractors has
more difficulty finding the correct number of clusters.

Statistical Analysis and Data Mining DOI:10.1002/sam

Peña, Viladomat and Zamar: Median Cluster 359

Theorem 4 linking the value of α to the size of the smallest
detectable cluster suggests that attractors should be able
to detect clusters with more than 10% of the datapoints.
When the mixture has 8 components, the weight of each
component on average is 12.5% but since the actual number
of observations in each cluster is determined randomly
some clusters might contain less than 10% of the data. On
the other hand, the average adjusted Rand indexes shown in
Table 2 are not affected by this, since the missed clusters are
small in size and have little influence on the performance
measure.

An important observation is that all the methods
included in our simulation study are considerably more
computationally intensive than attractors because they
must evaluate several partitions to find the optimal number
of clusters (neighbors, in the case of meanshift).

Finally, to study the sensitivity of attractors to the
choice of α we run our algorithm with four different values
of α: 0.05, 0.1, 0.2 and 0.3. The results are displayed in
Table 4. The performance is uniformly best for α = 0.05
and quite stable in the range 0.05 ≤ α ≤ 0.10. But it
considerably deteriorates for larger values of α.

8. CONCLUSIONS

In summary, attractors is a modification of clues that
provides a robust, computationally efficient and scalable
approach to clustering when the number of groups is
unknown. Precisely,

1. attractors is robust because it does not make any
assumptions regarding the cluster shapes and uses
robust coordinate-wise medians to move the data
points to denser areas in the dataset.

2. attractors is mathematically simple and computa-
tionally efficient because it does not update all the

points at each iteration. Moreover, since attrac-
tors does not estimate the number of clusters, it
has considerable computational advantage over other
clustering methods such as kmeans, mclust hier-
archical and meanshift clustering, which must be
run for several cluster sizes to select the ‘optimal’
one.

3. attractors is scalable with respect to the sample
size because it has a fast option, Fast-attractors,
that samples a relatively small fraction of the dataset.
attractors is also scalable with respect to the
data dimension because coordinate-wise medians are
computationally linear in p.

The main challenges facing attractors are the selec-
tion of the appropriate neighborhood size α and the
appearance of spurious fixpoints in some applications.
Specifically,

1. attractors does not estimate the number of clus-
ters. Instead, it is aimed at finding all the clusters
larger than a certain threshold (i.e., clusters repre-
senting at least 5% of the data). This is achieved,
in principle, by setting an appropriate value for the
neighborhood size α, which is attractors only
input parameter. We have some partial theoretical
results to guide the choice of this key parameter. On
the basis of our results and experimental experience,
we recommend to use α = 0.05, as a practical rule
of thumb. But this issue deserves further study and
will be the topic of future research.

2. The main challenge facing attractors is the
appearance of spurious fixpoints. We give a partial
solution to this problem by merging small and close
clusters (steps 4 and 5 in our algorithm). This point
also deserves further research.

Table 4. Hubert and Arabie adjusted Rand index for different values of α.

p = 4 p = 8 p = 15

Normal mixtures g = 2 g = 4 g = 8 g = 2 g = 4 g = 8 g = 2 g = 4 g = 8

α = 0.05 1 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99
α = 0.1 0.98 0.98 0.95 0.95 0.99 0.93 0.93 0.99 0.94
α = 0.2 0.93 0.90 0.51 0.94 0.91 0.53 0.87 0.88 0.50
α = 0.3 0.85 0.67 0.28 0.91 0.66 0.30 0.80 0.62 0.23

Student’s-t mixtures g = 2 g = 4 g = 8 g = 2 g = 4 g = 8 g = 2 g = 4 g = 8

α = 0.05 0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.98 0.98
α = 0.1 0.98 0.97 0.92 0.97 0.98 0.92 0.97 0.97 0.90
α = 0.2 0.86 0.90 0.45 0.92 0.87 0.34 0.92 0.83 0.16
α = 0.3 0.79 0.66 0.24 0.81 0.57 0.13 0.74 0.47 0.02

Statistical Analysis and Data Mining DOI:10.1002/sam

360 Statistical Analysis and Data Mining, Vol. 5 (2012)

APPENDIX

PROOF OF THEOREM 1

Proof: From Eq. (1) we have

F(gα(x)) = α

2
+ F(x − dx) ≥ α

2

Similarly, from Eqs. (1) and (2)

F(gα(x)) = F(x + dx) − α

2
≤ 1 − α

2

Thus, gα is bounded by

F−1
(α

2

)
≤ gα(x) ≤ F−1

(
1 − α

2

)
. (A.1)

Therefore,

gα(x) > x, for x < F−1
(α

2

)

and gα(x) < x, for x > F−1
(

1 − α

2

)

Since F and F−1 are continuous, gα is continuous and thus there exists
an x∗ ∈ (F−1(α

2), F−1(1 − α
2)) such that gα(x∗) = x∗. �

PROOF OF THEOREM 2

Proof: In order to prove that gα is non-decreasing we want to show that
gα(x) ≥ gα(y) if x > y. Due to the monotonicity of F−1, it is sufficient
to prove that F(x + dx) ≥ F(y + dy) and F(x − dx) ≥ F(y − dy). Again,
due to the monotonicity of F , it is enough to show

x + dx ≥ y + dy

x − dx ≥ y − dy.
(A.2)

Let us suppose the contrary, x + dx < y + dy , then dx < dy and so
x − dx < y − dy . Therefore

α = F(x + dx) − F(x − dx) < F(y + dy) − F(y − dy) = α, (A.3)

which is a contradiction. The proof for the second part of Eq. (A.2) is
analogous. The inequality in Eq. (A.3) is strict because it can only be
equal if both F(x + dx) = F(y + dy) and F(x − dx) = F(y − dy), which
can happen if the four points are not in S, and that is only possible for
the excluded case α = 1.
Consider first x0 < gα(x0) = x1, then, since gα is non-decreasing,
gα(x0) ≤ gα(x1). Thus,

x0 < gα(x0) = x1 ≤ gα(x1) = x2 ≤ . . . ≤ gα(xk−1) = xk ≤ . . .

since the sequence {xk} is non-decreasing and bounded (see (A.1)), there
exists x∗ such that limk→∞ xk = x∗. Moreover, x∗ is a fixpoint:

x∗ = lim
k→∞

xk+1 = lim
k→∞

gα(xk) = gα(lim
k→∞

xk) = gα(x∗)

Also, for x ∈ (xk, xk+1), gα(x) ≥ gα(xk) = xk+1 > x, which means that
there are no fixpoints in (xk, xk+1). Therefore the fixpoint x∗ is the smallest
fixpoint greater than x0.

Analogously, if x0 > gα(x0), {xk} converges to the greatest fixpoint
smaller than x0.
If x0 = gα(x0), x0 is already a fixpoint. �

PROOF OF THEOREM 3

Proof: In Theorem 1 we proved the existence of at least one fix-
point, for any f . In this proof we deal with its uniqueness for f

unimodal.
Suppose there exist two fixpoints x1, x2 ∈ R such that x1 < x2. Assume
that, without loss of generality, f (x1) < f (x2). Otherwise consider the
random variable Y = −X with density function fY (x) = f (−x) instead.
Let d1 and d2 be such that F(x1 + d1) − F(x1) = F(x1) − F(x1 − d1) =
F(x2 + d2) − F(x2) = F(x2) − F(x2 − d2) = α

2 .
Note that x1 + d1 < x2 + d2, otherwise (x2, x2 + d2) ⊂ (x1, x1 + d1) and,
since the integrals of f (x) on these intervals are α

2 , it is a contradiction
because S is a convex support.
When f is a unimodal density

f (x) > min{f (a), f (b)}, for any a < x < b. (A.4)

The following results hold too,

f (x) < f (x1), for any x < x1 (A.5)

f (x) > f (x1), for any x ∈ (x1, x2) (A.6)

the expression (A.6) is due to (A.4).
Observe that

f (x1 + d1) < f (x1). (A.7)

Indeed, since

α/2 =
∫ x1

x1−d1

f (x)dx < d1f (x1),

because of (A.5), and

α/2 =
∫ x1+d1

x1

f (x)dx > d1 min{f (x1), f (x1 + d1)},

using Eq. (A.4), and we obtain that min{f (x1), f (x1 + d1)} < f (x1)

which leads to (A.7).
This result implies that x2 < x1 + d1, otherwise x1 < x1 + d1 < x2, and
we know that f (x2) > f (x1) > f (x1 + d1), which contradicts (A.4).
Therefore, we established the following order

x1 < x2 < x1 + d1 < x2 + d2.

We will see now that d1 > d2. In effect,

α/2 =
∫ x1

x1−d1

f (x)dx =
∫ x2

x2−d2

f (x)dx,

and the values of f (x) in the second integral are larger than in the first,
because the expressions (A.5) and (A.6) hold, so the interval of integration
should be shorter. Thus, the interval (x+

1 , x+
2), where x+

1 = x1 + d1 and
x+

2 = x2 + d2, is shorter than (x1, x2) because x+
2 − x+

1 = (x2 − x1) −
(d1 − d2) < x2 − x1.

Statistical Analysis and Data Mining DOI:10.1002/sam

Peña, Viladomat and Zamar: Median Cluster 361

Finally,

F(x2) − F(x1) > (x2 − x1)f (x1) > (x+
2 − x+

1)f (x1)

> (x+
2 − x+

1) max
x∈(x

+
1 ,x

+
2)

f (x) > F(x+
2) − F(x+

1).

The first inequality is due to Eq. (A.6), the second due to d1 > d2, and
the third inequality is because f (x1) > max

x∈(x
+
1 ,x

+
2)

f (x), which is true since

(A.7) and the fact that f is strictly decreasing after x+
1 because the mode

of f is in (x1, x
+
1).

This result leads to a contradiction because F(x2) − F(x1) = F(x+
1) −

F(x1) − (F (x+
1) − F(x2)) = α/2 − (F (x+

1) − F(x2)) = F(x+
2) − F(x2)

− (F (x+
1) − F(x2)) = F(x+

2) − F(x+
1), therefore x1 = x2 and we have

shown that it is not possible to have two distinct fixpoints x1 and x2.
Therefore, for any unimodal distribution, the function gα has one and
only one fixpoint (the existence was already proved in Theorem 1). �

PROOF OF COROLLARY 1

Proof: Since x∗ is a fixpoint, dx∗ is such that

F(x∗ + dx∗) − F(x∗) = F(x∗) − F(x∗ − dx∗) = α

2
(A.8)

Then, xm must be in (x∗ − dx∗ , x∗ + dx∗), otherwise the density is strictly
monotonous and the two integrals in Eq. (A.8) can not be equal.
Therefore, |F(x∗) − F(xm)| ≤ α

2 . �

PROOF OF COROLLARY 2

Proof: From the previous proof,

|x∗
α − xm| < dx∗ = F

(
x∗

α + α

2

)
− F

(
x∗

α

)
.

Since F is continuous, dx∗ → 0 as α → 0. Therefore |x∗
α − xm| → 0 as

well. �

PROOF OF THEOREM 4

Proof: In order to prove the existence of a fixpoint in the interval(
F−1(ym − α

2), F−1(ym + α
2)

)
, we define

δ−
x = x − F−1

(
F(x) − α

2

)

δ+
x = F−1

(
F(x) + α

2

)
− x

which implies that F(x + δ+
x) − F(x) = F(x) − F(x − δ−

x) = α
2 . If x is

a fixpoint, then δ−
x = δ+

x .
Let xl = F−1(ym − α

2) be on the left of the mode, then δ−
xl

> δ+
xl

because f increases in
(
F−1(ym − δ1), xm

)
. Let also xr = F−1(ym +

α
2), on the right of the mode, then δ−

xr
< δ+

xr
because f decreases

in
(
xm, F−1(ym + δ2)

)
. Note that δ−

xl
and δ+

xr
are contained in[

F−1(ym − δ1), F
−1(ym + δ2)

]
, so that proper monotonicity is in place.

Therefore, since δ+
x − δ−

x is a continuous function of x, because F

and F−1 are continuous in
[
F−1(ym − α

2), F−1(ym + α
2)

]
, there exist an

x∗ ∈ (
F−1(ym − α

2), F−1(ym + α
2)

)
such that δ+

x∗ = δ−
x∗ , which implies

that x∗ is a fixpoint.
Regarding the uniqueness of the fixpoint in

[
F−1(ym − δ1 + α

2), F−1(ym +
δ2 − α

2)
]
, we refer to the proof of Theorem 3. However, we should men-

tion a number of things that changed now. Since we are proving the
uniqueness of the fixpoint on a finite interval, we start assuming that x1 and
x2 are two different fixpoints in

[
F−1(ym − δ1 + α

2), F−1(ym + δ2 − α
2)

]
.

Also, inequalities in Eqs. (A.4) and (A.5) should be restricted to the inter-
val of interest, so that f (x) > min{f (a), f (b)}, for any F−1(ym − δ1) ≤
a < x < b ≤ F−1(ym + δ2), and f (x) < f (x1), for any x ∈ [F−1(ym −
δ1), x1). The rest of the proof is exactly the same. We can conclude
now that the unique fixpoint in [F−1(ym − δ1 + α

2), F−1(ym + δ2 − α
2)]

is located in
(
F−1(ym − α

2), F−1(ym + α
2)

)
. �

REFERENCES

[1] J. A. Hartigan and M. A. Wong, A k-means clustering
algorithm, J R Stat Soc [Ser C] 28 (1979), 100–108.

[2] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data:
An Introduction to Cluster Analysis, New York, John Wiley,
1990.

[3] R. Tibshirani, G. Walther, and T. Hastie, Estimating the
number of clusters in a data set via the gap statistic, J R
Stat Soc [Ser B] 63 (2001), 411–423.

[4] C. Fraley and A. E. Raftery, Mclust: Software for model-
based cluster analysis, J Classif 16 (1999), 297–306.

[5] H. Frigui and R. Krishnapuram, A robust competitive
clustering algorithm with applications in computer vision,
IEEE Trans Pattern Anal Mach Intell 21 (1999), 450–465.

[6] X. Zhung, Y. Huang, K. Palaniappan, and J. S. Lee, Gaus-
sian mixture modelling, decomposition and applications,
IEEE Trans Signal Process 5 (1996), 1293–1302.

[7] M. Y. Cheng and P. Hall, Calibrating the excess mass
and dip tests of modality, J R Stat Soc [Ser B] 60 (1998),
579–589.

[8] W. E. Wright, Gravitational clustering, Pattern Recognit 9
(1977), 151–166.

[9] S. Kundu, Gravitational clustering: a new approach based
on the spatial distribution of the points, Pattern Recognit 32
(1999), 1149–1160.

[10] Y. Sato, An autonomous clustering technique, In Data
Analysis, Classification, and Related Methods, A. L. H.
Kiers, J. P. Rasson, P. J. E. Groenen, and M. Schader,
eds. Berlin, Springer, 2000.

[11] J. H. Wang and J. D. Rau, VQ-agglomeration: a novel
approach to clustering, IEE Proc Vis Image Signal Process
148 (2001), 36–44.

[12] K. Fukunaga and L. D. Hostetler, The estimation of the
gradient of a density function, with applications in pattern
recognition, IEEE Trans Inform Theory 21 (1975), 32–40.

[13] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE
Trans Pattern Anal Mach Intell 17 (1995), 790–799.

[14] D. Comaniciu and P. Meer, Mean shift analysis and
applications, In Proceedings of the Seventh International
Conference on Computer Vision, 1999, 1197–1203.

[15] D. Comaniciu and P. Meer, Real-time tracking of non-rigid
objects using mean shift, IEEE Conf Comput Vis Pattern
Recognit 2 (2000), 142–149.

[16] D. Comaniciu and P. Meer, The variable bandwidth mean
shift and data-driven scale selection, Proc 8th Int Conf
Comput Vis 1 (2001), 438–445.

Statistical Analysis and Data Mining DOI:10.1002/sam

362 Statistical Analysis and Data Mining, Vol. 5 (2012)

[17] D. Comaniciu and P. Meer, Mean shift: a robust approach
toward feature space analysis, IEEE Trans Pattern Anal
Mach Intell 24 (2002), 603–619.

[18] Y. P. Mack and M. Rosenblatt, Multivariate k-nearest
neighbour density estimates, J Multivariate Anal 9 (1979),
1–15.

[19] X. Wang, W. Qiu, and R. Zamar, CLUES: A non-parametric
clustering method based on local shrinking, Comput Stat
Data Anal 52 (2007), 286–298.

[20] E. H. Ruspini, Numerical methods for fuzzy clustering, Inf
Sci 2 (1970), 319–350.

[21] R. A. Fisher, The use of multiple measurements in
taxonomic problems, Ann Eugenic 7 (1936), 179–188.

[22] R. B. Calinski and J. Harabasz, A dendrite method for
cluster analysis, Comm Stat 3 (1974), 1–27.

[23] D. Peña and F. J. Prieto, Cluster identification using
projections, J Am Stat Assoc 96 (2001), 1433–1445.

[24] J. Einbeck, Bandwidth selection for mean-shift based
unsupervised learning techniques: a unified approach via
self-coverage, J Pattern Recognit Res 2 (2011), 175–192.

[25] G. W. Milligan and M. C. Cooper, An examination of
procedures for determining the number of clusters in a
dataset, Psychometrika 50 (1985), 159–179.

[26] L. Hubert and P. Arabie, Comparing partitions, J Classif 2
(1985), 193–218.

[27] F. Chang, W. Qiu, R. Zamar, R. Lazarus, and X. Wang,
clues: an R package for nonparametric clustering based on
local shrinking, J Stat Softw 33 (2010), 1–16.

Statistical Analysis and Data Mining DOI:10.1002/sam

Copyright of Statistical Analysis & Data Mining is the property of Wiley-Blackwell and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

