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ARTICLE INFO ABSTRACT

Keywords: We propose a new conditionally heteroskedastic factor model, the GICA-GARCH
IcA model, which combines independent component analysis (ICA) and multivariate GARCH
Multivariate GARCH

(MGARCH) models. This model assumes that the data are generated by a set of underlying
independent components (ICs) that capture the co-movements among the observations,
which are assumed to be conditionally heteroskedastic. The GICA-GARCH model separates
the estimation of the ICs from their fitting with a univariate ARMA-GARCH model. Here,
we will use two ICA approaches to find the ICs: the first estimates the components,
maximizing their non-Gaussianity, while the second exploits the temporal structure of the
data. After estimating and identifying the common ICs, we fit a univariate GARCH model
to each of them in order to estimate their univariate conditional variances. The GICA-
GARCH model then provides a new framework for modelling the multivariate conditional
heteroskedasticity in which we can explain and forecast the conditional covariances of the
observations by modelling the univariate conditional variances of a few common ICs. We
report some simulation experiments to show the ability of ICA to discover leading factors
in a multivariate vector of financial data. Finally, we present an empirical application to the
Madrid stock market, where we evaluate the forecasting performances of the GICA-GARCH
and two additional factor GARCH models: the orthogonal GARCH and the conditionally
uncorrelated components GARCH.
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Factor models
Forecasting volatility

1. Introduction multivariate modelling approach is required. Multivari-

ate GARCH (MGARCH) models should be able to ex-

Since Engle (1982) introduced the ARCH model and
Bollerslev (1986) generalized it to the GARCH represen-
tation, the interest in modelling volatilities has grown
considerably. In multivariate time series, researchers are
interested in understanding not only the co-movements
of the volatilities of financial assets, but also the co-
movements of financial returns. For these purposes, a
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plain the structure of the covariance matrix of large
financial datasets, and also represent the dynamics of
their conditional variances and covariances. Depending on
the parametrization of the conditional covariance matrix,
different specifications for MGARCH models have been
proposed in the literature (see for example the survey
by Bauwens, Laurent, & Rombouts, 2006). Two popular
MGARCH specifications are the VEC model (Bollerslev, En-
gle, & Wooldridge, 1988), which is an extension of the uni-
variate GARCH model (see Engle, Granger, & Kraft, 1984, for
an ARCH version), and the BEKK model (Engle & Kroner,
1995), which can be seen as a restricted version of the VEC
model. However, the number of parameters requiring es-
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timation in most of these developments can be very large,
and the restrictions for guaranteeing the positive definite-
ness of the conditional covariance matrix are difficult to
implement.

Factor models are an alternative for achieving dimen-
sionality reduction in large datasets. They are based on the
idea of the existence of a few underlying components that
are the driving forces for large datasets. In finance, there
are many empirical applications for factor models with
conditional heteroskedasticity. For example, asset pricing
models usually assume that the dynamics of the prices
of different assets can be explained by a small number
of underlying dynamic factors that are conditionally het-
eroskedastic.

There are two branches of literature relating to factor
GARCH models, depending on whether the factor struc-
ture refers to the conditional or unconditional distribu-
tion of the data. On the one hand, the FACTOR-ARCH
model (Engle, 1987) exploits the conditional distribution
of the data by using common factors to model the con-
ditional covariance matrix of the observations. The fac-
tors, which follow GARCH-type processes, are given by
the linear combinations of the data that summarize the
co-movements in their conditional variances. Some ap-
plications of the FACTOR-ARCH parametrization include:
modelling the term structure of interest rates (Engle,
Ng, & Rothschild, 1990; Ng, Engle, & Rothschild, 1992),
investigating whether international stock markets have
the same volatility processes (Engle & Susmel, 1993),
and modelling the common persistence in the condi-
tional variance (Bollerslev & Engle, 1993). Particular mod-
els which are related to the FACTOR-ARCH model are the
orthogonal models. They assume that the data conditional
covariance matrix is generated by some underlying fac-
tors that follow univariate GARCH processes. Exam-
ples of this class of models are the orthogonal GARCH
(O-GARCH) model (Alexander, 2001), the generalized or-
thogonal GARCH (GO-GARCH) model (van der Weide,
2002), the generalized orthogonal factor GARCH (GOF-
GARCH) model (Lanne & Saikkonen, 2007), and the con-
ditional uncorrelated component GARCH (CUC-GARCH)
model (Fan, Wang, & Yao, 2008). In addition, the full
factor GARCH (FF-GARCH) model proposed by Vrontos,
Dellaportas, and Politis (2003) and extended by Diaman-
topoulos and Vrontos (2010) to allow for multivariate
Student-t distributions is also nested in the FACTOR-ARCH
approach. On the other hand, the latent factor ARCH model
(Diebold & Nerlove, 1989) applies the factor structure in
the unconditional distribution of the data, and can be seen
as a traditional latent factor model where the factors dis-
play strong evidence of an ARCH structure. In this model,
the factors represent the co-movements among the ob-
servations, and it is assumed that the commonalities in
the volatilities among observations are due to the ARCH
effect of such common latent factors. Harvey, Ruiz, and
Sentana (1992) extended the Diebold and Nerlove model
to allow for general dynamics in the mean, and provided
a modified version of the Kalman filter for unobserved
components models with GARCH disturbances. King, Sen-
tana, and Wadhwani (1994), who consider a multifactor
model for aggregate stock returns, and Doz and Renault

(2004), who present a conditionally heteroskedastic fac-
tor model where the common factors represent condition-
ally orthogonal influences, also extend the Diebold and
Nerlove model. The dynamic factor GARCH (DF-GARCH)
model (Alessi, Barigozzi, & Capasso, 2006) is another ex-
ample of this branch of the literature. It can be seen as a
generalized dynamic factor model where both the dynamic
common factors and the idiosyncratic components are
conditionally heteroskedastic.

In this paper we propose a multivariate conditionally
heteroskedastic factor model, known as the GICA-GARCH
model. The GICA-GARCH model is a new method for
explaining the conditional covariance matrix of large
datasets using a small number of factors with GARCH
effects. It is based on the intuition that financial markets
are driven by a few latent factors that represent the
co-movements of financial variables. These factors are
estimated by independent component analysis (ICA). ICA
can be seen as a factor model (Hyvarinen & Kano, 2003)
where the unobserved components are non-Gaussian and
mutually independent. Previous researchers, such as Back
and Weigend (1997), Cha and Chan (2000), Kiviluoto and
Oja (1998), Malaroiu, Kiviluoto, and Oja (2000) among
others, have applied ICA to financial data. Furthermore,
ICA can be considered as a generalization of principal
component analysis (PCA) (Hyvdrinen, Karhunen, & Oja,
2001), and seems to be, a priori, more suitable than PCA
for explaining the non-Gaussian behavior of financial data
(Wu & Yu, 2005).

The GICA-GARCH model assumes that observations
are generated by a set of underlying factors that are
independent and conditionally heteroskedastic. Once the
ICs have been estimated, they are sorted in terms of
the total explained variability, in order to choose the
few components which represent the co-movements of
financial variables. The GICA-GARCH model then assumes
a factor structure in the unconditional distribution of the
data. Furthermore, due to the statistical assumption on the
ICs, the GICA-GARCH model fits a univariate ARMA-GARCH
model to each of them, and the conditional covariance
matrix of the ICs is then allowed to be diagonal. Thus, the
GICA-GARCH model transforms the complexity associated
with the estimation of a multivariate ARMA-GARCH model
into the estimation of a small number of univariate
ARMA-GARCH models, and approximates the conditional
covariance matrix of the data by a linear combination of
the conditional variances of a few ICs. The GICA-GARCH
model therefore also applies the factor structure to the
conditional distribution of the data.

The rest of this paper is organized as follows. In
Section 2 we present the ICA model, describe the three ICA
algorithms used to estimate the unobserved components
and explain a procedure for sorting the ICA components
in terms of their explained variability. Furthermore,
the relationship between ICA and the dynamic factor
model (DFM) is analyzed. In Section 3 we introduce
the GICA-GARCH model for explaining and forecasting
the conditional covariance matrix of a vector of stock
returns from the univariate conditional variances of a
small number of components. Furthermore, we analyze
the relationship between the GICA-GARCH model and
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other factor GARCH models proposed in the literature.
Next, Section 4 presents some simulation experiments
that illustrate the ability of the GICA-GARCH model
to estimate the underlying components of conditionally
heteroskedastic data. An empirical application to a real-
time dataset is shown in Section 5. Finally, Section 6 gives
some concluding remarks.

2. The ICA model

In this section we introduce the concept of ICA. First,
we present the basic ICA model according to the formal
definition given by Common (1994). Then, we briefly
describe the three algorithms which we use to estimate the
ICA components. As the definition of ICA implies that there
is no ordering of the ICs, a procedure for weighting and
sorting them is explained next. Finally, we formulate the
ICA model as a particular DFM and analyze the relationship
between the two models.

2.1. Definition of ICA

ICA assumes that the observed data are generated by a
set of unobserved components that are independent. Let
X: = (X1t X2t, - .., Xme)' be the m-dimensional vector of
stationary time series, with E[x;] = 0 and E [x.x;] =
I'x(0) being positive definite. It is assumed that X; is
generated by a linear combination of r (r < m) latent
factors. That is,

X[=AS[, t=1,2,...,T, (1)

where A is an unknown m x r full rank matrix, with
elements a; that represent the effect of s;; on x;;, fori =
1,2,...,mandj=1,2,...,r,ands; = (i, Sat, - - ., Sit)’
is the vector of unobserved factors, which are called
independent components (ICs). It is assumed that E [s;] =
0,T(0) = E[s;s;] = I, and that the components
of s, are statistically independent. Let (X, X, ..., X7) be
the observed multivariate time series. The problem is to
estimate both A and s; from only (X1, Xo, ..., X7). That is,
ICA looks for an r x m matrix, W, such that the components
given by

S=Wx, t=1,2,...,T, (2)

are as independent as possible. However, previous as-
sumptions are not sufficient to enable us to estimate A and
s; uniquely, and it is required that no more than one IC be
normally distributed. From Eq. (1) we have:

I'«(0) = E[x;x;] = AA', (3)
I (t) = E[xX;_,] =ATs (1)A, 7> 1.

All of the dynamic structure of the data therefore comes
through the unobserved components, and if they are
uncorrelated, then ['s () = E[s;s;_,] is a diagonal matrix
forallt > 1.

Note that, in spite of previous assumptions, ICA cannot
determine either the sign or the order of the ICs. In the
following, we focus on the most basic form of ICA, which
considers that the number of observed variables is equal
to the number of unobserved factors, i.e.,, m = r.

2.2. Procedures for estimating the ICs

Both ICA and PCA obtain the latent factors as linear
combinations of the data. However, their aims are slightly
different. On the one hand, PCA tries to get uncorrelated
factors, and, for this purpose, it requires the matrix W
to be such that WW' = 1, and the rows of W are
the projection vectors that maximize the variance of
the estimated unobserved factors, s;. On the other hand,
ICA tries to obtain independent factors, and the most
commonly used methods for estimating the ICs impose
the restriction that the rows of W are the directions that
maximize the independence of s;.

Three main ICA algorithms have been proposed: JADE,
FastICA and SOBI. JADE (Cardoso & Souloumiac, 1993)
and FastICA (Hyvdrinen, 1999; Hyvdrinen & Oja, 1997)
are based on the non-Gaussianity of the ICs, while
SOBI (Belouchrani, Abed Meraim, Cardoso, & Moulines,
1997) is based on the temporal uncorrelatedness between
components. Before any of these algorithms are applied,
it is useful to standardize the data. Thus, we search for
a linear transformation of X,z = MXx;, where M is
an m x m matrix such that the m-dimensional vector
z; has an identity covariance matrix. This multivariate
standardization is carried out as follows. From Eq. (3) we
have

I'x(0) = AA’ = EDE/, (4)

where E, ., is the orthogonal matrix of eigenvectors, and
D,,«m the diagonal matrix of eigenvalues. Then M =
D~'/2E/, and Eq. (1) in terms of z;, calling U = MA, is

i = US[, (5)

where U'U = I, and UU’'= I,,. However, in order to avoid
identification problems, the ICA algorithms look for an m x
m orthogonal matrix U, as the multivariate standardization
of the original data guarantees the orthogonality of the
loading matrix.

2.2.1. Joint approximate diagonalization of eigen-matrices:
JADE

JADE (Cardoso & Souloumiac, 1993) estimates the ICs
by maximizing their non-Gaussianity. After whitening the
observed data, JADE looks for a matrix U’ such that the
components given by

/S\i == U/Zr (6)

are maximally non-Gaussian distributed. Note that under
the non-Gaussianity assumption, the information provided
by the covariance matrix of the data, I;(0) = 1, is not
sufficient to compute Eq. (6), and higher-order information
is needed. Cardoso and Souloumiac (1993) use cumulants,
which are the coefficients of the Taylor series expansion
of the logarithm of the characteristic function. In practice,
it is enough to take into account fourth-order cumulants,
which are defined as

cumy(zit, Zjt, Zne, Zit)
= E{zizjeznezie} — E{zie2je YE{znezie}
- E{Zirzht}E{thth} - E{Zitzlt}E{thth}’ (7)
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and the fourth-order cumulant tensor associated with z; is
am x m matrix which is given by

.
[Q; (@] = Z cumy (zie, Zje, Zke, Zie) Gias

k,I=1
where Q = (qu)}',_; is an arbitrary m x m matrix,
and cumy (Zi, Zit, 2, z) is as in Eq. (7). It is easy to
see that random vectors are independent if all of their
cross-cumulants of order higher than two are equal to

zero. In particular,§ will be independent if its associated
fourth order cumulant tensor, Qs (), is diagonal. Cardoso

and Souloumiac (1993) show that, given a set of m x m
matrices ¥ = {Ql, ce, %}, there exists an orthogonal

transformation V such that the matrices {V'Q; (Q)) V}Q,'e‘s

are approximately diagonal. Then we can choose V. =
U’ and estimate the latent factors using Eq. (6). JADE
uses an iterative process of Jacobi rotations to solve the
joint diagonalization of several fourth-order cumulant
matrices. It is a very efficient algorithm in low dimensional
problems, but when the dimension increases, it has a high
computational cost.

2.2.2. Fast fixed-point algorithm: FastICA

FastICA is a fixed-point algorithm which was proposed
by Hyvdrinen and Oja (1997). It estimates
S =Uz (8)
by maximizing their univariate kurtosis. Thus, FastICA
searches for the directions of projection that maximize
the absolute value of the kurtosis of S}. As the kurtosis is
very sensitive to outliers, FastICA is not a robust algorithm.
Hyvdrinen (1999) proposes a more robust version of
FastICA using an approximation of negentropy instead
of kurtosis to measure the non-Gaussianity of the ICs.

Negentropy is the normalized version of the entropy, given
by:

JE) =HE) -1 E).

where SC is a Gaussian vector of the same correlation
matrix as ’sf and H (-) is the entropy of a random vector
defined as H (sf) = —E[log pg (£)], where pg () is the

density function of§f . Negentropy is a good index for non-
Gaussianity because it is always non-negative and it is zero
iff the variable is Gaussian distributed. Therefore, the ICs,
given by Eq. (8), are estimated as the projections of the data
in the directions which maximize the negentropy of'sf .The
main advantage of FastICA is that it converges in a small
number of iterations.

2.2.3. Second-order blind identification: SOBI

Belouchrani et al. (1997) extended the previous work of
Tong, Liu, Soon, Huang, and Liu (1990), and proposed the
SOBI algorithm. SOBI requires that the ICs, given by

/S\f = U/Zt, (9)
will be mutually uncorrelated for a set of time lags. That
is, the matrix U’ is obtained so that a set of K time delayed
covariance matrices of s,

() =E{ss;.},

t—1

tej={1,...,K}, (10)

should be diagonal. Thus, SOBI searches for an orthogonal
transformation that jointly diagonalizes Eq. (10). This
algorithm also applies whitening as a preprocessing
procedure, and the covariance structure of the whitened
data model (Eq. (5)) is given by:

Ir,(t)=Urs()U, 7>1, (11)

where U is an orthogonal matrix. Therefore,
Is(t) =UT, (1)U, 7>1. (12)

Thus, SOBI searches for an orthogonal transformation that
will be the joint diagonalizer of the set of time delayed co-
variance matrices, {Ts () }Tq . The optimization problem
is to minimize

F(U) =) off (UT,(r)U),

7€)

where ‘off’ is a measure of the non-diagonality of a matrix,
which is defined as the sum of the squares of their off-
diagonal elements. SOBI solves this problem using Jacobi
rotation techniques. Belouchrani et al. (1997) show that
this problem has a unique solution: if there exist two
different ICs that have different autocovariances for at least
one time-lag, then the joint diagonalizer, U, exists and is
unique. That is, if, for all 1 < i # j < r, there exists
any ¢ = 1,...,K such that v, (z5) # ¥s (zq), then
the components of ’sf can be separated; they are unique
and lagged uncorrelated. Note that SOBI cannot obtain
the ICs if they have identical autocovariances for the lags
considered.

2.2.4. Weighting the ICs

After estimating the components, we should decide
which of them are most important for explaining the
underlying structure of the data. Note that the PCs are
sorted in terms of variability, but the ICs are undetermined
with respect to the order. Following Back and Weigend
(1997), we will sort the ICs in terms of their explained
variability. According to model (1), the ith observed
variable is given by x;; = Z]m:] a;sjr, and its variance is

m
var(xn):Zaizj, i=1,...,m. (13)
=1
For each x;, with i = 1,...,m, Back and Weigend

(1997) define the weighted ICs in terms of the elements
of the ith row of A as s}”(i) = diag (a;1, ap, . . ., Gim) S;. That
is, for each x;, the jth weighted IC is given by s}f“) = a;Sje
forj =1,...,m, and its variance is

var (s ") =@, ij=1....m. (14)

Therefore, from Eqs. (13) and (14), the variance of x;; which

is explained by s]'-‘[’(i) is computed as:

]):: s i,j:l,...,m, (15)

J m

as
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and the total variance of x; explained by the jth IC is given
by:

Thus, after we have obtained {91, 9, ..., ¥}, we know
how much of the total variance is explained by each IC, and
can sort them in terms of the variability. Thus, the most
important ICs will be those which explain the maximum
variance of x;.

2.3. ICA and the dynamic factor model

Suppose that there are r non-Gaussian components in
the basic ICA model, sgl) = (Sigy...,Sz) withr < m,
representing the common dynamic of the time series, but
that the other m — r components, s?) = (Sr41ts -+ - » Sme) s
are Gaussian. We can then split the matrix A = [A; : A;]

accordingly, and write
X =Asst” + Ays?. (16)

Callingn; = Azsgz) to the vector of Gaussian noise, we have
X, = A1s§1) + n¢, which is similar to the DFM studied by
Pefia and Box (1987) and generalized by Pefia and Poncela
(2006). However, there are two main differences between
these models. First, in the factor model, the r common
factors sgl) are assumed to be Gaussian and linear, whereas
here they are non-Gaussian. Second, in the standard factor
model, the covariance matrix of the noise is of full rank,
whereas here it will have a rank equal to m — r. This last
constraint can be relaxed by assuming that the ICA model
has been contaminated by some Gaussian error model, as
inX; = As; + u;, where u, is Gaussian. Note that the latent
factors of the DFM can be estimated consistently by PCA
when both the number of series and the sample size (m
and T respectively) go to infinity (see for example Stock &
Watson, 2002).

3. The GICA-GARCH model

This section presents the GICA-GARCH model as a new
multivariate conditionally heteroskedastic factor model.
From now on, letX; = (Xq¢, Xt . . . , Xmt) be the vector of m
financial time series. First, we introduce the GICA-GARCH
model, give its mathematical formulation, and describe the
structure of the ICA components. Next, we explain how this
model can be used to forecast the conditional variances of
a vector of financial data from the univariate conditional
variances of a set of common ICs. Finally, we relate the
GICA-GARCH model to the factor GARCH models.

3.1. The model
Let us assume that X; is a linear combination of

a set of independent factors given by equation (1).
Because series of stock returns are characterized by the

presence of clusters of volatility, some of the underlying
factors will follow conditionally heteroskedastic processes.
In the literature, GARCH models are the most popular
specifications for modelling the conditional variance of
the stock returns. In addition, from empirical finance,
it is common to admit that the stock returns could
exhibit low order temporal dependence on the conditional
mean, which can be explained by an ARMA model.
Therefore, as there could also be temporal structure on the
conditional mean of the latent factors, it seems reasonable
to propose an ARMA-GARCH specification for modeling
the underlying factor given by Eq. (1). Then, we assume
that the vector of unobserved components, s;, follows
an r-dimensional ARMA(p, q) model with GARCH (p’, ¢')
disturbances:

p q
St = Z ®;s; i + IX: 0, (17)
i=1 =0

where ®; = diag (qsf”, o ¢fr>) with 9| < 1¥); @, =

diag (9,“), o ef”) with ©, =1, and [6”| < 1Vj; and e,
is an r-dimensional vector of conditionally heteroskedastic
errors given by:

€ =H:/28t, (18)
where &; ~ i.i.d. (0, I;) and H:/z = diag(\/hjp) isanr x r
positive definite diagonal matrix such that

4 q
) ) 2 )
hie = af + E al €+ E B by,
i=1 =1

forj=1,...,r, (19)

where h;; is a stationary process, is independent of &,
and represents the conditional variance of the jth IC:
hiy = V(eilli—1) = V (sjelle—1), where I,_; is the past
information available up to time ¢ — 1. In order to ensure
a positive hy > 0, Vj, it is assumed that aé’) > 0, ai(’)
>0, 8% > 0,and Ym0 (oci(i) + ﬂiO)) < 1(seeBoller-
slev, 1986).

Focusing on forecasting the volatility of the observed

financial data, from Eq. (1), we know that the conditional
covariance matrix of X, is:

Q@ =V (X|I;-1) = AHA, (20)

where H; = diag(hy, ..., hy) is the r x r conditional
covariance matrix of s, at time t. In order to guarantee
the diagonality of H;, we should assume that the condi-
tional correlations of the ICs are zero. This assumption
allows us to achieve our purpose: explaining and forecast-
ing the conditional covariances of the observations from
the univariate conditional variances of the set of condi-
tionally heteroskedastic components that represents the
co-movements of the stock returns. In the GICA-GARCH
model, it is assumed that the number of conditionally het-
eroskedastic common ICs is small relative to the dimension
of the dataset. Then, the GICA-GARCH reduces the num-
ber of parameters to be estimated considerably, but at the
cost of obtaining conditional covariances matrices with a



A. Garcia-Ferrer et al. / International Journal of Forecasting 28 (2012) 70-93 75

reduced rank. Furthermore, note that the GARCH structure
of x; is ensured because each IC is generated by an inde-
pendent GARCH process, and the linear combination of r
independent GARCH processes will be a weak GARCH pro-
cess (see Nijman & Sentana, 1996).

3.2. Fitting the model

The model is fitted in two steps. First, we use ICA
to identify the underlying independent components and
the loading matrix. Second, univariate GARCH models
are fitted to the components. We describe these two
steps in what follows. All of the previous ICA algorithms
standardize the data as a preprocessing step, and solve the
basic ICA model for the normalized data, which is given
by Eq. (5). Thus, JADE, FastICA, and SOBI will estimate the
orthogonal loading matrix and the m ICs, defined by Egs.
(6), (8) and (9), respectively. After estimating the model,
we should choose the common ICs that we will take into
account for forecasting the conditional variances of the
financial variables. For this purpose, we weight the ICs
according to the procedure explained in Section 2.2.4: we
sort the ICs in terms of their explained total variability,

and split the vector of ICs as s; = [sﬁl)sgz)], where sil) =

(S1t, - .., Sre) are the r ICs (with r < m) which we choose
to represent the co-movements of the data, and s?) =
(Sr41¢s - -+ Sme) are the m — r ICs which we consider as

noise. This splitting is done by testing whether the m—r ICs
are white noise. As an alternative, we can fit ARMA (p, q)
models to's; and s? and check that the order selected using
the BICis ARMA(0, 0) in both cases. From now on, we focus
on the r selected ICs that are conditionally heteroskedastic,
and fit a univariate ARMA(p, q)-GARCH(p/, q/) to each of
them. According to the corresponding model, we estimate
the univariate conditional variance of each IC and generate
the conditional covariance matrix of sf”, H;. Finally, we
get the conditional covariance matrix of the observed data
from Eq. (20), and its ith diagonal term, y7 = >, haf,
is the conditional variance of x;;, fori = 1,2, ..., m.

Note that the performance of the GICA-GARCH model
depends on the method used to estimate the ICs. In
what follows, we will investigate the usefulness of the
three algorithms presented in Section 2. Since they use
different estimation principles (JADE and FastICA use non-
Gaussianity, and SOBI uses dynamic uncorrelatedness) the
performance of the algorithms is expected to depend on
the features of the data. If the data have excess kurtosis and
do not have a significant autocorrelation structure, FastICA
and JADE would work better than SOBI. However, for data
with large autocorrelation coefficients, SOBI may be the
most appropriate algorithm for estimating the ICs.

3.3. The GICA-GARCH model and related factor GARCH
models

In this section, we investigate the relationship between
the GICA-GARCH model and other factor GARCH models
such as the latent factor ARCH model (Diebold & Nerlove,
1989), the dynamic factor GARCH (DF-GARCH) model
(Alessi et al., 2006), the factor GARCH model (Engle, 1987;
Engle et al., 1990), and several orthogonal models.

The GICA-GARCH model assumes that the observations
are given by a linear combination of a set of underly-
ing components that are independent and conditionally
heteroskedastic. Let us assume that r of these compo-
nents, sﬁl) = (S1¢,...,S¢), withr < m, explain the co-
movements between the observations, and the otherm —r
components, s§2) = (Srt1t, - - - » Sme)’, are the noisy ones.
Splitting the matrix A = [A; : A,] properly, the GICA-
GARCH is given by

X = Ass. +ng, (21)

where n; = A2s§2> is the noise vector. By assumption,
both the common and noisy components are conditionally
heteroskedastic and distributed as

1) (1)
S¢ ~ We H 0
(5o (i) (3 2

where H; is a r x r conditional covariance matrix of the
vector of common factors, and T'; is a m x m conditional
covariance matrix of the noise vector with rank(I';) =
m — r. Note that the GICA-GARCH model assumes that the
vector of common components and the noise vector are
conditionally uncorrelated, and allows for the possibility
that the common factors and the noise have a non-zero
conditional mean (the GICA-GARCH model assumes that
each IC could fit a univariate ARMA-GARCH model, see
Eqs. (17)-(19)). Furthermore, due to the independence
assumption on the underlying components, both H; and
I'; are diagonal matrices: H; = diag(hy, ..., h;) and
Iy = diag(0,...,0, hyy1, ..., hye). According to these
assumptions, the GICA-GARCH model assumes a factor
structure in both the unconditional distribution of the data,

I'x(0) = AT (0)A] + Ty (0), (22)
and the conditional distribution
Q@ = AHA| + T, (23)

where H; = diag(hy, ..., hy) and h; is the conditional

variance of the jth component of sgl) given by Eq. (19).
In practice, the GICA-GARCH model approximates the
data conditional covariance matrix as

.
Q =AHA, = Za(l)ia/(mhita (24)
i=1
with an accuracy that depends on the number of chosen
common components, r, and where a1y = (ayj, . - . , i)’
Plugging Eq. (19) into Eq. (24), we have:
r p’
(@) @ 2
@ = Zaﬂ)iazm @y + Zall €ir—I
i=1 =1
g
+ ) B ), fori=1.....1, (25)
=1
where ey = si(tl) - /Lf[” fori = 1,...,r. Note that

sf[” = Wh)fxtv where w(yy; is the ith row vector of W
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(W' = [W; : W,] is such that AW = WA = I;;). Then,
r v
. b .
@ = Z 3(1)1'3/(1):'(“6” + Zal(') (Wi Xe—1 — il )?
i=1 =1

g
+Zﬁ,(')(w/(l)iﬂ[_,w(l)i)), fori=1,...,r, (26)
I=1

and it is clear that the data conditional covariance
matrix, which is estimated by the GICA-GARCH model,
is measurable with respect to the information set that
contains only past values of the observations.

In what follows, we analyze the relationship between
the GICA-GARCH model and other factor GARCH models.
We distinguish between the two branches of the literature
about factor GARCH models based on whether the
factor structure refers to the unconditional or conditional
distribution of the data.

3.3.1. Factor structure in the unconditional distribution of the
data

Here, we analyze the relationship between the GICA-
GARCH model and the latent factor GARCH (Diebold &
Nerlove, 1989) and DF-GARCH (Alessi et al., 2006) models.

First, the GICA-GARCH model can be seen as a latent
factor model with GARCH effects (Diebold & Nerlove,
1989). As with the GICA-GARCH model, the latent factor
ARCH model (Diebold & Nerlove, 1989) assumes that there
are a few common latent factors (in particular, r =
1 in Diebold and Nerlove’s model) that explain the co-
movements among the observations and evolve according
to univariate GARCH models (H; = hy;). However, whereas
the GICA-GARCH model assumes a factor structure in
both the unconditional and conditional distributions of
the data, the Diebold and Nerlove model only assumes
a factor structure in the unconditional covariance matrix
of the dataset. Consequently, the latent factor GARCH
model assumes that the commonalities in the volatilities
among observations are due to the ARCH effect of the
common factor. That s, in Diebold and Nerlove’s model, the
conditional covariance matrix of the observations is given
by:

Q = agyaghi + T, (27)

where T is a diagonal matrix whose elements correspond
to the constant conditional variances of the noisy compo-
nents. Furthermore, in Eq. (27), hy; is the conditional vari-
ance of the common factor that is not unobservable. Then,
Q; is not measurable when the information set contains
only past values of the observations (it should contain past
values of the latent factor too).

The GICA-GARCH model can also be seen as a parsimo-
nious version of the DF-GARCH model (Alessi et al., 2006).
Both models exploit the unconditional information con-
tained in the entire dataset in order to estimate the con-
ditional covariance matrix of the observations. The main
difference between the two models is the parametriza-
tion of the common factors conditional covariance matrix.
While the GICA-GARCH model, due to the statistical inde-
pendence of the unobserved components, fits a univariate

ARMA(p, q)-GARCH(p’, q') model to each of them and as-
sumes that H; is diagonal, the DF-GARCH model assumes
that the common factors have a zero-conditional mean and
evolve according to a MGARCH model that is parameter-
ized as a BEKK model:

H, = GoC, + C;sV sV € + CH,_1C,, (28)

where C; are matrices of constant parameters. Therefore,
whereas the conditional covariance matrix of the dataset
in the GICA-GARCH model depends on the conditional vari-
ances of the r common components, the DF-GARCH model
estimates the conditional covariance matrix of the ob-
servations, taking into account both the conditional vari-
ances and covariances among the common latent factors.
For both models, the GICA-GARCH and the DF-GARCH, the
noise components, which represent the idiosyncratic part
in the DF-GARCH model, follow univariate ARMA-GARCH
models. The conditional covariance matrix, I';, is then di-
agonal for both models, but it is a full rank matrix in the
DF-GARCH model, whereas in the GICA-GARCH model it
will have a rank equal tom — r.

3.3.2. Factor structure in the conditional distribution of the
data

In this section, we analyze the relationship between the
GICA-GARCH model, Engle’s model and some orthogonal
models.

From Eqs. (24)-(26), it is clear that the GICA-GARCH
model is related to the FACTOR-ARCH model (Engle, 1987).
Both models assume that the data conditional covariance
matrix is given by a linear combination of the conditional
variances of some portfolios (factors) of the observations.
Therefore, €, is measurable when the information set
contains only past values of the observations. Engle’s factor
GARCH model assumes that I'; is a constant matrix that
does not play any role in the model.

The GICA-GARCH model is also related to several
orthogonal models, such as the O-GARCH (Alexander,
2001), the GO-GARCH (van der Weide, 2002), the GOF-
GARCH (Lanne & Saikkonen, 2007), and the CUC-GARCH
(Fan et al., 2008). All of these models assume that the
data are generated by a linear combination of several
factors that follow univariate GARCH models. The GICA-
GARCH model can be seen as an extension of the O-
GARCH model where the estimates of the factors are given
by the ICs instead of the principal components (PCs).
Both the GICA-GARCH and O-GARCH models approximate
the data conditional covariance matrix by the univariate
conditional variances of a few factors (the most risky
factors), and transform the problem of estimating a
MGARCH model into the estimation of a small number
of univariate volatility models. The cost of reducing the
dimensionality is that the factor conditional covariance
matrices have reduced ranks. One extension of the O-
GARCH model is the GO-GARCH model (van der Weide,
2002), which does not reduce the dimension and considers
r = m. A restricted version of the model where only
a subset of the underlying factors has a time-varying
conditional variance has recently been analyzed by Lanne
and Saikkonen (2007). This model, called the GOF-GARCH
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model, parameterizes the factor conditional covariance
matrix as

H; = diag(V; : L) (29)

where V; = diag(vy, ..., vy) is the conditional covari-
ance matrix of the heteroskedastic components. The GOF-
GARCH model is then similar to the GICA-GARCH model
when the noisy components of the GICA-GARCH are ho-
moskedastic (I'; = I is a constant matrix). Thus, the GOF-
GARCH model estimates the data conditional covariance
matrix as:

ﬂt == AH[A/ - A]V[A/l + r, (30)

where I' = A,A),. Therefore, the GOF-GARCH model is also
related to Engle’s model, but, assuming that I’ plays a spe-
cific role, it is the conditional covariance matrix of the ho-
moskedastic components. Finally, the GICA-GARCH model
is related to the work proposed by Fan et al. (2008) that
models multivariate volatilities through conditionally un-
correlated components. Both the GICA-GARCH and CUC-
GARCH models separate the estimation of the unobserved
components from fitting a univariate GARCH model for
each one of them, and they estimate the components by
looking for an orthogonal matrix that is the solution of
a non-linear optimization problem. However, the GICA-
GARCH model requires the components to be statistically
independent, while the CUC-GARCH model imposes the
weaker assumption of conditional uncorrelatedness.

Table 1 summarizes the main features of all of the
models considered in this section.

4. Simulation experiments

In this section we compare the performances of the
GICA-GARCH, O-GARCH, and CUC-GARCH models. The
main differences among the three models are related
to the properties assumed for the latent factors: the
O-GARCH model assumes unconditionally uncorrelated
factors which are estimated by PCA; the CUC-GARCH
model assumes conditionally uncorrelated components
which follow extended GARCH(1, 1) models and are
estimated by quasi-maximum likelihood; and the GICA-
GARCH model generalizes the previous models, assuming
independent underlying factors which are estimated by
ICA. 1t would therefore be interesting to analyze the
performances of the three models in order to identify the
conditionally heteroskedastic components.

We present three simulation experiments to demon-
strate the effectiveness of ICA and CUC versus PCA for
identifying unobserved components that have the main
features of financial assets: excess kurtosis and non-
Gaussian conditional distributions. In each of the experi-
ments we generate six components of 1000 observations
each, and standardize them to have a zero mean and unit
variance. We then generate a 6 x 6 random loading matrix
A, mix the components according to Eq. (1), apply the three
procedures (the GICA-GARCH, O-GARCH, and CUC-GARCH
models) to the vector of observations, X;, and obtain the
ICs, PCs, and CUCs respectively.

In the first experiment, we consider the case where the
excess kurtosis in the data comes from different standard

ARMA-GARCH specifications, and, in addition to Gaus-
sian innovations, we include the Student’s t distribution
(Bollerslev, 1987), the Laplace distribution (Granger &
Ding, 1995), and the generalized error distribution (GED)
(Nelson, 1991). The second experiment considers condi-
tionally heteroskedastic factors without temporal depen-
dencies on the conditional mean. In the third experiment,
we explore the case where the different excess kurtosis of
the latent factors comes from different conditional distri-
butions, and distinguish between two cases: the Student’s t
distribution with different degrees of freedom and the GED
with different values for the shape parameter.

In order to analyze the performances of the three
models, we compute the correlation coefficient between
each original component and its estimation. Moreover,
we compute the mean square error (MSE) between the

original and the estimated components as MSE(sj,E;')) =

2
1T, (sjr —’s‘}f) ).forj=1,...,r, where?}t') is the
jth estimated component by the corresponding method.

In the first simulation experiment, we generate the
components as defined in Table 2.

Note that the conditional distribution of the ARMA-
GARCH components depends on the conditional distribu-
tion of g, Vj = 1,2,3,4. We consider four possible
distributions for the innovations. First, we generate the fac-
tors defined in Table 2 assuming that ¢j; is conditionally
Gaussian Vj = 1, 2, 3, 4. We repeat this procedure three
more times, assuming that the conditional distribution of
&, Vj = 1,2, 3,4, is Student’s t (ts), Laplace, and GED
(k = 1.5). Table 3 presents the average results for the cor-
relation coefficients and the MSE between the original and
the corresponding estimated components.

According to the results shown in Table 3, we can see
that the average of the correlation coefficients and the
MSE take almost identical values along the four conditional
distributions we have considered here. Independently
of which conditional distribution we take into account,
the GICA-GARCH model that estimates the ICs applying
FastICA or JADE provides the most reliable identification of
the unobserved ARMA-GARCH components. On the other
hand, PCA performs worst for all distributions. SOBI is the
ICA algorithm that has the worst performance, although
it is slightly better than CUC. This is to be expected,
as conditionally heteroskedastic components have excess
kurtosis and small correlation coefficients.

In the second experiment we generate components
which have a constant conditional mean but are condition-
ally heteroskedastic, as given in Table 4.

As in the first experiment, we generate the factors
defined in Table 4 assuming that g is conditionally
Gaussian Vj = 1,2, 3. We then repeat the procedure
twice, assuming a Student’s t (tg) distribution and the
GED (¢« = 1.3) for &, Vj = 1,2,3. We compute
the correlation coefficients and the MSEs between each
original and the corresponding estimated component. The
results (average measures) are shown in Table 5, and are
very similar to those from the first experiment. This result
is not surprising, and we conclude that imposing an ARMA
structure on the conditional mean does not change the
results at all.
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Table 2
Definition of the original factors.

st ~ AR(1)-GARCH(1, 1)

St = 0.0289 + 0.71 1251r_1 + aqe

aye = «/hicere; hye = 0.0152 + 0.2080a3, _; + 0.7918h1c—4

Sor = 1.283¢—1 — 0.3253:1 + ay

Ayt = \/Eé'zf; hzy =02+ 0.7(1;71

S3t = 5+ 0.953,_1 + az — 0.4a3_¢

a3 = +/N3c€3:; h3y = 0.0079 + 0.0650a3, _; + 0.9291h3_4

s4 ~ GARCH(1, 3) e = +/Nacear; hae = 0.241a3,_, + 0.077hge_y + 0.430h4_, + 0.203hye_3
sse ~ U(0, 1) st ~ GED(0, 1, 1.8)

Sz ~ AR(2)-ARCH(1)

s3 ~ ARMA(1,1)-GARCH(1, 1)

Note: ¢;; is a random noise with a zero mean and unit variance, and is independent of h;, Vj = 1, 2, 3, 4. We generate
four sets of these components by changing the conditional distribution of ¢j: Gaussian, Student’s t (t), Laplace, and GED

(k = 1.5).
Table 3
Average values for the correlation coefficients and the MSE between the original and the estimated components.
Gaussian Student’s (tg) Laplace GED
Correlation MSE Correlation MSE Correlation MSE Correlation MSE
cuc 0.7903 0.4192 0.7824 0.4349 0.7663 0.4672 0.7360 0.5277
FAST 0.9617 0.0766 0.9634 0.0731 0.9571 0.0858 0.9586 0.0828
JADE 0.9591 0.0817 0.9408 0.1184 0.9158 0.1682 0.9554 0.0892
SOBI 0.8353 0.3292 0.7790 0.4419 0.8403 0.3192 0.8076 0.3846
PCA 0.6646 0.6700 0.7035 0.5925 0.6952 0.6091 0.7087 0.5820
Table 4
Definition of the original factors.
S1e ™~ ARCH(]) St = «/h]té‘][; h][ =02+ 0.75%[71
sar ~ GARCH(1, 1) Sot = /Mar€ar; hpe = 0.021 + 0.073s3,_; + 0.906hy_4
s3 ~ GARCH(1, 2) s3¢ = /h3tes; hyy = 1.692 + 0‘2455§[_1 + 0.337h3¢—1 + 0.310h3;_,
Sqe ~ g Sse ~ N(0, 1) s¢e ~U(0, 1)
Note: g;; is a random noise with zero mean and unit variance, and is independent of h;;, Vj = 1, 2, 3. We generate four sets
of these components by changing the conditional distribution of ¢;;: Gaussian, Student’s t (ts), and GED (k = 1.3).
Table 5
Average values for the correlation coefficients and the MSE between the original and estimated components.
Gaussian Student’s t GED
Correlation MSE Correlation MSE Correlation MSE
cuc 0.7870 0.4257 0.8438 0.3123 0.8523 0.2953
FAST 0.9711 0.0578 0.9850 0.0300 0.9847 0.0306
JADE 0.9796 0.0408 0.9852 0.0296 0.9733 0.0533
SOBI 0.9218 0.1563 0.8495 0.3009 0.9392 0.1215
PCA 0.6994 0.6007 0.7037 0.5920 0.6964 0.6066
Table 6 ts, €2t ~ tg, and e3; ~ ty1. On the other hand, for (ii) we

Average values for the correlation coefficients and the MSEs between the
original and estimated components.

generate g ~ GED(0, 1, 1.5), &5y ~ GED(0, 1, 2), and
&3 ~ GED(0, 1, 1.01). The average results obtained for the

Student’s £ GED correlation coefficients and the MSEs are given in Table 6.

Correlation MSE Correlation MSE The results show that when the excess kurtosis comes from
cuc 07113 05771 0.7443 05111 different conditional distributions (or, to put it better, from
FAST 0.8039 0.3920 0.9004 0.1991 the same conditional distribution with different values for
JADE 0.8868 0.2263 0.8949 0.2101 the parameters) any of the ICA methods performs better
SOBI 08191 03616 0.7926 04146 than either PCA or CUC. If the innovations come from a
PCA 0.7297 0.5400 0.6705 0.6583

Student’s t conditional distribution with different degrees
of freedom, PCA and CUC have similar performances.

In the third experiment we analyze the situation where
all of the components follow the same ARMA-GARCH
specification, and the different excess kurtosis comes from
different conditional distributions, as defined in Table 2.
The conditional distribution for €;,j = 1, 2, 3, could be:
(i) Student’s t with different degrees of freedom for each
j = 1,2, 3, or (ii) GED with different values for the shape
parameter for each j = 1, 2, 3. For (i) we generate g1, ~

However, if the conditional distribution is the GED with
different shape parameters, PCA performs worse than CUC.

From these simulations, we conclude that the ICA al-
gorithms, especially FastICA and JADE, perform the best
for identifying the unobserved conditionally heteroskedas-
tic factors. The performances of the three ICA algorithms
are as expected: as FastICA and JADE look for the inde-
pendence of the ICs maximizing the non-Gaussianity, they
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Table 7
Summary statistics for the standardized stock returns.

Stocks Summary statistics
Zero mean stock returns X, [Xe| xf
Median Maximum Minimum St. Dev Kurtosis JB LB(50) LB(50) LB(50)

ACS 0.0003 0.0868 —0.0797 0.0182 5.3619 295.64" 119.23" 1053.39" 596.25"
ACX —0.0004 0.0923 —0.0998 0.0206 4.8558 182.63 84.03" 718.48" 425.03"
ALT 0.0003 0.0823 —0.0994 0.0189 5.9571 493.04" 82.19" 1188.20" 667.89"
AMS —0.0001 0.1421 —0.1502 0.0298 5.3303 282.95 65.20 985.56" 463.07"
ANA —0.0003 0.0720 —0.0731 0.0155 5.8949 436.48" 4275 678.85" 703.10"
BBVA 0.0002 0.0944 —0.0799 0.0217 47493 165.20" 87.12" 2411127 1871.64"
BKT 0.0003 0.0900 —0.0906 0.0192 5.9641 458.73" 66.99 1488.85" 843.23"
ELE 0.0005 0.0831 —0.0747 0.0175 5.4053 305.54" 75.20 2430.05" 1931.99"
FCC —0.0005 0.0784 —0.0595 0.0173 5.0625 245.37 73.40 1008.10” 599.91"
FER —0.0009 0.0836 —0.0800 0.0194 46196 138.63 62.73 972.33" 625.17"
IBE —0.0001 0.0567 —0.0592 0.0121 5.3139 282.92" 53.60 655.78" 352.19"
IDR —0.0002 0.0903 —0.0921 0.0232 4.8257 177.73 66.29 892.09” 626.85"
NHH 0.0001 0.0872 —0.0845 0.0182 4.7760 164.72" 64.54 334.79" 191.12"
POP 0.0000 0.0722 —0.0601 0.0157 49358 199.95" 84.47" 786.48” 498.84"
REP 0.0004 0.0879 —0.0814 0.0180 49307 197.25" 77.35" 1927.56" 1033.91"
SAN 0.0002 0.0964 —0.1135 0.0233 5.0546 220.64" 67.92 2524.017 1783.61"
SGC 0.0004 0.1414 —0.1394 0.0339 48686 189.30" 69.27 1394.44” 850.22"
TEF 0.0002 0.1016 —0.0872 0.0235 4,0998 7224 61.42 1533.22" 740.86"
TPI 0.0004 0.1402 —0.1305 0.0294 5.5625 342.14° 67.48 1334.54" 682.21"

Notes: ]B denotes the Jarque-Bera test statistic for normality and LB is the Ljung-Box test statistic based on 50 lags for the autocorrelation of the rates of

return, the absolute and the squared returns.

" Indicates that the null hypothesis of normality is rejected at the 1% level of significance for the absolute returns.
 Indicates that the null of no autocorrelation is rejected at the 1% level of significance for the rates of returns and squared returns.

capture the excess kurtosis of the conditionally het-
eroskedastic components better than SOBI. PCA performs
the worst, so it seems that the orthogonal GARCH mod-
els would not be good methods for forecasting the condi-
tional variance of large datasets. According to the results,
the GICA-GARCH method seems to outperform the CUC-
GARCH and the O-GARCH. We will investigate this con-
tention in the next section.

5. Empirical application

In this section we apply our procedure to a dataset of
stock returns. First, we describe the data used; second,
we explain the procedure for estimating the components;
and, third, we present the results from using the GICA-
GARCH, CUC-GARCH, and O-GARCH models to forecast the
conditional variances of the stock returns.

The data consist of daily closing prices of the 19 assets
which were always included in the IBEX 35 from 2000
to 2004 (see Table 12 in the Appendix for a detailed
description of the 19 stocks). The IBEX 35 index is the
main stock market index of the Madrid stock market. Its
composition is revised twice a year, and comprises the 35
companies on the Madrid stock exchange with the largest
trading volume. We apply some preprocessing steps to
the data. First of all, to achieve stationarity, we computed
the daily stock returns by taking the first differences of
the logarithm of daily closing prices: r; = log (p¢+1) —
log(p;),t = 1,...,T = 1250. Then r; is a 19 x
1250 multivariate vector of stock returns, whose columns
are the values of these 19 stocks in the 1250 trading
days over the period 2000-2004. There are some extreme
observations that correspond to outliers, which are due to
known changes such as stock splits or other legal changes;
these have been removed. Finally, we also remove the

mean from the stock returns, and X; = r; — r are the data
that we analyze.

Table 7 presents a summary of the basic statistics of the
data. This table includes the Jarque-Bera statistic and the
Ljung-Box statistic computed based on 50 lags of the series,
as well as the absolute values and the squares of the stock
returns.

The standard deviation of the stock returns, varying
from 0.0121 for IBE to 0.0339 for SGC, indicates that
there are both high and low volatility stock returns in
our dataset. The high values of the kurtosis coefficients
(higher than 3 for all of the stock returns) confirm the fat-
tailed property of the conditional stock return distribution.
Moreover, the Jarque-Bera test statistics are very high, and
we clearly reject the null hypothesis of normality at the 1%
level of significance. Then, as the conditional distribution
of stock returns is far away from Gaussianity, ICA may have
the potential to identify the set of latent components that
explain the co-movements of the stock returns. According
to the Ljung-Box statistics for the stock returns, 13 of the
19 series do not present relevant autocorrelation (the other
6 series have some significant autocorrelation coefficients
which can be removed by fitting autoregressive models
to the series). For the squares and the absolute values
of the stock returns, the high values of the Ljung-Box
statistics indicate strong autocorrelation in all series, and
suggest the presence of non-linear dependence in the stock
returns. These are the empirical results that we expect
when dealing with financial data.

We apply the GICA-GARCH, CUC-GARCH, and O-GARCH
models to the vector of zero mean stock returns, X, and we
obtain the corresponding estimates of the 19 unobserved
factors. We sort the ICs, the CUCs, and the PCs in terms of
the explained total variance. From the results, which are
displayed in Table 8, we can quantify how much risk is
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Table 8

Sorted components in terms of their explained variability.
cuc %euc FAST Brast JADE %iapE SOBI %soBI PCA %pca
3, 18.10 G 17.72 Gh 11.75 =, 11.13 GA 35.30
35, 16.44 G 10.22 3, 7.29 3, 9.65 G4 7.00
5 8.04 G 6.40 3, 6.48 G 9.16 G 5.91
5 5.43 G 592 GA 6.36 B 8.15 h 478
3 5.20 G 5.76 3, 6.17 G 7.52 G4 473
G 435 G 4.89 3, 5.70 G 5.42 G 435
5 427 s, 465 3, 5.61 5, 5.23 e 424
S5 3.86 sk 462 3, 5.52 S 437 G 4.04
5, 358 G 443 Gy 5.20 G} 41 G4 3.62
G 3.45 G 4.15 G 5.16 So 4.00 G 3.60
G 3.37 G 3.86 G 5.12 G 3.83 G 3.31
G 333 G 3.85 G 474 G 373 G 3.13
Gt 3.30 G 3.69 G 4.01 G 3.57 sy, 3.03
G 3.22 G 3.67 G 3.85 Sa 3.57 G 2.86
G 3.05 G 3.56 M 3.84 G 357 G 2.66
G 3.03 G 3.47 G 3.76 G 3.42 S 2.56
G 2.90 G 3.26 G 3.51 G 3.26 G 221
E™ 2.83 G 2.97 G 341 St 3.22 St 1.71
G 2.29 G 2.89 Bt 251 St 3.10 G 0.93

100.00 100.00 100.00 100.00 100.00
associated with each component. This fact is crucial, since Table 9

we would like to calculate the value at risk of a portfolio of
the IBEX 35 index, or indeed any other risk management
application.

We use Fig. 1, which shows the variability explained
by the components estimated using the five algorithms,
to determine the optimal number of components for each
method. That is, we choose the components that are the
most important sources of risk. The results are given
in Table 9, which also includes the absolute variability
explained by the r selected components.

We are interested in determining which assets are
most important for defining each component. From Eq. (2),
{Sit}12, can be written as a linear combination of the stock
returns,s; = Zj]z] wj;Xje, where wj; represents the effect of
the jth stock returns on the ith component, and the largest
weights correspond to the most important assets. The ICs,
the CUCs, and the PCs each have different interpretations.
As an example, we analyze the first components. The first
PCis given by a weighted mean of the 19 stock returns, and
can be considered as an index of the market. Indeed, if we
plot the variation in the variability of the first PC and the
IBEX 35 index, considering groups of ten observations, it is
clear that the first PC reflects the main movements of the
index IBEX 35 (see Fig. 2). Then, if we forecast the volatility
of x, from the volatility of the first PC, the 19 stock returns
will tend to move together.

The results for the ICs are different: they cannot be
seen as indexes of the market. The first ICs are mainly
associated with electricity, the building industries, and
banking (the sectorial economic classification is detailed in
the Appendix), and separate the stock returns in terms of
the individual explained variability, {vi}!°, (see Eq. (15)).
As an example, we analyze the first FastICA, §%,. In Fig. 3,
which shows the variation in the variability of 5%, and the
largest weighted assets on's",, we see that all of the assets

Number of unobserved components and the percentage of the total
variability explained.

cuc FAST JADE SOBI PCA

r 4 2 2 5 1
% Variability 47.97 27.95 19.04 45.62 35.30

form a cluster of high variability from observations 600 to
750. The assets which are positively weighted only show
this period of higher variability, but the negative ones are
also volatile at the beginning of the sample.

The forecasting performances of the GICA-GARCH, CUC-
GARCH, and O-GARCH models are checked as follows:

1. We estimate A and the unobserved components, for
each model, using the whole sample. The components
are then sorted and r is fixed.

2. Using the whole sample, we fit an ARMA(p, q) with
GARCH(p', ¢') disturbances for each component S,
withj=1,...,r.

3. The standard ARMA-GARCH processes assume condi-
tionally Gaussian distributions. However, as the stock
returns are far away from Gaussianity, the unobserved
components should be non-Gaussian too, in which case
the standard ARMA-GARCH specification may not be
adequate to fit the components. In this paper, we ex-
plore alternative conditional distributions, and esti-
mate the parameters of the ARMA(p, q)-GARCH(p', q)
model, with a sample of 1000 observations, using the
Gaussian, Student’s t, and GED distributional models for
innovations. Then, for each model, we generate one-
step-ahead forecasts for the univariate conditional vari-
ance of each’sy,

o~

h; 10011000 = V Eloolﬂ]ooo] , J=1,...,r. (31)
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Fig. 2. Variation in the variability of S, and the IBEX 35 index.

Thus, using a rolling prediction for t = 1001, ..., 1250,
we have:

Hye1 = diag(hl,t\t—h ceey hr,t\t—l),

t = 1001, ..., 1250, (32)

which is the conditional covariance matrix of s, =
Gits ..., S¢) attime t.

. The conditional variance of X; at time t, ;, is computed
using Eq. (20). The conditional variance of the ith stock
return at time t is then given by the ith diagonal term

OfSZt:
.
=2 _ n 2
Vitie—1 = E :hj-rltflaij’
j=1

i=1,2,...,19, t = 1001, ..., 1250. (33)

From this expression and Eq. (19), we can see that x;,
which is generated by a linear combination of a set
of ICs, possess a GARCH-type structure. This result is
confirmed by the work of Nijman and Sentana (1996),
who show that a linear combination of independent
GARCH processes will be a weak GARCH process.

. To evaluate the forecasting performances of the GICA-

GARCH, CUC-GARCH, and O-GARCH models, we need
to compare the predicted volatility and the real one. As
the population volatility is not observed, the literature
proposes the substitution of a proxy for the real
volatility. Initially, the squares of the stock returns were
used as a proxy for the conditional variance (see for
example Franses & van Dijk, 1996). However, it has
been shown that the squared returns form a noisy proxy
for the conditional variance and perform very poorly
(Andersen & Bollerslev, 1998). Furthermore, Hansen
and Lunde (2006) show that an evaluation based on
squared returns can induce an inconsistent ranking of
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Fig. 3. Variation in the variability ot”sft and the stock returns with the largest weights: the positive ones on the left, and the negative ones on the right.

volatility models, and may select an inferior model as
the ‘best’ with a probability that goes to one when the
sample size increases. To avoid such inconsistencies, we
follow Hansen and Lunde’s approach and estimate the
conditional variance using the realized variance (RV),
which is constructed by taking the sum of squared
intraday returns (for more details, see Hansen & Lunde,
2006). Assuming that at day t we have f intraday
observations of the ith stock return, the RV at time ¢ is
defined as:

f
RVi = ) %2,
=1

i=1,...,19, t=1,...,T = 1250. (34)

In our empirical analysis, we construct the intraday
stock returns artificially, as follows. For a given trading
day t, we use the part of the day that the Madrid stock
market is open (9:00-17:30), and generate artificial
five-minute returns per day (f = 102) by a linear
interpolation method. We then have x?,,, and we
compute RV, fori = 1,...,19,t = 1001,...,T =
1250, as in Eq. (34). Once we have computed the RV,
we need to define the proxy for the true volatility.
Following Hansen and Lunde (2006), we employ
three different proxies for the conditional variance:
Proxyly = CRVy, where © = T 'Y|_, x2/RVy,
Proxy2;; = RV + (p**" — pl°%¢)?, and Proxy3; = x2.
Then, substituting each proxy for the unobserved
conditional variance, the one-step-ahead volatility
forecast error is given by:

=2
€ir = ProxXy; — ¥ yi—1>

i=1,2,...,19, t = 1001, ..., 1250. (35)

. To evaluate the accuracy of the model, we compare

the prediction error (Eq. (35)) with a benchmark. This
benchmark is obtained by predicting the volatility of

the stock returns by their marginal variance. Then, we
define the relative forecast error by:
€it
)
it

i=12,...,19, t = 1001, ..., 1250, (36)

where € is the forecast error of the ith stock return
obtained by the benchmark method, computed by

REit =

* ~2
€; = Proxy; — o;

i
i=12,...,19, t =1001,..., 1250, (37)

where 5 is the marginal variance of the ith stock return
at time t. To minimize the impact of outliers when we
analyze the volatility forecasting performances of the
GICA-GARCH, CUC-GARCH, and O-GARCH models, we
use the Median Relative Absolute Error (MdRAE) crite-
rion (see for example Hyndman & Koehler, 2006, for a
complete review of measures of forecast accuracy):

MdRAE(RE;;) = median(|RE]|).

In addition, we can also use the ratio of the correspond-
ing measure for the ICA and the CUC methods with re-
spect to the PCA:

MdRAE;ca
RelMdRAE = —— (38)
MdRAEpca

Our purpose here is to compare the forecasting
performances of the GICA-GARCH, CUC-GARCH, and O-
GARCH models when the latent factors are conditionally
Gaussian, Student t, and GED distributed. We propose
to make this comparison following two approaches. In
the first approach, we fit a univariate ARMA-GARCH
model for each component, as we have explained above.
In the second approach, even though the CUC-GARCH
model assumes that all components follow GARCH(1, 1)
processes, and it is common to use this specification for
modelling stock returns (see, for example Hansen & Lunde,
2005), we decide to analyze the forecasting performance
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Table 12
Components of the IBEX 35 from 2000 to 2004, classified by sectors.

Consumption

Other goods of consumption ALT Altadis
Consumption services
Leisure time/Tourism/Hotel industry AMS Amadeus
NHH NH Hoteles
Mass media/Publicity SGC Sogecable
TPI Telefénica Publicidad e Informacién

Financial services/Estate agencies

Banking BBVA
BKT
POP
SAN

Banco Bilbao Vizcaya Argentaria
Bankinter

Banco Popular

Banco Santander Central Hispano®

Oil and energy

oil REP Repsol
Electricity and gas ELE Endesa
IBE Iberdrola
Materials/Industry/Building
Minerals | Metals ACX Acerinos
Building ACS Grupo ACS
ANA Acciona
FCC Fomento de Construcciones y Contratas S.A.
FER Grupo Ferrovial

Technology/Telecommunications

Telecommunications and others TEF
Electronic and software TPI

Telefonica
Indra

2 Known as SCH from 01/01/2000 to 31/10/2001.

by fitting univariate GARCH(1, 1) processes to each IC, CUC,
and PC.

The estimates of the parameters when we fit a uni-
variate model to each component are shown in the Ap-
pendix (see Table 13 for the GARCH(1, 1) specifications and
Tables 14-16 for the ARMA-GARCH specifications). From
these four tables, we can see that the GARCH parame-
ters are significant for both the GARCH(1, 1) and ARMA-
GARCH approaches, and for the three conditional distribu-
tions. This then indicates the time-varying volatility phe-
nomenon of the components. Moreover, from Tables 14—
16, we can see that the ARMA parameters are also sta-
tistically significant. Thus, it seems that fitting a univari-
ate ARMA model to the conditional mean of the compo-
nents is reasonable. This result is corroborated by the fact
that the values of the likelihood function for the ARMA-
GARCH models are larger than the corresponding ones for
the GARCH(1, 1) specifications. Moreover, the values of the
likelihood under the assumption of conditional Student’s t
innovations are the largest ones (and the GED distribution
outperforms the Gaussian one). Under the Student’s t dis-
tribution, the degrees of freedom parameter v is very simi-
lar for the two approaches. According to both the GARCH(1,
1) and ARMA-GARCH specifications, the estimates for v
vary from 5.12 to 32.73, indicating heavy tails and excess
kurtosis. A similar result is obtained with the shape pa-
rameter of the GED distribution, which varies from 1.29
to 1.93. According to previous conclusions, the ARMA-
GARCH specifications with conditional Student’s t innova-
tions seem to provide the most appropriate approach to

fitting the underlying conditionally heteroskedastic com-
ponents.

To evaluate the forecasting performances of the GICA-
GARCH, CUC-GARCH, and O-GARCH models, we take into
account the two modelling approaches mentioned before.
Moreover, in order to analyze the effect of increasing the
number of components, when we evaluate the forecasting
performances of the three models, we vary r from 1 to 5.
The average results of the ReIMdRAE, measured over the
19 stock returns, are displayed in Tables 10 (GARCH(1, 1)
specifications) and 11 (ARMA-GARCH processes). To avoid
having the choice of the proxy affecting our evaluation, we
compute the ReIMdRAE criterion using the three proxies
proposed by Hansen and Lunde (2006). From Tables 10 and
11, we can see that, due to the use of a relative measure,
the ReIMdRAE, the values of the criterion do not differ
very much for the different proxies. For both the GARCH(1,
1) and ARMA-GARCH modelling approaches, we obtain
robust results, and JADE is chosen as the best method for
estimating the underlying components, independently of
the proxy and conditional distribution we use.

Tables 10 and 11 also show that the values of the
RelMdRAE criterion are smaller when we adopt the ARMA-
GARCH modelling approach, assuming conditional GED
innovations. Then, it seems that the GICA-GARCH model
with the underlying components estimated by JADE, and
modelled according to univariate ARMA-GARCH models,
produces the best forecasting performance. Furthermore,
note that, independently of our scenario, all of the ICA
algorithms perform better than CUC and PCA. Therefore,
the GICA-GARCH model seems to be a good method for
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Table 14

Estimates of the parameters when a univariate ARMA-GARCH model, with conditionally Gaussian innovations, is fitted to each component. The standard

errors are in parentheses.

A. Garcia-Ferrer et al. / International Journal of Forecasting 28 (2012) 70-93

Conditional mean estimates (Gaussian)

GARCH parameter estimates (Gaussian)

1 [%2) 0 Qo a; B a B2 L
1st - - - 0.01227 0.07732 0.90871 - - —1285.70
(0.00011)  (0.00111)  (0.00169)
2nd - - - 0.01332 0.13065 0.85452 - - —1115.61
(0.00008)  (0.00207)  (0.00245)
cuc 3rd - - - 0.02650 0.10639 0.86589 - - —1298.55
(0.00053)  (0.00255)  (0.00480)
4th - - - 0.00533 0.05540 0.93840 - - —1237.02
(0.00001)  (0.00014)  (0.00016)
5th - - - 0.00680 0.04572 0.94533 - - —1242.28
(0.00005)  (0.00046)  (0.00077)
1st - - - 0.00524 0.08521 0.91036 - - —1266.91
(—0.00002)  (—0.00057) (—0.00061)
2nd —0.17807 —0.10131 - 0.01387 0.04792 0.92942 - - —1137.32
(0.03873)  (0.01395) (0.00014)  (0.00048)  (0.00149)
FAST 3rd - - - 0.00360 0.04397 0.95215 - - —1251.49
(0.00005)  (0.00118)  (0.00162)
4th - - - 0.00421 0.04991 0.02731 0.00000 0.91670 —1272.69
(0.00006)  (0.00052)  (0.00063)  (0.00000)  (0.00222)
5th —0.22140 - - 0.00411 0.04469 0.94823 - - —1080.46
(0.01912) (0.00002)  (0.00043)  (0.00064)
1st - - - 0.00346 0.07403 0.92268 - - —1260.39
(0.00001)  (0.00042)  (0.00046)
2nd - - - 0.00136 0.02519 0.97268 - - —1327.85
(0.00001)  (0.00010)  (0.00012)
JADE 3rd 0.26230 - —0.3133 0.00095 0.02224 0.97604 - - —1239.33
(0.00939) (0.02586) (0.00001)  (0.00054)  (0.00070)
4th - - - 0.00124 0.00791 0.98948 - - —1184.77
(0.00001) (0.00001) (0.00003)
5th - - - 0.00000 0.12415 0.87585 - - —1257.95
(0.00000)  (0.00095)  (0.00098)
1st - —0.19241 - 0.00340 0.04671 0.94937 - - —1275.42
(0.00558) (0.00001)  (0.00019)  (0.00024)
2nd  0.66035 - —0.694639071 0.00988 0.08780 0.90194 - - —1242.97
(0.10792) (0.06644) (0.00036)  (0.00854)  (0.01137)
SOBI 3rd - - - 0.01962 0.07834 0.89444 - - —1209.84
(0.00014)  (0.00030)  (0.00068)
4th - —0.25338 - 0.00094 0.02297 0.97499 - - —1217.08
(0.03571) (0.00001)  (0.00086)  (0.00105)
5th 0.13886 - - 0.00443 0.08276 0.90974 - - —1051.31
(0.01712) (0.00001)  (0.00064)  (0.00073)
1st - - - 0.01532 0.11528 0.87109 - - —1281.88
(0.00005)  (0.00086)  (0.00083)
2nd 0.10370 - - 0.01046 0.09091 0.89308 - - —1123.96
(0.00849) (0.00005)  (0.00141)  (0.00185)
PCST 3rd —0.27392 - - 0.00248 0.05245 0.94428 - - —1165.67
(0.04905) (0.00001)  (0.00035)  (0.00038)
4th —0.50852 —0.12906 - 0.54059 0.28527 - - - —1235.24
(0.07742)  (0.01737) (0.00213)  (0.00425) ()
5th - - - 0.00756 0.08021 091151 - - —1174.15
(0.00015)  (0.00845)  (0.00959)

forecasting the conditional covariance matrix of large
datsets.

6. Concluding remarks

We have proposed a new framework for modelling
and forecasting large conditional covariance matrices

1 Evaluating the forecasting performance of the model using the
Relative Geometric Mean Relative Absolute Error (RelGMRAE) gives
similar results, which are available from the authors upon request.

of stock returns using a few underlying factors with
conditional heteroskedasticity. Our model, called the
GICA-GARCH model, assumes that the co-movements of a
vector of financial data are driven by a few independent
components which evolve according to univariate ARMA-
GARCH models. In our model, the conditional covariance
matrix of the factors is assumed to be diagonal. Therefore,
the GICA-GARCH provides a parsimonious representation
of the conditional covariance matrix of the data, and
reduces the number of parameters to be estimated. Our
estimation procedure consists of two steps: in the first
step, we exploit the unconditional distribution of the data
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Table 15

Estimates of the parameters when a univariate ARMA-GARCH model, with conditional Student’s t innovations, is fitted to each component. The standard

errors are in parentheses.

Conditional mean estimates
(Student’s t)

GARCH parameter estimates (Student’s t)

1 (92} 01 ao ai B a B2 v L

1st - - - 0.00478 0.06068 0.93429 - - 10.89320 —1277.02
(0.00002)  (0.00034)  (0.00045) (1.25590)

2nd - - - 0.01010 0.11359 0.87552 - - 9.41743 —1106.76
(0.00005)  (0.00158)  (0.00189) (1.58004)

cuc 3rd - - - 0.01442 0.08448 0.90113 - - 8.24801 —1285.39
(0.00026)  (0.00246)  (0.00390) (1.36669)

4th - - - 0.00535 0.05506 0.93784 - - 13.72002 —1225.95
(0.00001)  (0.00018)  (0.00020) (1.48350)

5th - - - 0.00544 0.04100 0.95196 - - 8.29869 —1227.34
(0.00006)  (0.00071)  (0.00120) (3.85762)

1st - - - 0.00643 0.08987 0.90446 - - 18.07498 —1264.81
(0.00002)  (0.00059)  (0.00064) (0.67388)

2nd —0.16450 —0.09279 - 0.01685 0.04987 0.92217 - - 8.89697 —1124.68
(0.02138)  (0.03832) (0.00045)  (0.00105)  (0.00437) (1.53003)

FAST 3rd - - - 0.00187 0.02219 0.97463 - - 5.12131 —1212.83
(0.00001)  (0.00030)  (0.00038) (0.57865)

4th - - - 0.00146 0.05707 0.00000 0.16346 0.77648 20.89172 —1270.65
(0.00002) (0.00064) (0.00000) (0.01313) (0.01492) (1.31786)

5th —0.20820 - - 0.00467 0.04830 0.94390 - - 5.90092 —1049.51
(0.02066) (0.00002)  (0.00075) (0.00101) (1.10583)

1st - - - 0.00288 0.07342 0.92418 - - 32.73407 —1259.62
(0.00001)  (0.00042)  (0.00046) (3.91472)

2nd - - - 0.00118 0.02878 0.96949 - - 11.61326 —1320.81
(0.00001)  (0.00015)  (0.00018) (3.32136)

JADE 3rd  0.24290 - —0.31926  0.00308 0.02822 0.96609 - - 6.70582 —1195.76
(0.01905) (0.02896)  (0.00001)  (0.00010)  (0.00013) (2.16043)

4th - - - 0.01036 0.98901 - - 8.83368 —1160.25
(0.00000)  (0.00001)  (0.00001) (157673)

5th - - - 0.00827 0.08109 0.91028 - - 12.65770 —1242.84
(0.00003)  (0.00097)  (0.00108) (161714)

1st - —0.21951 - 0.00272 0.04557 0.95143 - - 13.29084 —1271.02
(0.06128) (0.00001)  (0.00017)  (0.00021) (2.51943)

2nd 0.66536 - —0.68480 0.07030 0.92970 - - 29.23345 —1235.73
(0.09307) (0.05207)  (0.00000) (0.00123) (0.00108) (3.06391)

SOBI 3rd - - - 0.01224 0.07779 0.90655 - - 13.00792 —1202.14
(0.00005)  (0.00033)  (0.00050) (3.15802)

4th - —0.24597 - 0.00243 0.03053 0.96535 - - 6.60787 —1189.80
(0.04729) (0.00001)  (0.00042)  (0.00057) (1.90747)

5th  0.13256 - - 0.00436 0.08017 0.91330 - - 9.64494 —1040.07
(0.01894) (0.00001)  (0.00069)  (0.00078) (2.37447)

Ist - - - 0.00898 0.09332 0.89955 - - 11.26723 —1275.69
(0.00003)  (0.00054)  (0.00054) (1.22038)

2nd 0.11600 - - 0.00769 0.07146 0.91625 - - 11.32251 —1116.85
(0.00906) (0.00003)  (0.00060)  (0.00082) (1.37506)

PCST 3rd —0.27877 - - 0.00175 0.05163 0.94643 - - 12.37339 —1160.80
(0.04874) (0.00001)  (0.00027)  (0.00029) (1.65436)

4th —0.51948 —0.12175 - 0.52641 0.36565 - - - 5.23611 —1207.89
(0.07128)  (0.01586) (0.00223)  (0.00562) (0.68776)

5th - - - 0.00241 0.04144 0.95541 - - 7.51165 —1149.85

in order to estimate the ICs, sort them in terms of their
variability and disentagle the common and idiosyncratic
components of the financial data; in the second step, we
estimate the conditional covariance matrix of the data as
a linear combination of the conditional variances of the
common components, which are modelled according to
univariate ARMA-GARCH models.

The advantage of the GICA-GARCH model with respect
to the existing literature lies in the potential of ICA
to identify the underlying components of a vector of
financial data. In this paper, we have proposed three
simulation experiments to test the potential of ICA (using

three different algorithms), CUC, and PCA to identify
the conditionally heteroskedastic components when they
have different excess kurtosis. We have analyzed the
performances of the three models in terms of both
the correlation coefficients and the mean square errors
between each original component and its estimation.
The results show that, regardless of whether the excess
kurtosis comes from different GARCH specifications or
from different conditional distributions, the ICA methods
perform better than either CUC or PCA for identifying the
conditionally heteroskedastic components. Furthermore,
the results for the ICA algorithms are as expected: both



92 A. Garcia-Ferrer et al. / International Journal of Forecasting 28 (2012) 70-93

Table 16

Estimates of the parameters when a univariate ARMA-GARCH model, with conditionally GED innovations, is fitted to each component. The standard errors

are in parentheses.

Conditional mean estimates (GED)

GARCH parameter estimates (GED)

o1 [%2) 01 Qo aq B a B2 K L

Ist - - - 0.00761 0.06785 0.92379 - - 1.61184 —1279.61
(0.00005)  (0.00058)  (0.00081) (0.01417)

2nd - - - 0.01172 0.12276 0.86422 - - 1.51608 —1106.29
(0.00007)  (0.00180)  (0.00217) (0.00996)

cuc 3rd - - - 0.02008 0.09770 0.88168 - - 1.49041 —1286.95
(0.00041)  (0.00264)  (0.00463) (0.00945)

4th - - - 0.00489 0.05557 0.93874 - - 1.63661 —1230.79
(0.00001)  (0.00015)  (0.00016) (0.03297)

5th - - - 0.00606 0.04411 0.94794 - - 1.47294 —1229.22
(0.00005)  (0.00051)  (0.00085) (0.01028)

1st - - - 0.00603 0.08760 0.90700 - - 1.72765 —1264.54
(0.00002)  (0.00058)  (0.00063) (0.01239)

2nd —0.18356 —0.11151 - 0.01575 0.04940 0.92441 - - 1.53683 —1127.43
(0.05594)  (0.01395) (0.00024)  (0.00064)  (0.00235) (0.01162)

FAST 3rd - - - 0.00240 0.02994 0.96599 - - 1.30333 —1219.60
(0.00003)  (0.00080)  (0.00110) (0.00741)

4th - - - 0.00360 0.06065 0.00602 0.16333 0.76453 1.83612 —1271.89
(0.00004) (0.00077) (0.00065) (0.01029) (0.01134) (0.01527)

5th —0.21700 - - 0.00410 0.04477 0.94767 - - 1.33268 —1053.63
(0.01551) (0.00001)  (0.00046)  (0.00065) (0.00807)

1st - - - 0.00329 0.07367 0.92328 - - 1.92725 —1260.22
(0.00001)  (0.00042)  (0.00046) (0.01528)

2nd - - - 0.00132 0.02677 097118 - - 1.65921 —1323.07
(0.00001)  (0.00011)  (0.00014) (0.01176)

JADE 3rd  0.25026 - —0.30598 0.00243 0.02743 0.96836 - - 1.37199 —1208.88
(0.02849) (0.02275)  (0.00001) (0.00017)  (0.00023) (0.01695)

4th - - - 0.00017 0.00845 0.99066 - - 1.49322 —1169.71
(0.00000)  (0.00001)  (0.00002) (0.01734)

5th - - - 0.00912 0.09136 0.89997 - - 1.68202 —1244.06
(0.00003)  (0.00091)  (0.00097) (0.01074)

Ist - —0.20611 - 0.00297 0.04644 0.95022 - - 1.63470 —1270.72
(0.06716) (0.00001)  (0.00018)  (0.00023) (0.01239)

2nd  0.64005 - —0.68167 0.00459 0.06619 0.92914 - - 1.60530 —1235.73
(0.08910) (0.05644)  (0.00004) (0.00162)  (0.00188) (0.02064)

SOBI 3rd - - - 0.01676 0.07808 0.89916 - - 1.67812 —1205.51
(0.00009)  (0.00031)  (0.00057) (0.01911)

4th - —0.26120 - 0.00191 0.02850 0.96796 - - 1.38617 —1194.25
(0.06143) (0.00002)  (0.00085)  (0.00112) (0.01050)

5th  0.13034 - - 0.00468 0.08160 0.91062 - - 1.50754 —1040.56
(0.01330) (0.00001)  (0.00065)  (0.00075) (0.01259)

1st - - - 0.01232 0.10488 0.88439 - - 1.63892 —1277.09
(0.00004)  (0.00067)  (0.00065) (0.01142)

2nd 0.10278 - - 0.00902 0.08209 0.90390 - - 1.56961 —1116.80
(0.00911) (0.00004)  (0.00098) (0.00131) (0.01197)

PCST 3rd —0.27098 - - 0.00201 0.05319 0.94448 - - 1.63389 —1160.80
(0.00509) (0.00001)  (0.00033)  (0.00035) (0.01251)

4th —0.52010 —0.12053 - 0.51991 0.32528 - - - 1.29398 —1207.77
(0.06942)  (0.01486) (0.00189)  (0.00445) () (0.00551)

5th - - - 0.00269 0.03848 095715 - - 1.41907 —1156.06
(0.00001)  (0.00077)  (0.00086) (0.01282)

FastICA and JADE, which estimate the ICs by maximizing
their non-Gaussianity, capture the excess kurtosis of the
conditionally heteroskedastic factors better than SOBI.
Therefore, the GICA-GARCH model seems to provide a
more reliable identification of the unobserved components
than either the O-GARCH or CUC-GARCH models.

We have tested the GICA-GARCH model empirically on
a vector of stock returns of the Madrid stock market. After
applying the three ICA algorithms to the identification
of the unobserved components and fitting a univariate
model to each one of them, the empirical results show
that the most appropriate specification for fitting each IC

is the ARMA-GARCH model with conditional Student’s t
innovations. Furthermore, as accurate volatility forecasts
are a crucial issue, we have evaluated the forecasting
performance of our model. We have implemented a rolling
window scheme to compare the relative ability to predict
the one-step-ahead volatility of the GICA-GARCH, CUC-
GARCH, and O-GARCH models. In terms of the average
RelMdRAE results, and independently of the proxy used
to substitute the real volatility, our model provides more
accurate volatility forecasts than either the CUC-GARCH
or O-GARCH models for the stock returns of the IBEX 35
index. In particular, according to the empirical results, the
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volatility forecasts obtained using the JADE algorithm are
more accurate than those generated by using any other ICA
algorithm.

Designing an alternative procedure for sorting the ICs
and choosing the optimal number of factors may be
challenges for the future. Moreover, we are interested
in comparing the performance of our model with the
perfomances of other multivariate GARCH models, such
as the dynamic factor GARCH, and extending the GICA-
GARCH model to other applications.
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