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13.1 Introduction

The detection of outliers in a time series is an important issue because their
presence may have serious effects on the analysis in many different ways. For
instance, even if the time series model is well specified, outliers can lead to
biased parameter estimation, which may result in poor forecasts. Several out-
lier detection procedures have been proposed for detecting different outlier
types in autoregressive-integrated-moving average (ARIMA) time series mod-
els, including those proposed in Fox (1972), Tsay (1986, 1988), Chang et al.
(1988), Chen and Liu (1993), McCulloch and Tsay (1994), Luceño (1998), Jus-
tel et al. (2001), Bianco et al. (2001), and Sánchez and Peña (2003), among
others. Most of these methods are based on sequential detection procedures
that first search for the presence of an outlier. When the first outlier is found,
its size is estimated, its effect is cleaned from the series, and a new search
for outliers is carried out. However, as Sánchez and Peña (2003) pointed out,
sequential detection procedures have three main drawbacks. First, a biased
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estimation of the initial parameter values may strongly affect the power to
detect the outliers. Second, in many situations, the distributions of the test
statistics are unknown and critical values needed to apply the tests should be
estimated via simulation for different sample sizes and models. Indeed, iter-
ative procedures sequentially test for the presence of outliers, which usually
leads to overdetection of their number as a consequence of the inability to
control the size of the outlier tests. Third, they suffer from both the masking
effect, which means that outliers are undetected because of the presence of
others, and the swamping effect, which means that outliers affect the data in
such a way that good observations appear to be outliers as well.

The main purpose of this chapter is to develop a procedure for detecting
additive outliers in seasonal ARIMA time series models based on model se-
lection strategies. The proposed procedure is designed to try to mitigate the
drawbacks of sequential detection methods. In order to achieve this goal, it
is shown that the problem of detecting additive outliers in seasonal ARIMA
models can be formulated as a model selection problem in which the candidate
models explicitly assume the presence of additive outliers at given time points.
Therefore, the problem of detecting additive outliers reduces to the problem
of selecting the best model, which is the one that contains the true outliers in
the series. It is important to note that this chapter is focused on the detection
of additive outliers, which are especially pernicious, for instance, in unit root
testing; see Perron and Rodriguez (2003). Although the proposed methodology
can be extended to additional types of outliers, this requires more elaboration
and is beyond the scope of this chapter. Therefore, this chapter can be seen
as a first attempt at outlier detection in time series based on model selection
strategies.

Model selection is one of the most important problems in statistics and
consists in selecting, from a set of candidate models, the one that best fits the
data under some specific criteria. Two main strategies have been developed:
the goal of the efficient criteria is to select the model that it is expected to
best predict new observations, while the goal of the consistent criteria is to
select the model that actually has generated the data. These strategies lead
to different model selection criteria. The efficient criteria include, among oth-
ers, the Final Prediction Error (FPE), proposed by Akaike (1969), which is
an estimator of the one-step-ahead prediction variance; the Akaike Informa-
tion Criterion (AIC), proposed by Akaike (1973), which is an estimator of the
expected Kullback–Leibler divergence between the true and the fitted model;
and the corrected Akaike Information Criterion (AICc), derived by Hurvich
and Tsai (1989), which is a bias-corrected form of the AIC that appears to
work better in small samples. These criteria have the property that, under the
main assumption that the data come from a model with an infinite number
of parameters, they asymptotically select the model producing the least mean
squared prediction error. The consistent criteria include, among others, the
Bayesian information criterion (BIC), derived by Schwarz (1978), which ap-
proaches the posterior probabilities of the models; and the Hannan and Quinn
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Criterion (HQC), derived by Hannan and Quinn (1979), which was designed
to have the fastest convergence rate to the true model. These criteria have
the property that, assuming that the data come from a model with a finite
number of parameters, the criteria will asymptotically select the true model.

This chapter proposes a new model selection criterion for selecting the
model for a time series that follows a seasonal ARIMA model and is contam-
inated by additive outliers. The proposed model selection criterion avoids the
use of multiple hypothesis testing, iterative procedures, and the simulation
of critical values. As the objective is to incorporate in the final model the
true number of additive outliers in a time series, the model selection criterion
considered in this chapter falls more naturally into the category of consistent
criteria. Therefore, we explore some modification of the Bayesian information
criterion including an additional term useful for outlier detection. However,
computation of the values of the criterion for all the possible candidate mod-
els, including all the possible configurations of outliers, may be impossible
even for small sample sizes. Therefore, this chapter also proposes a procedure
for selecting the most promising models.

The remainder of this chapter is organized as follows. In Section 13.2, the
additive outlier detection problem for seasonal ARIMA models is formulated
as a model selection problem. Section 13.3 presents the modified Bayesian
information criterion for these models. Section 13.4 proposes a procedure for
selecting the most promising models. Finally, Section 13.5 is devoted to show-
ing the performance of the procedure by means of simulated and real data
examples.

13.2 Formulation of the Outlier Detection Problem

A time series xt follows a seasonal ARIMA(p, d, q) × (P, D, Q)s model if,

ΦP (Bs)φp(B)(1 − Bs)D (1 − B)d
xt = ΘQ(Bs)θq(B)εt, (13.2.1)

where B is the backshift operator such that Bxt = xt−1; φp(B) = 1 −
φ1B − · · · − φpB

p and θq(B) = 1 − θ1B − · · · − θqB
q are regular backshift op-

erator polynomials of finite degrees p and q, respectively; ΦP (Bs) = 1 −
Φ1B

s − · · · − ΦP BsP and ΘQ(Bs) = 1 − Θ1B
s − · · · − ΘQBsQ are seasonal

backshift operator polynomials with seasonal period s of finite degrees P
and Q, respectively; d is the number of regular differences; D is the num-
ber of seasonal differences; and εt is a sequence of independent and identically
distributed Gaussian random variables with zero mean and standard devia-
tion σ. It is assumed that the roots of φp(B), θq(B), ΘQ(Bs), and ΦP (Bs) are
all outside the unit circle and that neither the polynomials φp(B) and θq(B)
nor ΦP (Bs) and ΘQ(Bs) have common factors. In the case of D = P = Q = 0,
the model in (13.2.1) reduces to the nonseasonal ARIMA model.
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Suppose now that the observed time series (y1, . . . , yT ) contains m additive
outliers. Therefore,

yt = xt + wt1I
(t1)
t + · · · + wtm

I
(tm)
t ,

where xt follows the seasonal ARIMA(p, d, q) × (P, D, Q)s model in (13.2.1),
τm = (t1, . . . , tm)′ is the m × 1 vector containing the locations of the outliers,
for each h ∈ τm, I

(h)
t is a dummy variable such that I

(h)
t = 1 if t = h and is

zero otherwise, and wt1 , . . . , wtm
are the outlier sizes at the corresponding

locations. Consequently, the time series yt follows the regression model with
seasonal ARIMA errors given by

ΦP (Bs)φp(B)(1 − Bs)D(1 − B)d(yt − wt1I
(t1)
t − · · · − wtm

I
(tm)
t )

= ΘQ(Bs)θq(B)εt, (13.2.2)

in which the regressors are the dummy variables and the parameters linked
with the regressors are the outlier sizes. This model is denoted as Mτm . Note
that this notation suppresses whichever combination t1, . . . , tm and seasonal
ARIMA model are being considered, but this will be clear in the context.
The parameters of the model Mτm

can be summarized in the pm × 1 vector
given by

ρτm
= (φ1, . . . ,φp, θ1, . . . , θq,Φ1, . . . ,ΦP ,Θ1, . . . ,ΘQ, wt1 , . . . , wtm

, σ)′,

where pm = p + q + P + Q + m + 1.
Let L(ρτm

|y, Mτm
) be the likelihood function of the time series y =

(y1, . . . , yT )′, given the model Mτm and its parameters ρτm . Exact maximum
likelihood estimates (MLEs) of the model parameters, denoted as ρ̂τm , are
obtained after maximizing the likelihood L(ρτm |y, Mτm

) with respect to the
parameters ρτm . Several methods for maximizing the likelihood of seasonal
ARIMA regression models such as the one in (13.2.2) are available. See, for
instance, the methods proposed by Harvey and Phillips (1979), Kohn and
Ansley (1985), and Gómez and Maravall (1994), among others. In particular,
in the simulated and real data examples in Section 13.5, the arima function
implemented in the statistical software R (http://www.r-project.org/) is used.
This function computes the exact likelihood via a state-space representation
of the ARIMA process, and the innovations and their variances are found by
a Kalman filter.

In summary, given the time series y, the number and location of the ad-
ditive outliers, m and τm, respectively, and the parameter vector, ρτm , are
unknown and have to be estimated from the observed time series. Determin-
ing the number and location of outliers in y is now equivalent to selecting the
model Mτm with the true outliers from among the set of candidate models.
Once this is done, inference on the vector of parameters, ρτm

, can be car-
ried out by means of the MLEs, ρ̂τm

. However, note that such inferences are
conditional on the assumption that the true outliers have been selected.
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13.3 Modified Bayesian Information Criterion for
Outlier Detection

Once the outlier detection problem has been written as a model selection prob-
lem, the aim of this section is to propose a criterion to select the model Mτm

that contains the true additive outliers in the series. Note that the candidate
models include the one without outliers, Mτ0 , the T models with one outlier,
Mτ1 , and so on. In total, there are

(
T
m

)
candidate models with m outliers

covering all the possible outlier locations. Thus, assuming that the number of
outliers has an upper bound, mmax < T , the total number of candidate models
is given by (

T

0

)
+

(
T

1

)
+ · · · +

(
T

mmax

)
. (13.3.1)

This section proposes a model selection criterion for selecting the model Mτm

by a modification of the BIC that includes an additional term that may be
useful for outlier detection.

The BIC is derived after approximating the posterior distributions of the
candidate models, denoted as p(Mτm

|y). This is given by (see Claeskens and
Hjort (2008)),

p(Mτm
|y) =

p(Mτm
)L(Mτm

|y)
f(y)

, (13.3.2)

where p(Mτm) is the prior probability of model Mτm , L(Mτm |y) is the marginal
likelihood for model Mτm

given by

L(Mτm |y) =
∫

L (ρτm
|y, Mτm

) p (ρτm
|Mτm

) dρτm
, (13.3.3)

with p(ρτm |Mτm), the prior probability of the parameters given the model
Mτm

, and f(y) is the unconditional likelihood of y given by

f(y) =
mmax∑
j=0

∑
τj

p(Mτj )L(Mτj |y).

From a Bayesian point of view, and taking into account that f(y) is con-
stant for all the models, in order to compute p(Mτm |y), it is required to give
prior probabilities to the models Mτm and to compute the marginal likeli-
hood for each model Mτm , L(Mτm |y). Therefore, calculation of the posterior
probabilities in (13.3.2) requires specification of the priors of the models and
parameters, and integration over the parameter space. However, obtaining
an analytical expression for L(Mτm |y) is infeasible. Alternatively, a second-
order expansion of the log-likelihood function, �τm(ρτm) = log L(ρτm |y, Mτm),
around the MLEs, ρ̂τm

, leads to the following Laplace approximation to the
integral in (13.3.3); see Claeskens and Hjort (2008),
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L(Mτm
|y) =

(
2π

T

) pm
2

exp (�τm
(ρ̂τm

)) p (ρ̂τm
|Mτm

) |Hτm
(ρ̂τm

)|− 1
2

+ O
(
T− pm

2 −1
)

,

where p (ρ̂τm
|Mτm

) is the prior of the parameters given the model, and
�τm

(ρ̂τm
) and Hτm

(ρ̂τm
) are, respectively, the log-likelihood and the Hessian

matrix of T−1�τm(ρτm
), all evaluated at ρ̂τm

. Therefore, (13.3.2) can be written
as follows:

p(Mτm |y) =
p(Mτm)

f(y)

[(
2π

T

) pm
2

exp (�τm
(ρ̂τm

)) p (ρ̂τm
|Mτm

) |Hτm
(ρ̂τm

)|− 1
2

+ O
(
T− pm

2 −1
) ]

, (13.3.4)

which also depends on the prior probabilities of the models, p(Mτm), and on
the unconditional likelihood, f(y). Taking logarithms, (13.3.4) leads to,

log p(Mτm |y) = �τm(ρ̂τm
) +

pm

2
log

2π

T
− 1

2
log |Hτm(ρ̂τm

)|
+ log p(ρ̂τm |Mτm) + log p(Mτm) − log f(y) + O(T−1).

(13.3.5)

Following Claeskens and Hjort (2008), the dominant terms in (13.3.5) are the
first two, which are of sizes OP (T ) and log T , respectively, while the others are
OP (1). The usual BIC approximation of the posterior probability in (13.3.5)
is based on assuming uniform prior probabilities for all the candidate models.
Thus, the prior probability of model Mτm

under the BIC approximation is
given by

pBIC(Mτm) =
1(

T

0

)
+

(
T

1

)
+ · · · +

(
T

mmax

) ,

which is independent of the number of outliers, m. Now, taking uniform prior
probabilities for the parameters of the models and ignoring all the lower order
terms, minus two times (13.3.5) leads to the BIC, which selects the model
Mτm

that minimizes

BIC(Mτm) = −2�τm (ρ̂τm) + pm log T. (13.3.6)

However, note that the prior probability of the number of outliers used by the
BIC approximation is given by

pBIC(m) =
∑

τm, m fixed

pBIC(Mτm) =

(
T

m

)
(

T

0

)
+

(
T

1

)
+ · · · +

(
T

mmax

) . (13.3.7)
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As a consequence, when mmax � T/2, i.e., when the maximum possible num-
ber of outliers is small compared with T/2, as is expected in most real time
series applications, the model with the largest prior probability is the model
with the largest possible number of outliers. Indeed, the prior probabilities
assigned by the BIC in (13.3.7) are an increasing function of the number of
outliers m, which may be unreasonable. For instance, note that pBIC(1) and
pBIC(2) are T and T (T − 1)/2 times larger than pBIC(0).

Next, an alternative criterion to the BIC in (13.3.6) is proposed. This is
called BICUP (for BIC with uniform prior), and it is based on penalizing for
the possible number of outliers. This leads to a uniform prior distribution
over the number of outliers. Then, taking equal prior probabilities for all the
models with the same number of outliers, the prior probability of the model
Mτm under the BICUP approximation is given by

pBICUP (Mτm
) =

1
1 + mmax

1(
T

m

) .

Now, taking uniform prior probabilities for the parameters of the models, and
after deleting constants and low order terms, minus two times (13.3.5) leads to
the BICUP for outlier detection, which selects the model Mτm that minimizes

BICUP(Mτm
) = −2�τm

(ρ̂τm
) + pm log T + 2 log

(
T

m

)
. (13.3.8)

Note that the expression of the BICUP in (13.3.8) is similar to the expression
of the BIC in (13.3.6) except for the last term, which shows an additional
penalization for models that increases with m. Consequently, the BICUP nat-
urally incorporates the information about the number of models for different
numbers of outliers. The prior probability of the number of outliers taken by
the BICUP approximation is given by

pBICUP (m) =
∑

τm, m fixed

pBICUP (Mτm) =
1

1 + mmax
,

which has the attractive property that the probability of having an additional
additive outlier does not depend on the global number of outliers, since the
prior ratio,

pBICUP (Mτm+1)
pBICUP (Mτm)

= 1,

is independent of m. Then, all the possible numbers of outliers are equally
probable a priori. Figure 13.1 shows the last term in (13.3.8) as a function of
m and T . In particular, the additional term increases with m and/or T , so
that the penalization is larger than the BIC penalization for large values of
m and T .



K12089 Chapter: 13 page: 324 date: December 2, 2011

324 Economic Time Series: Modeling and Seasonality

T

100
200

300

400

500

m

5

10

15

20

Penalization

50

100

150

FIGURE 13.1
Last term of BICUP as a function of T and m.

In summary, the model Mτm is selected as the one that provides the min-
imum value of the proposed BICUP. Note that the model selection deter-
mines the number of outliers, m, their locations, τm, and the MLEs, ρ̂τm

, of
the model parameters. Additionally, the model selection criterion for outlier
detection in (13.3.8) provides approximations of the posterior probabilities
p(Mτm

|y). More precisely, the approximated value of p(Mτm
|y) is given by

pBICUP (Mτm |y) =
exp

(
−BICUP(Mτm

)
2

)
∑mmax

j=0
∑

τj
exp

(
− BICUP

(
Mτj

)
2

) .

Also, pairwise comparison of two models can be done using the BICUP approx-
imation of the posterior odds for model Mτm

against Mτn
, which is given by

oBICUP (Mτm , Mτn |y) =
pBICUP (Mτm

|y)
pBICUP (Mτn |y)

= exp
(

BICUP (Mτn) − BICUP(Mτm)
2

)
, (13.3.9)

which only requires computation of the values of the BICUP for models Mτm

and Mτn .
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13.4 Procedure for Detecting Potential Outliers

There is an additional problem in computing the value of the BICUP. As noted
in Section 13.2, the number of candidate models, given in (13.3.1), may be huge
even for small values of T and mmax. Consequently, getting the values of the
proposed criterion for all the possible candidate models is a computationally
expensive problem. This section proposes a procedure for reducing the number
of models for which the criterion should be computed. The procedure is based
on that proposed by Peña and Tiao (1992) for defining Bayesian robustness
functions in linear models. The idea is to split the time series observations
into two groups: the first would include observations that have high potential
of being outliers, while the second includes the observations that should be
discarded as outliers beyond any reasonable doubt. If T1 is the number of
observations in the first group, then, instead of computing the value of the
proposed criterion for all the candidate models, it is possible to compute it for
all the models, which include as outliers all the combinations of the T1 obser-
vations in the first group. Thus, the number of candidate models reduces to,(

T1

0

)
+

(
T1

1

)
+ · · · +

(
T1

T1

)
,

which is a much smaller number than the one in (13.3.1).
Obviously, the key point in the procedure is to split the time series ob-

servations into these two groups. Due to the masking and swamping effects,
the groups cannot be made by simply computing the value of the proposed
criterion for the T models Mτ1 . Alternatively, the following approach is con-
sidered. Let Ar be the event “the observation yr is an outlier given the y.”
Then, the probability of two observations, yr and ys, being outliers can be
written as follows:

P (Ar ∩ As) = P (Ar|As)P (As). (13.4.1)

If yr and ys are nonoutlying time points, the probability in (13.4.1) is approxi-
mately given by P (Ar)P (As) because P (Ar|As) � P (Ar). However, if ys is an
outlier, P (Ar|As) will be very different than P (Ar) because the correct detec-
tion of an outlier will affect the value of P (Ar), and P (Ar ∩ As) will be quite
different from P (Ar)P (As). As a consequence, a way to distinguish potential
outliers is to examine the values of the differences, P (Ar ∩ As) − P (Ar)P (As).

However, computation of these probabilities is also a difficult task because
they involve a large number of probabilities. As an alternative, it is possible
to use the approximated posterior odds given in (13.3.9). The idea is to build
the interactions matrix with elements,

dBICUP (r, s)
= |oBICUP (Mr,s

τ2
, Mτ0 |y) − oBICUP (Mr

τ1
, Mτ0 |y)oBICUP (Ms

τ1
, Mτ0 |y)|,
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for r, s = 1, . . . , T , where oBICUP (Mr,s
τ2 , Mτ0 |y) is the BICUP approximation

of the posterior odds of the model that assumes that yr and ys are outliers
against Mτ0 , and oBICUP (Mr

τ1
, Mτ0 |y) and oBICUP (Ms

τ1
, Mτ0 |y) are the BICUP

approximations of the posterior odds of the model that assumes that, on the
one hand, yr and, on the other hand, ys, are outliers, against Mτ0 . If yr is an
outlier, the values dBICUP (r, ·) are expected to have relatively large values.
Indeed, if there are other outliers masked by yr, these will show up as large
values in the distribution of dBICUP (r, ·). Thus, large values of dBICUP (r, ·)
will indicate outliers, and relatively large values in a column, possible masking
between these points. Therefore, a procedure for pointing out potential outliers
is the following:

1. Compute the values of oBICUP (Mr
τ1

, Mτ0 |y) for all the models
with an outlier at time point r = 1, . . . , T . Let m(oBICUP ) and
sd(oBICUP ) be the mean and the standard deviation of the val-
ues of oBICUP (Mr

τ1
, Mτ0 |y). Then, include in the set of potential

outliers those points that satisfy

oBICUP
(
Mr

τ1
, Mτ0 |y

) ≥ m(oBICUP ) + 3 × sd(oBICUP ). (13.4.2)

2. Compute the values of dBICUP (r, s) for all the models with two
outliers at the time points r, s = 1, . . . , T . Let m(dBICUP ) and
sd(dBICUP ) be the mean and the standard deviation of the val-
ues of dBICUP (r, ·). Then, include in the set of potential outliers
those points ys that satisfy

dBICUP (r, s) ≥ m(dBICUP ) + 5 × sd(dBICUP ). (13.4.3)

Several comments on this procedure are in order. First, once the procedure
provides the set of potential outliers, the values of the BICUP for all the mod-
els included in this set are computed and the model that gives the minimum
value of the BICUP is the selected model. Then, estimation of the model pa-
rameters and outlier sizes is made jointly through the MLEs. Second, note that
the use of the procedure avoids the problem of choosing the value of mmax,
i.e., the maximum number of outliers allowed, because it is only required to
compute the value of the criterion for those models that include potential out-
liers. Therefore, the number of potential outliers can be seen as the value of
mmax. Third, the values 3 and 5 have been chosen following the suggestions
in Peña and Tiao (1992). Indeed, in our experience with simulated time se-
ries, these values provide a number of potential outliers equal to or slightly
larger than the true number of outliers. Therefore, these values contribute in
an appropriate way to establishing the observations that are suspected to be
outliers and to give an accurate estimate of the maximum number of possible
outliers mmax. This is important because taking smaller values may lead to a
large group of potential outliers that includes false outliers, which may lead
to estimation problems, while taking larger values may lead to a small group
of potential outliers not including all the true outliers. In those unexpected
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situations in which the number of candidate outliers given by the procedure
is large, we can use the median and MAD (median of the absolute devia-
tions from the sample median) instead of the mean and standard deviation.
In this situation, following Peña (2005), we can consider as heterogeneous ob-
servations those that deviate from the median by more than 4.5 times the
MAD. Fourth, it may appear that the BICUP interactions matrix is only able
to point out the presence of two outliers and that higher order interactions
should be analyzed. However, our simulation experiments showed us that this
not the case. An example of this can be seen in Section 13.5.

13.5 Examples

This section illustrates the performance of the proposed outlier detection
methodology for a simulated series and for the time series of logarithms of
the monthly total retail sales in the United States.

13.5.1 Outlier detection for a simulated time series

A simulated time series contaminated with three additive outliers is built as
follows. First, a series with sample size T = 100 is simulated from the seasonal
ARIMA(0, 1, 1) × (0, 1, 1)12 model given by

(1 − B12)(1 − B)xt = (1 + 0.5B12)(1 + 0.4B)εt,

where εt follows a Gaussian distribution with zero mean and standard de-
viation σ = 0.7071. Then, the series (x1, . . . , xT ) is contaminated with three
additive outliers at time points t1 = 50, t2 = 51, and t3 = 52 and outlier sizes
w50 = 3, w51 = −3, and w52 = 3, respectively. Thus, the outlier magnitudes
are around 4.25 times the error standard deviation. The contaminated time
series is, then, given by

yt = xt + 3I
(50)
t − 3I

(51)
t + 3I

(52)
t ,

for t = 1, . . . , T . Both the outlier-free and the contaminated time series are
shown in Figure 13.2. Note that the outlier effects are almost imperceptible
in the plot. However, the additive outliers produce large effects in parameter
estimation. This is illustrated in Table 13.1, which includes the estimates of
the parameters of two seasonal ARIMA(0, 1, 1) × (0, 1, 1)12 models fitted to
the contaminated series yt. The table shows that the parameter estimates
ignoring the presence of the additive outliers are very different than the true
model parameters, whereas when the model includes the three outliers the
estimation is accurate.

Next, we apply the procedure described in Section 13.4 for selecting po-
tential outliers to the contaminated series (y1, . . . , yT ). The first step of the
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FIGURE 13.2
Simulated time series with (in black) and without (in gray) outliers.

procedure consists of computing the values of the BICUP approximated pos-
terior odds for models with one outlier, i.e., M t

τ1
for t = 1, . . . , T , against

Mτ0 . Figure 13.3 shows these values. The straight horizontal line in the plot
is the height of the threshold in (13.4.2). The plot in Figure 13.3 shows that
the observation at time point t = 51 is labeled as a potential outlier because
the value of its BICUP approximated posterior odds is much larger than the
threshold. Importantly, note that the observations at time points t = 50 and

TABLE 13.1
Estimated parameters and standard errors in the simulated
series contaminated by three outliers.

Estimated parameter values
True parameter Model without Model with

values the outliers the outliers

θ1 = −0.4 0.378 −0.456
(0.092) (0.125)

Θ1 = −0.5 0.220 −0.408
(0.135) (0.153)

w50 = 3 — 2.814
(0.58)

w51 = −3 — −2.973
(0.785)

w52 = 3 — 2.84
(0.568)

σ = 0.707 1.373 0.722
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FIGURE 13.3
BICUP approximated posterior odds for models with one outlier in the sim-
ulated series contaminated with three outliers.

t = 52 are not labeled as potential outliers in this first step, maybe because
they are masked by the outlier at t = 51. This example shows the need for the
second step in the algorithm described in Section 13.4.

The second step of the procedure starts by computing the BICUP interac-
tions matrix and the corresponding thresholds for the 100 rows of the matrix
given in (13.4.3). The three observations at t = 50, t = 51, and t = 52 are la-
beled as potential outliers by the procedure. More precisely, on the one hand,
the rows 1 to 49 and 53 to 100 of the interactions matrix point out that the
observation at t = 51 is a potential outlier. On the other hand, the rows 50 and
51, and then 51 and 52, point out that the observations at t = 52 and t = 50
are also potential outliers, respectively. Figure 13.4 shows the row numbers 50,
51, and 52 of the BICUP interactions matrix. The straight horizontal lines in
the plots are the height of the corresponding thresholds given in (13.4.3).
Note that there are no nonoutlier observations pointed out as potential
outliers.

The last step of the proposed methodology is to compute the values of the
BICUP for only those models that incorporate the potential outliers at time
points t = 50, t = 51, and t = 52. Table 13.2 shows these values for all the
models considered. As can be seen, the BICUP selects the model with the true
outliers. Once the outliers have been detected, inference on the model param-
eters can be performed through the MLEs. The second column in Table 13.1
shows the parameter estimates of the model that incorporates the true outliers.
Note that the parameter estimates of the seasonal ARIMA(0, 1, 1) × (0, 1, 1)12
fitted to the contaminated series yt and the outlier size estimates are very close
to their real values.
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FIGURE 13.4
Rows of the BICUP interactions matrix in the simulated series contaminated
with three outliers.

Finally, although the proposed procedure is only suited for series with ad-
ditive outliers, we compare the previous results with the results obtained with
the seasonal adjustment software X-12-ARIMA developed by the U.S. Cen-
sus Bureau. The X-12-ARIMA software, besides fitting the seasonal ARIMA
model, searches for three outlier types—additive outliers, level changes and
transitory changes—using a sequential detection procedure. In this case, the
X-12-ARIMA software detects a level shift at t = 50 with estimated size
3.0391, an additive outlier at t = 51 with estimated size −5.8669, and a level
shift at t = 53 with estimated size −2.8975. Note that the estimated size of
the second level shift is very close to the estimated size of the first level shift
but with negative sign. Therefore, the second level shift somehow cancels the
effect of the first level shift.

TABLE 13.2
Values of the criteria for candidate models in the simulated series
contaminated with three outliers.

τm (−) (50) (51) (52) (50, 51) (50, 52) (51, 52) (50, 51, 52)
BICUP 321.3 316.6 267.6 315.9 268.5 248.5 269 246.8
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13.5.2 Outlier detection for the logarithms of the monthly
total retail sales in the United States

The performance of the proposed methodology is illustrated by analyzing the
logarithms of the monthly total retail sales in the United States. The time
series, which starts in January 1992 and ends in December 2007, so that
it consists of T = 192 data points, is plotted in Figure 13.5. The series has
clearly seasonal behavior. In order to account for trading-day effects, we in-
clude seven regressor variables in the model. The first six variables are de-
fined as r1t = (no. of Mondays) − (no. of Sundays) in month t, . . . , r6t = (no.
of Saturdays) − (no. of Sundays) in month t, along with a variable defined as
r7t = length of month t. Then, a seasonal ARIMA(0, 1, 1) × (0, 1, 1)12 model
plus the seven regressors is fitted to the time series. The autocorrelation func-
tion of the residual series does not show serial dependence, so that the fit ap-
pears to be appropriate. Table 13.3 includes the estimates of the parameters
of two seasonal ARIMA(0, 1, 1) × (0, 1, 1)12 models with trading-day effects
fitted to the time series. In particular, the second column in Table 13.3 shows
the MLEs of the parameters of this model along with their standard errors.

Next, we apply the procedure described in Section 13.4 for selecting poten-
tial outliers in the logarithm of the monthly total retail sales series. The first
step of the procedure consists of computing the values of the BICUP approx-
imated posterior odds for models with one outlier. Figure 13.6 shows these
values. The straight horizontal line in the plot is the height of the threshold
in (13.4.2). The plot in Figure 13.6 shows that the observation at October 2001
is labeled as a potential outlier because the value of its BICUP approximated

Year
1995 2000 2005

11.8

12.0

12.2

12.4

12.6

12.8

FIGURE 13.5
Logarithm of the monthly total retail sales in the United States.
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TABLE 13.3
Estimated parameters and standard errors in the monthly total
retail sales series.

Estimated parameter values
Outliers at October 2001

Parameter Seasonal ARIMA and May 2005

θ1 0.570
(6.73 × 10−2)

0.426
(9.38 × 10−2)

Θ1 0.602
(5.83 × 10−2)

0.547
(5.84 × 10−2)

β1 0.5 × 10−3

(1.8 × 10−3)
−0.6 × 10−3

(1.5 × 10−3)
β2 1.9 × 10−3

(1.8 × 10−3)
1.8 × 10−3

(1.4 × 10−3)
β3 1.1 × 10−3

(1.9 × 10−3)
0.5 × 10−3

(1.5 × 10−3)
β4 5.7 × 10−3

(1.8 × 10−3)
6.7 × 10−3

(1.5 × 10−3)
β5 6.7 × 10−3

(1.8 × 10−3)
6.6 × 10−3

(1.4 × 10−3)
β6 −1.2 × 10−3

(1.8 × 10−3)
−1.2 × 10−3

(1.5 × 10−3)
β7 4.11 × 10−2

(5.8 × 10−3)
4.02 × 10−2

(0.47 × 10−3)
w118 — 5.38 × 10−2

(8.8 × 10−3)
w161 — −4.4 × 10−2

(8.7 × 10−3)
σ 1.33 × 10−2 1.15 × 10−2

posterior odds is larger than the threshold. None of the values of the BICUP
approximated posterior odds for the rest of observations is close to the corre-
sponding threshold.

Then, the second step of the procedure starts by computing the BICUP
interactions matrix. Figure 13.7 shows the row numbers 118 and 161 of this
matrix. The straight horizontal lines in the plots are the height of the corre-
sponding threshold given in (13.4.3). These plots show that the observations
in October 2001 and May 2005 are labeled as potential outliers. Indeed, these
two observations are labeled as potential outliers in many of the rows of the
interaction matrix that are not shown here. No more observations are labeled
as potential outliers.

The final step of the proposed methodology is to compute the values of
the BICUP for only those models that incorporate the potential outliers at
October 2001 and May 2005. Table 13.4 shows these values for all the models
considered. The BICUP selects the model with outliers in October 2001 and
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FIGURE 13.6
BICUP approximated posterior odds for models with one outlier in the loga-
rithm of the monthly total retail sales series in the United States.
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FIGURE 13.7
118th and 161st rows of BICUP interactions matrix in the logarithm of the
monthly total retail sales series in the United States.
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TABLE 13.4
Values of the criteria for candidate models in the
logarithm of the monthly total retail sales series.

τm (−) (118) (161) (118, 161)
BICUP −1015.2 −1026.2 −1016.7 −1034.5

May 2005. Thus, the proposed criterion provides a model for the logarithm
of the monthly total retail sales in the United States that incorporates two
outliers. The third column in Table 13.3 shows the MLEs of the parameters
of this model. This includes the outlier size estimates of the two outliers, ŵ118
and ŵ161. Apparently, the first/second outlier produced an increase/decrease
in the monthly total retail sales series.

Finally, as in the simulated example, we compare the previous results with
the results produced by X-12-ARIMA. For that, we include regressor variables
to model trading-day and Easter effects. For this series, the X-12-ARIMA
software only detects an additive outlier in October 2001 with estimated size
0.0527, which is very close to the estimated value in our final model with
two outliers. X-12-ARIMA does not detect the observation in May 2005 as an
outlier.
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