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ABSTRACT
This paper proposes an automatic procedure to identify threshold autoregres-
sive models and specify the values of thresholds. The proposed procedure is 
based on the time-varying estimation of the parameters using an arranged 
autoregression. The proposed method not only allows for the automatic iden-
tifi cation of the thresholds, but also has a superior identifi cation performance 
than the competitors. The performance of the proposed procedure is illustrated 
using Monte Carlo experiments and real data. Copyright © 2010 John Wiley 
& Sons, Ltd.
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INTRODUCTION

Thanks to the methodology developed by Box and Jenkins (1970), autoregressive moving average 
(ARMA) models have been the most successful models for analysing and forecasting linear time 
series. Part of the impact of the Box–Jenkins methodology can be explained by the use of simple 
graphical tools, based on the sample autocorrelations, as an aid in the identifi cation and diagnosis 
steps. In the modelling of nonlinear processes, there is a lack of these kinds of graphical tools. This 
paper fi lls this gap in the literature and proposes a graphical method to identify and model the self-
exciting threshold autoregressive (TAR) models, proposed by Tong (1978, 1983) and Tong and Lim 
(1980). A time series yt is a TAR(k; p, d) if it follows
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where j = 1, . . . , k. The integer k is the number of regimes, yt−d is the threshold variable and the 
values of the thresholds are −∞ = r0 < r1 < . . . < rk = ∞; d is called the delay parameter. In each 
regime, et

(j) is a sequence of independent and identically distributed (i.i.d.) random variables with 
zero mean and fi nite and constant standard deviation σ (j).
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There are two main approaches to detecting a TAR model. The fi rst is based on likelihood ratio 
(LR) tests. Chan (1990) and Chan and Tong (1990) developed the null distribution of the LR test 
using a Gaussian process and found it to be non-standard. Hansen (1999a,b) used asymptotic and 
bootstrap distributions to overcome this problem. If the thresholds r1, . . . , rk−1 were known, LR tests 
would supply the most powerful tests. However, that is not the case in a practical situation. In prac-
tice, the threshold is a nuisance parameter which is not identifi ed under the null hypothesis. This 
problem has a negative impact on the effi ciency of the procedures. To circumvent this problem, LR 
tests need to assume certain ranges of possible thresholds. As a result, LR tests need both intensive 
computational methods and non-standard reference distributions.

The second main approach to detecting a TAR model is by means of portmanteau tests based on 
the predictive residuals of some arranged autoregressions. If the model is linear, the sequence of 
predictive residuals of the arranged autoregression has known properties. Petruccelli and Davis 
(1986) proposed a CUSUM-type test using these predictive residuals that is sensitive to the presence 
of a TAR structure. Tsay (1989) considered a variant of this idea that is based on a standard F-test. 
The advantage of this second approach is that, as opposed to the LR test approach, we do not need 
to know the thresholds to compute the test. However, the tests do not provide any information about 
the value of the thresholds, which are eventually needed to estimate the TAR model. Tsay (1989) 
proposed some approximate graphical methods using a scatterplot to detect the thresholds manually. 
However, more accurate procedures to estimate the values of the thresholds are needed.

We use the idea of arranged autoregression to develop a graphical procedure based on recursive 
and time-varying estimation of the parameters. The proposed procedure allows us to detect TAR 
models and also to estimate the thresholds. The proposed procedure has a superior identifi cation 
performance to previous proposals.

The article is organized as follows. The next section introduces the arranged autoregression and 
discusses when it is possible in time series. The third section introduces notation and discusses the 
recursive estimation method. The fourth section gives the proposed graphical procedure, which is 
called arranged recursive least squares (ARLS), and we illustrate the advantage of the ARLS method. 
The fi fth section details an automatic procedure, which is called Aut-ARLS. Finally, the sixth section 
applies Aut-ARLS to real data.

ARRANGED AUTOREGRESSION

An AR(p) model can be written as yt = Xt′φ + at, where Xt = (1, yt−1, . . . , yt−p)′ and t = p + 1, . . . , 
n. Following the notation in Tsay (1989), we refer to (yt, Xt′) as a case. We then denote an arranged 
autoregression as an autoregression with the cases rearranged based on a particular criterion. It is 
interesting to see that, by rearranging cases, we still maintain the temporal structure of the series 
within the cases. Consequently, these arranged autoregressions keep the property of weak exchange-
ability, in the sense that the vector of error terms at of any rearrangement still maintains its covariance 
matrix unaltered (Wedlin, 1997).

Let us defi ne S as the set of all possible orders of the time index t = 1, . . . , n, and si,t as the tth 
position, t = 1, . . . , n, of the ith element of S, with i = 1, . . . , n!. The subscript i will sometimes 
be omitted when we refer to a generic element of S. Let us denote πt as the tth position for the par-
ticular case corresponding to arranging the cases in ascending order of the threshold variable yt−d. 
That is, πt is the time index of the tth smallest element of (yh, . . . , yn−d), where h = max(1, p + 1 
− d). To illustrate the arranged autoregressions we show a simple example. Let yt be a time-varying 
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AR(1) process yt = φ1tyt−1 + at. If we sort (yt, yt−1) using yt−d as the threshold variable, we obtain the 
arranged autoregression
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A TAR(2; 1, d) model is just a particular case of this example, where the time-varying parameter 
has two values. It is important to note that in a TAR(2; 1, d) model the sequence of parameters in 
(2) has a change point at the value r. We will use this property to estimate the parameters in (2) 
using a time-adaptive procedure such that we can easily see a change in the estimated parameters 
at t = r. If the true model is linear, then the sequence of recursive estimates of (2) will have the same 
properties as the time-adaptive estimation of an arranged autoregression using any random element 
from S. We need then to use a suitable time-adaptive estimation procedure.

RECURSIVE METHODS FOR THE ESTIMATION OF TIME-VARYING PARAMETERS

Weighted least squares
We defi ne the arranged time series yst

 as a time-varying arranged AR(p) process with time-varying 
parameters:

 y X a t h ns s s st t t t
= ′ + =φ ; , . . . ,  (3)

where, for any order si, belonging to the set S, ast
 is a sequence of i.i.d. random variables such that 

E(ast
) = 0 and E(a2

st
) = σ 2

t < ∞. The vector Xst 
= (1t, yst−1, . . . , yst−p)′ is a set of explanatory variables 

that can be either deterministic or stochastic. The vector φst
 = (φ0st

, φ1st
, . . . , φpst

)′ is the set of time-
varying parameters that need to be estimated.

The weighted least squares (WLS) estimator φ̂st
 is the solution of ˆ argminφ φ

φ
s st t

C= ( ), where
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where κ(t, j) is the so-called forgetting profi le. In this article we will use forgetting profi les of the type

 κ λt j j ti
i j

t

, ,( ) = <
= +
∏
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 (5)

where κ (t, t) = 1 and 0 ≤ λt ≤ 1 is called the forgetting factor. The forgetting factor can either be 
constant, λt = λ, or time varying. The forgetting factor causes a progressive reduction in the impor-
tance of old data in the estimation. For this reason, the estimation is time adaptive. The WLS estima-
tor of (3) is

 φ̂s s t s s t st t t t t
X X X y= ′( ) ′−Λ Λ1  (6)
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where Xst
 is the matrix (Xsh

, Xsh+1
, . . . , Xst

)′, Λt is a diagonal matrix with the elements λh, λhλh+1, . . . , 
λhλh+1 . . . λt in the main diagonal, and yst

 = (ysh
, . . . , yst

)′. This estimator can be calculated recur-
sively by means of (see, for instance, Ljung and Söderström, 1983)

 ˆ ˆ ˆφ φs s s s st t t t t
M X a= +−

−
1

1  (7)

where âst
 = yst

 − X′st
φ̂st−1

 is the one-step-ahead prediction error and Mst
 = (X′st

ΛtXst
). Expression (7) is 

the recursive least squares (RLS) estimator. The gain matrix M−1
st
 can also be calculated recursively 

as
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Properties of the RLS estimator with forgetting
The properties of the RLS estimates with a variable forgetting factor are complex. The distribution 
of the parameter estimators for a general time-varying regression model is unknown. In this article, 
however, we need the properties of RLS estimates under the assumption of a time-invariant AR 
process. We will use those properties to establish a benchmark with which to compare the estimates 
of an arranged autoregression like (2), which is clearly time varying, having a shift in the parameters 
caused by the ordering of the variables using the threshold variable yt−d.

In the case of a time-invariant AR process with no forgetting, i.e., with λt = 1, the MSE of the 
OLS estimator is (Fuller and Hasza, 1981; Kunitomo and Yamamoto, 1985)

 MSE OLS
ˆ ˆ ˆφ φ φ φ φ σ( ) = −( ) −( )′⎡

⎣⎢
⎤
⎦⎥
= + ( )− −E

n
O n

2
1 3 2Γ  (9)

where Γ = E(XtX′t ), which can be estimated by Γ̂ = n−1(X′tXt)−1. The use of a forgetting factor can be 
interpreted as a shrinkage of the sample size. In OLS each data point has the same contribution in 
the estimation. However, in the estimator (7), the equivalent or effective sample size is lower than 
n. If we use, for simplicity, a constant forgetting factor, the equivalent sample size is neq = 1 + λ + 
··· + λn−1. If n → ∞ the asymptotic equivalent sample size is usually termed the asymptotic memory 
length and is easily computed as

 N0
1

1
=

− λ
 (10)

Consequently, the MSE of the RLS estimator is larger as λ is smaller, since it is as if we are a 
smaller sample size. The asymptotic MSE for the RLS estimator with forgetting factor can be written 
approximately as

 MSE RLSφ̂ σ λ( ) = ′( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
− −2 1 3 21E X X Ot t tΛ  (11)

and, if λ is close to 1, it can be approximated as

 MSE RLSφ̂ σ( ) = ′( )⎡⎣ ⎤⎦
−2 1E X Xt t tΛ  (12)
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and is estimated by

 MSE RLS
� φ̂ σ( ) = ′( )−t t t tX X2 1Λ  (13)

with σ̂ 2
t an estimate of σ2; for example, the recursive estimator

 ˆ ˆ ˆ ˆσ σ σt t t t
t p

a2
1

2 2
1

21= +
−

−( )− −  (14)

Adaptive forgetting factors
The forgetting factor will control the infl uence of the old observations in the estimation. To illustrate 
its importance we can rewrite the expression (4) as
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It is easily seen that the infl uence of the past is downweighted exponentially. In this way a λt far 
away from 1 causes new observations to have a larger infl uence in the estimation. Consequently, 
changes in the estimation are quickly found. This higher speed of adaptation, however, increases 
variability. It can be seen in (8) that the gain matrix, which is a measure of the dispersion of the 
estimation, grows as λt decreases. For this reason, a correct choice of forgetting factor is a key issue 
for a good adaptive estimation. Several adaptive forgetting factors have been proposed, some of 
which are:

• Fortescue et al. (1981): This proposal is related to the prediction error. It is defi ned by

 λ αt
s

s s s

a

X M X
t

t t t

pre = −
+ ′ −

−1
1

2

1
1

ˆ
 (16)

where α is a user-defi ned parameter. This parameter is a problem for the implementation of this 
forgetting factor, since there is no fi xed rule for selecting it.

• Landau et al. (1998): This proposal is related to the leverage of the new observations. It is defi ned 
by

 λt
s s s

s s s

X M X

X M X
t t t

t t t

lev = − ′
+ ′

−

−

−

−1
1

1

1

1

1
 (17)

• Sánchez (2006): This proposal is based on Cook’s distance. It is defi ned by

 λ λ λ χt m tP mDCook = + −( ) >( )min min1 2  (18)

where λmin is a lower bound of the forgetting factor specifi ed by the user, m is the number of 
parameters in (3) and Dt is a time-varying version of Cook’s distance, calculated by

 D
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where σ̂ 2
st−1

 is an estimate of σ2. Sánchez (2006) shows that this forgetting factor combines the 
advantages of (16) and (17).

In this article, we have used the forgetting factor proposed by Sánchez (2006). This choice is justi-
fi ed in the next sections.

ARRANGED RECURSIVE LEAST SQUARES APPLIED TO TAR MODELS

This section describes the proposed procedure for the identifi cation of TAR structures. This proce-
dure is called arranged recursive least squares (ARLS), and can easily be applied using graphical 
representations. For simplicity of notation, in this section we assume a TAR(2; 1, d) model and 
rewrite the model (1) as

 y I y at y r t tt d
= +( ) +− >( ) −φ δ 1  (20)

The main idea of the method is the estimation of the parameters of an arranged AR(p), as in (3), 
using a time-varying recursive estimation method, as described in (7). If the time-varying autoregres-
sion is arranged according to the threshold variable yt−d, the sequence of estimates φ̂πt

 will tend to 
show a structural change around the threshold value r. The procedure includes an analysis of the 
signifi cance of such structural change.

Initial estimate
The arranged autoregression needs a value for the delay parameter d. Since it will be unknown, alterna-
tive values of d will be used. The fi nal value of d can then be selected using, for instance, an information 
criterion. Once d is selected and the autoregression is arranged, we need an initial value φ̂0 to initialize 
the recursive estimation (7). The selection of an appropriate initial value is important, since it can help 
in the identifi cation of the threshold. A good option is to initialize the recursion using the OLS estima-
tion based on the whole sample. By doing so, we ensure that we start the estimation sequence at an 
intermediate value between both regimes: the recursive estimation of φ̂πt

 will then tend to trace out the 
shape of a knee around the threshold r that can be used for identifi cation. To better see this point, let 
y(1)

t  and y(2)
t  be AR(1) processes with parameters φ and φ + δ, respectively. Defi ne yt as a time series 

composed of y(1)
t  and y(2)

t , that is, yt = (yt′(1), yt′(2))′. In the same manner we can defi ne Xt = (Xt′(1), Xt′(2))′. 
If we fi t an AR(1) model to yt using OLS, we will obtain, after some algebra:

 ˆ ˆ ˆ ˆφ ωφ ω φ δ0
1 1= ′( ) ′ = + −( ) +( )−X X X yt t t t

�  (21)

where ω̂  = Xt′(2)Xt
(2)(Xt′(1)Xt

(1) + Xt′(2)Xt
(2))−1 and 1 − ω̂  = Xt′(1)Xt

(1)(Xt′(1)Xt
(1) + Xt′(2)Xt

(2))−1. Therefore, φ̂0 
will tend to be between φ and φ + δ.

Choice of adaptive forgetting factor
After the initial estimate φ̂0, we need the sequence of recursive estimates φ̂πt

 to be as close as possible 
to the true values. This is attained by the use of a forgetting factor in (8). In our case, the use of an 
adaptive forgetting factor is apparent. Firstly, if yt−d ≤ r the model is yπt

 = φXπt
 + at. We then require 

that φ̂πt
 moves from φ̂0 to φ very quickly, which implies the use of a small forgetting factor. However, 

once φ̂πt
 is close to φ we need the forgetting factor to increase so as to reduce sampling variability. 
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When yt−d > r, the model is yπt
 = (φ + δ)Xπt

 + at, and again we need a small forgetting factor to allow 
φ̂πt

 to approach φ + δ. Finally, once φ̂πt
 is close to φ + δ we need the forgetting factor to increase to 

reduce variability. As a result, by the use of an appropriate adaptive forgetting factor we can obtain 
a sequence φ̂πt

 with a knee around the threshold r.
Two different problems can arise when using an adaptive estimator (see, for instance, Rao Sripada 

and Grant Fisher, 1987). Firstly, a large matrix Mt
−1 in (7) will cause high variability in the sequence 

φ̂πt
. As a result, a false structural change could be detected. This problem can appear when the input 

observations Xπt
 are consecutively equal. This problem, however, can be diminished by using the previ-

ously variable forgetting factor (18) because in these cases the forgetting factor tends to increase.
The second problem is the opposite state. If Mt

−1 is too small, the parameter updating in expression 
(7) could turn off. This might happen, for instance, if the forgetting factor is too high. Consequently, 
an existing structural change might not be detected. We then need the adaptive forgetting factor to 
be sensitive to changes in the parameters of the model when it is estimated from an arranged autore-
gression using yt−d. The forgetting factor (17) proposed by Landau et al. (1998) is not a good choice 
for our purpose, because it is related to the leverage of the new observation. Since data are arranged 
according to increasing values of yt−d, the new observations and the previous ones are similar. Con-
sequently, the measure of leverage is not going to help detect any change in regime. Conversely, 
the forgetting factor proposed in Sánchez (2006) is especially convenient for our purpose. This 
forgetting factor is based on a recursive representation of Cook’s distance, allowing the forgetting 
factor to be sensitive to changes in the parameters of the model.

Confi dence intervals of φst
We need to evaluate whether a knee observed in the sequence of estimates φ̂πt

 is signifi cant, in the 
sense that it has been produced by a true change in regime. With this aim, we compare the observed 
trajectory φ̂πt

 with the expected trajectories under the assumption of no change in regime. This com-
parison can be made by constructing a confi dence region for the family of trajectories φ̂st

 when the 
model is linear, in a similar fashion to a control chart in statistical process control. The construction 
of such a confi dence region can be complicated. One way of computing such a region is by comput-
ing the trajectories corresponding to all the elements si from the set S. This leads to a set of trajectories 
φ̂si,t

, i = 1, . . . , n!. A confi dence region of coverage 100 × (1 − α)% can be obtained by keeping the 
percentiles α/2 and 1 − α/2 of those trajectories. For simplicity, we will use constant confi dence 
intervals along the time index. The two lines representing the percentiles of φ̂st

 can be interpreted as 
a confi dence region in which the trajectory φ̂πt

 will tend to lie under the linearity assumption. The 
trajectories φ̂st

 are computed using the same sequence of forgetting factors as in φ̂πt
; that is, λt ≡ λπt

.
One problem with the computation of these confi dence limits is that it can be infeasible to compute 

all the n! trajectories. The alternative of computing only a random sample of elements of S is still 
computationally expensive. Therefore, we propose to use confi dence intervals of φst

 based on some 
asymptotic approximation. Under the linearity assumption, the trajectories φ̂st

 and φ̂πt
 can be taken 

to be random samples from the same population. Hence, for large samples, MSE(φ̂si,n
) ≈ MSE(φ̂πn

), 
∀si ∈ S. If we have a sample size n suffi ciently large, the asymptotic confi dence interval of φst

 under 
the assumption of linearity can be approximated by

 ˆ ˆφ σα0 1 2
2 1± −

−Z Mn n  (22)

Then, if the trajectory φ̂πt
 has a knee outside the limits (22), we can conclude that there is a change 

in regime and that the knee identifi es the value of the threshold r.
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Finite sample performance of the asymptotic intervals
In this section, Monte Carlo experiments are used to evaluate the validity of the asymptotic intervals 
(22) as an approximation of the intervals obtained with the trajectories of estimates based on random 
elements of S. To that end we use simulated data from

 y I y at y t tt
= − +( ) +− >( ) −0 6

1 1 1. δ  (23)

where δ will have value 0 (AR(1) model) or 0.8 (TAR(2; 1, 1) model). The sample size will be n = 
150 and n = 500 for each δ. The sequence at will be a WN(0, 3) process.

Given model (23), if the sequence of recursive estimates φ̂πt
 lies outside the confi dence limits, we 

will conclude that the model is TAR. Moreover, the value of yt−1 corresponding to the value of φ̂πt
 

that is most distant from the limits will be the estimate of the threshold r. Figure 1 shows an example 
of the 95% confi dence intervals based on a replication of model (23). The fi gure shows the trajectory 
of the estimates φ̂πt

 along with some reference lines. The central solid line in Figure 1 is the OLS 
estimate φ̂0 used as the initial estimate. The dotted central line is the average of 5000 trajectories φ̂si,t

 
based on random elements of the set S. The solid limits are computed as in (22). The dotted limits 
show, for each t, the 2.5th and 97.5th empirical percentiles of those 5000 trajectories of φ̂si,t

.
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Figure 1. Recursive estimates φ̂πt
 of the time-varying AR(1) model arranged according to yt−1 for simulated data 

from model (23) for alternative values of δ and n. The solid lines are the initial estimate φ̂0 (centre line) and 
the 95% asymptotic confi dence intervals, whereas the dotted lines are the empirical counterparts based on 5000 
random trajectories φsi.t

 with i = 1, . . . , 5000. This fi gure is available in colour online at www.interscience.
wiley.com/journal/for
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When δ = 0, that is, when the process is linear, Figure 1 shows that the sequence of estimates φ̂πt
 

is always inside the limits. Conversely, when δ = 0.8 the sequence φ̂πt
 lies outside the limits in some 

periods, showing a change in the parameter. In this case, the most distant value from the limits is 
located around the value yt−1 ≈ 1, which is the true value of the threshold.

Figure 1 shows that the asymptotic limits can be a good approximation to the empirical ones. In 
order to validate this result, the experiment is repeated 1000 times for each n and δ. Several measures 
are used to compare the confi dence intervals. Firstly, we defi ne a measure of the relative difference 
between the asymptotic and empirical limits. It is called Bl and is calculated by
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where l will have value U (upper limit) or L (lower limit), and R is the number of replications. The sub-
scripts a and e are referred to as the asymptotic and empirical limits, respectively. This measure represents 
the distance between each empirical limit and its asymptotic approximation and is standardized by the 
amplitude of the interval. This standardization is necessary to give a better idea of the size of the bias 
with respect to the size of the interval we want to estimate. The second measure is defi ned by
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This measure compares the amplitude of the empirical and asymptotic intervals. The target is then 
A ≈ 1. The empirical limits have been estimated using 5000 random orders from the n! possible 
orders. The coeffi cient of variation of the empirical limits has also been computed. Table I sum-
marizes the results for different values of n and δ in model (23). The coeffi cients of variation are 
approximately 0, which means that 5000 random orders are enough to compute the empirical limits. 
The values of Bl are very small, of the order of 10−2 for every value of n and δ. Finally, the average 
value of A is close to 1. For n = 150 we have A ≈ 0.95, which means that the amplitude of the 
asymptotic limits are about 5% larger than the empirical ones, so that the asymptotic intervals are 
slightly conservative. In conclusion, the results confi rm that the asymptotic confi dence intervals are 
a good approximation of the empirical ones.

PERFORMANCE OF THE ARLS METHOD IN FINITE SAMPLES

This section evaluates the effi ciency of the ARLS method in detecting threshold nonlinearity using 
Monte Carlo experiments. The proposed ARLS method is compared with existing methods in the 

Table I. Values of measures Bl, A, CVl (where l ≡ U (upper limit) or l ≡ L (lower limit)) for simulated data 
from model (23) for alternative values of δ and n

δ n = 150 n = 500

BL BU A CVL CVU BL BU A CVL CVU

0 0.007 0.039 0.955 0.026 0.012 0.003 0.013 0.989 0.003 0.002
0.8 0.008 0.050 0.954 0.014 0.008 0.011 0.025 0.985 0.002 0.002
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literature. The competing methods are both general methods to detect nonlinearities as well as spe-
cifi c methods for TAR models. Among the general tests, we include in the evaluation the Tsay (1986) 
proposal, which is based on Tukey’s one-degree-of-freedom test for non-additivity; the McLeod and 
Li (1983) proposal, which is a portmanteau test based on examining squared residuals; and the BDS 
test proposed by Brock et al. (1996), which is based on the correlation dimension. The tests for TAR 
models included in this evaluation are the Tsay (1989) and Hansen (1997, 1999a,b) proposals. Tsay 
(1989) shows that his test is more powerful than the Petruccelli and Davies (1986) test and, for this 
reason, we do not include this test in the comparison. Hansen (1997) tests are based on structural 
change tests proposed in Davies (1987) and Andrews and Ploberger (1994). Hansen (1999a,b) pro-
poses four tests. Two are based on the asymptotic distribution and the other two are based on a 
bootstrap distribution. Each test is then adapted to homoskedastic or heteroskedastic errors. The 
signifi cance level used in all tests is α = 0.05. The proposed ARLS is based on the 95% asymptotic 
confi dence interval.

The fi rst experiment is based on model (23) for δ = (0, 0.25, 0.5, 0.75, 1). In this experiment, the 
Hansen (1999) tests are implemented using the code from the author’s web page. For this reason, 
the sample size is set to n = 289. Owing to the computational cost of these tests, we restrict the 
number of replications of this experiment to 100. Table II shows the detection rate of each test. It 
can be seen that the best results are obtained by ARLS.

The experiment is repeated using 5000 replications from model (23) for alternative values of δ ∈ 
[0, 1.2] and n = (150, 500), but without the Hansen tests, which were too time consuming to compute. 
Figure 2 displays the detection rates. The results confi rm that the proposed ARLS method is the 
most effi cient. It can also be seen that general nonlinear tests can have very low power to detect 
threshold nonlinearities.

A second experiment is based on Clements et al. (2003). They give results of the TAR tests pro-
posed by Hansen (1997). The Monte Carlo experiment is based on simulated data from 10 models 
with different characteristics. For n = 100 the authors set the number of replications to 1000, and 
for n = 200 the number of replications is 500. Table III summarizes the best result obtained for the 
Hansen (1997) tests in Clements et al. (2003), and our results for the ARLS method and the Tsay 
(1989) test. The best detection rate is always obtained with ARLS.

Table II. Detection rate of different tests for simulated data from 100 replications of model (23) for different 
values of δ, n = 289 and α = 0.05

Method δ

0 0.25 0.5 0.75 1

McLeod and Li (1983) 0.06 0.04 0.07 0.13 0.22
Tsay (1986) 0.02 0.14 0.29 0.59 0.89
Tsay (1989) 0.03 0.33 0.60 0.94 1.00
BDS2 0.14 0.13 0.15 0.32 0.56
BDS3 0.12 0.15 0.16 0.24 0.44
BDS4 0.15 0.10 0.11 0.22 0.35
Hansen bootstrap homoskedastic 0.04 0.06 0.15 0.36 0.76
Hansen bootstrap heteroskedastic 0.03 0.04 0.12 0.27 0.68
Hansen asymptotic homoskedastic 0.19 0.29 0.40 0.62 0.90
Hansen asymptotic heteroskedastic 0.01 0.02 0.06 0.21 0.56
ARLS 0.06 0.41 0.96 1.00 1.00
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Figure 2. Detection rate of ARLS method and McLeod (1983), BDS and Tsay (1986, 1989) tests for simulated 
data from 5000 replications of model (23) for alternative values of δ and n [(a) n = 150; (b) n = 500]. This 
fi gure is available in colour online at www.interscience.wiley.com/journal/for
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Finally, the effi ciency of the ARLS method in estimating the values of the thresholds is evaluated. 
5000 replications from model (23) are simulated for values of δ ∈ [0, 1] and n = 500. When the 
ARLS method detects a TAR model, it estimates a threshold r̂. The histogram of these estimated 
values r̂ is then computed for each δ. Figure 3 displays the results, showing that the histograms have 
a sharper peak around 1, which is the true value of the threshold.

Table III. Detection rates of ARLS method and Hansen (1997) and Tsay (1989) tests on simulated data from 
model (1) for d = 1 and p = 1. Hansen’s results have been extracted from Clements et al. (2003)

Regime 1 Regime 2 r n = 100 and 1000 
replications

n = 200 and 500 
replications

φ1
0 φ1

1 σ1 φ 2
0 φ 2

1 σ2 Hansen 
(1997)

Tsay 
(1989)

ARLS Hansen 
(1997)

Tsay 
(1989)

ARLS

0 0.3 1 0 0.3 1 — 0.045 0.040 0.066 0.054 0.049 0.063
−0.75 0.3 1 0 0.3 2 −0.76 0.193 0.040 0.374 0.312 0.075 0.338
−1.25 0.3 1 0 0.3 1 −0.97 0.741 0.212 0.744 0.982 0.376 0.990
−1.25 0.3 1 0 0.3 2 −1.25 0.391 0.126 0.480 0.716 0.239 0.793

0 −0.3 1 0 0.3 2 0.25 0.347 0.218 0.564 0.718 0.493 0.856
0 −0.7 1 0 0.3 1 0.34 0.826 0.734 0.902 0.984 0.969 1
0 −0.7 1 0 0.3 2 0.49 0.865 0.694 0.944 0.998 0.964 1
−1.25 −0.7 1 0 0.3 1 −0.2 0.913 0.858 0.980 0.996 0.982 0.998
−1.25 −0.7 1 0 0.3 2 −0.1 0.876 0.694 0.996 1 0.974 1
−1.25 −0.7 2 0 0.3 1 0.15 0.958 0.946 0.980 0.998 0.999 1
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Figure 3. Histogram of the values of thresholds estimated with the ARLS method on simulated data from 5000 
replications of model (23) for alternative values of δ and n = 500
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AUTOMATIC PROCEDURE TO IDENTIFY TAR MODELS

This section gives an automatic procedure for detecting and modelling TAR models, based on the 
results shown in previous sections. The proposed procedure is called Aut-ARLS and is as follows.

Step 1. Select the AR order p by considering the partial autocorrelation function and the Akaike 
information criteria. Select a maximum value dmax for the delay parameter.

Step 2. Fit a time-varying AR(p) arranged in ascending order according to yt−d for each value of d = 
1, . . . , dmax, and using the forgetting factor (18). Compute the 95% asymptotic confi dence 
interval using expression (22) for each parameter of the vector Φ̂. If there are values of the 
sequence of estimates φ̂jπt

, j = 1, . . . , p, lying outside the limits, the coresponding values yt−d 

are kept as a set of possible thresholds r y Z Mt d n nt

asc = − >{ }− −
−ˆ ˆ ˆΦ Φπ α σ0 1 2

2 1 . Moreover, the 

corresponding distances from the asymptotic limits are also kept at hasc = {|Φ̂πt
 − Φ̂0 || yt−d ∈ rasc}.

Step 3. Repeat step 2 with yt arranged in descending order of yt−d. Let us denote by ηt the tth position of 
the element of S corresponding to arranging the cases in descending order of the variable yt−d. 
We will denote the sequence of adaptive estimates as φ̂jηt

, j = 1, . . . , p. The use of both sequences 
of estimates, based on ascending or descending orders of yt−d, can be useful when the threshold 
is near to an extreme of the threshold variable, avoiding the possibility that the threshold is 
masked by the sampling variability of the initial estimates. As before, we obtain the set 

of possible thresholds r y Z Mt d n nt

desc = − >{ }− −
−ˆ ˆ ˆΦ Φη α σ0 1 2

2 1  and their respective distances 

hdesc = {|Φ̂ηt
 − Φ̂0 || yt−d ∈ rdesc}.

Step 4. Choose the threshold r for each value of d among the candidate values rasc and rdesc as follows. 
The sets rasc and rdesc, and their respective distances hasc and hdesc, are merged. If there are 
coincident candidates in rasc and rdesc, their corresponding distances in hasc and hdesc are added. 
The selected threshold r is then the candidate with the largest distance.

Step 5. For each value of d, fi t a TAR model using the corresponding estimates of r, should it exist. 
The AR order in each regime is selected using the model selection criteria proposed by 
Galeano and Peña (2007), where a modifi cation of AIC that improves the selection in TAR 
models is proposed.

Step 6. Repeat steps 2–5 on the residual series obtained in step 5, when yt−d ≤ r and yt−d > r. Since 
the variance can be different in each regime, this step can be performed by splitting the 
residuals of each regime and analysing each regime separately. The procedure is repeated 
until no additional thresholds are found.

Step 7. Select the fi nal TAR model. If several TAR models are detected for different d values, the 
fi nal TAR model is selected using the Galeano and Peña (2007) criteria.

The effi ciency of Aut-ARLS is evaluated via simulation. The fi rst experiment consists of the 
simulation of 1000 replications from the TAR(3; [2, 3, 1], 2) model:
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 (26)

where the sequence at
j will be a WN(0, σ ( j ) ) process, with σ ( j ) = (3, 2, 5). The sample size is n = 

500. Aut-ARLS is applied to the simulated data, obtaining for each replication the delay parameter 
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d and the threshold r. The detection rate of a TAR model using Aut-ARLS is 100%. Moreover, the 
percentage of replications where Aut-ARLS detects the right threshold variable is also 100%. Finally, 
we calculate the mean of the number of thresholds detected by Aut-ARLS, obtaining 2.02. Figure 
4 displays the histogram of the thresholds estimated for each replication. The histogram has two 
peaks around −0.5 and 2, which are the true values of the thresholds.

In the second experiment data are simulated from

 y I I y at y y t tt t
= − + +( ) +− < ≤( ) <( ) −− −0 6 1 0 5 0 5 2 0 5 12 2

. . . .δ δ  (27)

where (δ1, δ2) ∈ [0, 1] and n = 500. The sequence at will be a WN(0, 3) process. The experiment 
consists of the simulation of 500 replications for alternative values of δ1 and δ2. Figure 5(a) displays 
the detection rate of threshold nonlinearities. Figure 5(b) gives the percentage of replications where 
Aut-ARLS detects the true threshold variable. From the plots, it is clear that Aut-ARLS works 
correctly.

APPLICATIONS

In this section the proposed Aut-ARLS method is applied to some real examples. We have used the 
Canadian lynx data and the Sunspot data, which have been extensively studied in the literature: see 
Tong (1990, Ch. 7) for a summary.

Canadian lynx data
The Canadian lynx data consist of the lynx trapped in the Mackenzie River district of Canada. There 
are 114 observations. The data are in Tong (1990, p. 470). We follow Moran (1953) and make a log 
transformation. The logged data are displayed in Figure 6.
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Figure 4. Histogram of the threshold values detected by Aut-ARLS for simulated data from model (26)
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Figure 5. Summary of results for the second experiment based on model (27) for values 0 ≤ (δ1, δ2) ≤ 1 and 
n = 500. (a) Detection rate of TAR model; (b) percentage of detection of the true threshold variable. This fi gure 
is available in colour online at www.interscience.wiley.com/journal/for

We apply Aut-ARLS to these logged data, p = 2 being selected as the AR order and yt−2 as the 
threshold variable. Figure 7 shows that the threshold detected is 3.2639.

Table IV summarizes the model proposed by Aut-ARLS, and the models proposed by Tong (1990) 
and Tsay (1989). The minimum AIC and BIC correspond to the proposed Aut-ARLS.

Sunspot data
This popular dataset consists of the annual sunspot index from 1700 to 2008. We have used observa-
tions from 1700 to 1920, so that we have the same information as used in Tong (1983). Figure 8 
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Figure 6. Logged annual lynx trapped, 1821–1934. This fi gure is available in colour online at 
www.interscience.wiley.com/journal/for

Figure 7. Recursive estimates φ̂πt
 of the time-varying AR(2) model arranged according to yt−2 for logged lynx 

data. This fi gure is available in colour online at www.interscience.wiley.com/journal/for

displays the annual sunspot data. The data can be accessed from the National Geophysical Data 
Center web site.

Aut-ARLS selects an AR order p = 3 and detects yt−3 as threshold variable. Figure 9 displays the 
recursive estimates φ̂πt

 of the time-varying AR(3) arranged according to yt−3. Figure 9(a) and (b) 
display the estimates in ascending and descending order, respectively. In ascending order, 30.7 is 
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Table IV. TAR models proposed by Tsay (1989), Tong (1990) and Aut-ARLS for logged lynx data

Proposal Delay Threshold TAR orders AIC BIC

Tsay (1989) 2 (2.373, 3.154) (1, 7, 2) −347.7 −322.4
Tong (1990) 2 3.116 (7, 2) −337.6 −315.2
Aut-ARLS 2 3.2639 (3, 2) −353.1 −339.0
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Figure 8. Annual sunspot data from 1700 to 2008. This fi gure is available in colour online at www.interscience.
wiley.com/journal/for

the main candidate to be selected as threshold, whereas in descending order there are several can-
didates. Aut-ARLS selects as threshold value 30.7, using the criterion explained above.

Once the threshold has been selected, a TAR model can be estimated. Aut-ARLS looks for more 
possible thresholds in the residuals of each regime, but no additional thresholds were found.

We have used the TAR models proposed by Tsay (1989), Tong (1983) and Aut-ARLS to obtain 
out-of-sample forecasts of sunspot index during the period 1921–2008. Table V summarizes the 
proposed models, the AIC values reported by Tsay (1989) with data from 1700 to 1920 and the 
mean absolute error (MAE) and root mean square error (RMSE) for forecast horizon h = 1, 2. The 
proposed Aut-ARLS has lower AIC, MAE and RMSE values than Tong and Tsay proposals.

CONCLUDING REMARKS

One of the limitations in using TAR models is the lack of a simple procedure, like the Box–Jenkins 
methodology for linear ARMA models, that assists in the identifi cation. This article proposes a 
method to remove that limitation. One of the main problems in the use of TAR models is the 
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Figure 9. Recursive estimates φ̂πt
 and φ̂ηt

 of the time-varying AR(3) arranged according to yt−3 for sunspot data. 
(a) Ascending order; (b) descending order. This fi gure is available in colour online at www.interscience.wiley.
com/journal/for

diffi culty of identifying the values of the thresholds. Similar to the use of correlograms in Box and 
Jenkins (1970) to identify the orders of ARMA models, we used a graphical tool to identify TAR 
models and to select the thresholds. The proposed procedure, besides its simplicity, is more effi cient 
than the usual tests for TAR detection.
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